CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)




Learning Objectives

Understand the use & creation of dense vector embeddings

Calculate the distance between vector embeddings
Recognize popular vector embeddings

Prepare your projects by finding appropriate related literature
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Review: Baselines
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Review: Evaluation Metric vs Goal

Classification-N

Accuracy Evaluation
Metric

Translation

Evaluation
Input Model Output _bFunction 52.6%

What are you evaluating? N

Evaluation Goal/
How good is the model at translating from Hypothesis

Mandarin to Twi?

—
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Defining the Model

ML model:

* take in featurized input
*  output scores/labels
*  contains weights 0
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Review: Modeling

Can a language

model do Yes!
classification?

Classification P(y ‘ x)

Is a language model

made for doing
classification?

Language

Model (LM) P(Wt‘Wt—th—z )

A language model is used to generate the next word(s)
given a history of words. More about LS

after spring
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Representing Inputs/Outputs
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Review: One-Hot Encoding Example

Let our vocab be {a, cat, saw, mouse, happy}

V=#types=5 0
Assign: /0\

How do we —
e —
cat 2 0
saw 3 \ /
: YO
mouse
. 1

ha
PRY How do we

e —
represent happy
((ha ppy?ll
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A Dense Representation (E=2
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Review: Distributional Representations

A dense, “low”-dimensional vector representation

/NN

Many values  Up till ¥2013: E could be  An E-dimensional
are not O (or at any size vector, often (but not

leastless  2013-present: E << vocab always) real-valued
sparse than

one-hot) These are also called

 embeddings
* Continuous representations
* (word/sentence/...) vectors

* Vector-space models




Review: (Some) Properties of Embeddings

1) Capture “like” (similar) words

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint  capitulation
Redmond Washington  president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship  taggers capitulating
2) Capture relationships
WOMAN vector(‘king’) —
QUEENS
/ AUNT vector(‘man’) +
/ vector(‘woman’) =
MAN vector(‘queen’)
UNCLE KINGS
QUEEN QUEEN vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) =
KING KING vector(‘Rome’)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/11/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:

10.48550/arXiv.1301.3781.


https://doi.org/10.48550/arXiv.1301.3781

Key ldeas

1. Acquire basic contextual statistics (often counts) for each word type v

2. Extract a real-valued vector e, for each word v from those statistics

For example:
[0.00315225, 0.00315225, 0.00547597, 0.00741556, 0.00912817, 0.01068435, 0.01212381, 0.01347162, 0.01474487, 0.0159558 ]

3. Use the vectors to represent each word in later tasks
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Common Evaluation: Correlation
between similarity ratings

Input: list of N word pairs {(x1, ¥1), ..., (Xn, Yn)}

o Each word pair (x;, y;) has a human-provided similarity score h;

Use your embeddings to compute an embedding similarity score s; =

sim(x;, ¥;)

Compute the correlation between human and computed similarities
p = Corr((hq, ..., hy), (51, ..., Sy))

Wordsim353: 353 noun pairs rated 0-10
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Cosine: Measuring Similarity

Given 2 target words v and w how similar are their vectors?

Dot product or inner product from Iinj&ar algebra

dot-product(V,w) =V-w = E Viw; = Viw) Fvaws + ... Fvywy
i=1
> High when two vectors have large values in same dimensions, low for orthogonal vectors with
zeros in complementary distribution

a -

dl|

Correct for high magnitude vectors

S S
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Cosine Similarity

Divide the dot product by the length of
the two vectors

—

a-b
all|b

This is the cosine of the angle between

th - =
o i-b = |d||b|cos
—).B
C_l)_, — cos 0O
d||b]
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convertible Chevrolet Ford
o ° .
car cargo capacity truck
N e “ off-road
towing ®

fuel efficiency

7~ 80°N\

.
Origin
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Example: Word Similarity

2i XiYi

2 2
\/Zixi \/ZiYi
cosine(apricot,information) = = 0.1622

V4+0+0V1+36+1

cos(x,y) =

apricot
digital 0 1 2 _ L _ 0+6+2
cosine(digital,information) = = 0.5804
VO+1+4vV1+36+1
information 1 6 1
0+0+0
cosine(apricot,digital) = = 0.0

VA+0+0/0+1+4
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Cosine Similarity Range

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(B) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors
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Other Similarity Measures

SIM G ogine (VW) = 1—? 1:1{;
\/Z: 1 T\/ZI 1 I
sim 2 — Z mm{v”w}
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Adding Morphology, Syntax, and
Semantics to Embeddings

* Lin (1998): “Automatic Retrieval and Clustering of Similar Words”

* Padd and Lapata (2007): “Dependency-based Construction of Semantic Space
Models”

* Levy and Goldberg (2014): “Dependency-Based Word Embeddings”
* Cotterell and Schitze (2015): “Morphological Word Embeddings”

* Ferraro et al. (2017): “Frame-Based Continuous Lexical Semantics through
Exponential Family Tensor Factorization and Semantic Proto-Roles”

* and many more...
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Common Continuous
Representations




Shared Intuition

Model the meaning of a word by “embedding” in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic
applications by a vocabulary index (“word number 545”) or the string itself
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Three Common Kinds of Embedding
Models

1. Co-occurrence matrices

Matrix Factorization: Singular value decomposition/Latent Semantic
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)

3/11/2024
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Three Common Kinds of Embedding
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)

Co-occurrence matrices can be used in their own
right, but they’re most often used as inputs
(directly or indirectly) to the matrix factorization

or neural approaches
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Co-occurrence Matrix

Acquire basic contextual statistics words

(often counts) for each word type v via

correlate
Per-correlated

word statistics

correlates

3/11/2024 VECTOR EMBEDDINGS
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Co-occurrence Matrix

Acquire basic contextual statistics words
(often counts) for each word type v via J
correlate:

Per-correlated

For example: word statistics

documents

o Record how often a word occurs in each
document

correlates
B

# correlates =
# documents

VECTOR EMBEDDINGS 25
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Co-occurrence Matrix

Acquire basic contextual statistics words
(often counts) for each word type v via J
correlate:
Per-correlated
° @)
For example: § word statistics
documents L N
)
()

surrounding context words

o Record how often v occurs with other
word types u

# correlates =
# word types

VECTOR EMBEDDINGS 26
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Co-occurrence Matrix

Acquire basic contextual statistics words
(often counts) for each word type v via J
correlate:
Per-correlated
F ; <
or example 3 word statistics
3.
documents L N
)
()

surrounding context words

linguistic annotations (POS tags,
syntax) Assumption: Two words

are similar if their
vectors are similar
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“Acquire basic contextual statistics (often
counts) for each word type v”

Two basic, initial counting approaches
> Record which words appear in which documents

> Record which words appear together

These are good first attempts, but with some large downsides

28
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You shall know a word by the company

it keeps!” Firth (1957

3/11/2024

document (J/)-word (=) count matrix

As You Like It
Twelfth Night
Julius Caesar

Henry V

basic bag-of-

words
counting

15

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. I've seen it severa
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

12
36

whimsical it
seen

adventure

sati
whoSWweet of mov i
it butto rotmant|c |

several

the  “seen
to scenes | i,

i and about

_.conventions
with
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“You shall know a word by the company
it keeps!” Firth (1957)

document (J/)-word (=) count matrix

o | s | m | 1 | o
I T R A N T S AR

Assumption: Two documents are similar if their vectors are similar




“You shall know a word by the company
it keeps!” Firth (1957)

document (J/)-word (=) count matrix

T bate | oder | ool | cown

Assumption: Two words are similar if their vectors are similar???




“You shall know a word by the company
it keeps!” Firth (1957)

document (J/)-word (=) count matrix

T bate | oder | ool | cown

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!
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“You shall know a word by the company
it keeps!” Firth (1957)

context (| )-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word
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“You shall know a word by the company
it keeps!” Firth (1957)

context (| )-word (=) count matrix

aardvark 0 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word

a cloud [computer stores digital data oﬂa remote computer
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“You shall know a word by the company
it keeps!” Firth (1957)

context (| )-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

The size of windows depends on your goals
The shorter the windows , the more syntactic the representation
+ 1-3 more “syntax-y”
The longer the windows, the more semantic the representation

+ 4-10 more “semantic-y”



“You shall know a word by the company
it keeps!” Firth (1957)

context (| )-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word
Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!
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Pointwise Mutual Information (PMI):
Dealing with Problems of Raw Counts

Pointwise mutual information:

Raw word frequency is not a great

measure of association between Do events x and y co-occur more than if they
words were independent?

It’s very skewed: “the” and “of” are
very frequent, but maybe not the
most discriminative

probability words x and y occur together

in the same context/windo
We'd rather have a measure that asks (i xt/window)

whether a context word is particularly _ p(x,y)
informative about the target word. PMICx, ) = logp(x)p(y)
(POSitive) Pointwise Mutual probability that probability that

Information ((P)PN”) word x occurs  word y occurs

VECTOR EMBEDDINGS 37
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Advanced:
Equivalent PMI Computations

Intuition: Do words x and y co-occur more than if they were independent?

X, X X
PMI(x, y) = log &) _logp(yl )=10gp( 1Y)

p(p(y) p(y) p(x)




“Noun Classification from Predicate-
Argument Structure,” Hindle (1990)

“drink it” is more common than “drink wine”

“wine” is a better “drinkable” thing than “it”

1.3
5.2
9.3
11.8
10.5

it 3
anything 3
wine 2
tea 2
liquid 2




Three Common Kinds of Embedding
Models

Learn more in:
* Your project

* Paper (673)
1. * Other classes (478/678)

2. Matrix Factorization: Singular value decomposition/Latent Semantic
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Three Common Kinds of Embedding
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)

3/11/2024
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Word2Vec

Mikolov et al. (2013; NeurlPS): “Distributed Representations of Words and
Phrases and their Compositionality”

Revisits the context-word approach
Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
> h, € RE: vector embeddings for each context word
> v,, € RE: vector embeddings for each target word

p(c |w) o exp(hivy,)
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Word2Vec

context ({/)-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word

max 2 count(c,w) logp(c | w)
, U

C,W pairs
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Word2Vec

context ({/)-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word

max ) count(c,w) [hIv, —log(} exp(hv,,)))
u -

h,v

C,W pairs :

3/11/2024 VECTOR EMBEDDINGS 44




The wide road shimmered in the hot sun.

tf.keras.preprocessing.sequence.skipgrams

Example :

(wide, road) (road, shimmered) (hot, sun) (the, hot)
T .ﬂ (2,3) (3,4) 6,7) (1, 6)
e n S O r O W tf.random.log _uniform candidate_ sampler
l (negative_samples = 4)
!
(wide, road) (wide, sun) (wide, hot) (wide, temperature) (wide, code)
(2,3) 2,7) (2,6) (2, 23) (2, 2196)

concat and add label (pos:1/neg:0)

!
(wide, road) (wide, sun) (wide, hot) (wide, temperature) (wide, code)
2,3) 2,7) (2,6) (2, 23) (2, 2196)
1 0 0 0 0

build context words and labels for all vocab words

Word Context words Labels
2 3 7 6 23 2196 1 0 0 0 0
23 12 6 94 17 1085 1 0 0 0 0
84 784 1 68 41 453 1 0 0 0 0
"4 45 598 1 117 43 1 0 0 0 0
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Word2Vec has Inspired a Lot of Work

Off-the-shelf embeddings
o https://code.google.com/archive/p/word2vec/

Off-the-shelf implementations
o https://radimrehurek.com/gensim/models/word2vec.html

Follow-on work

° J. Pennington, R. Socher, and C. D. Manning, “GLoVe: Global Vectors for Word
Representation,” in Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar, 2014, pp. 1532-1543. doi: 10.3115/v1/D14-1162.

o https://nlp.stanford.edu/projects/glove/
° Many others
o 15000+ citations
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https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://doi.org/10.3115/v1/D14-1162
https://nlp.stanford.edu/projects/glove/

Fast Text

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with
Subword Information,” Transactions of the Association for Computational
Linguistics, vol. 5, pp. 135-146, 2017, doi: 10.1162/tacl a 00051.

Main idea: learn character n-gram embeddings for the target word (not context)
and modify the word2vec model to use these

Pre-trained models in 150+ languages
o https://fasttext.cc

VECTOR EMBEDDINGS 'y
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https://doi.org/10.1162/tacl_a_00051

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the
context) modify the word2vec model to use these

Original word2vec:

p(c |w) « exp(hivy)
FastText:

p(c |w) «x exp (hg(Zn—gramg iang))

48
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FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the
context) modify the word2vec model to use these

p(C |W) X exp (hZ(Zn—gramg inWZg))

decompose

fluffy > f1 flu luf uff ffy fy

Sub-word units like
this have become an

important part of
today’s NLP work!
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FastText Details

Main idea: learn character n-gram embeddings and for the target
word (not the context) modify the word2vec model to use these

p(c |w) « exp hZ( Z Zg>

n—gram g in w

decompose
fluffy > fl flu luf uff ffy fy
o |0 o @ o o
O @ O © @ O
() @ @ @ @ @

To deterministically
compute word embeddings Learn n-gram

embeddings
3/11/2024 VECTOR EMBEDDINGS 50
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Contextual Word Embeddings

Word2vec-based models are not context-dependent
Single word type =2 single word embedding

If a single word type can have different meanings...
bank, bass, plant,...

... why should we only have one embedding?

Entire task devoted to classifying these meanings:

Word Sense Disambiguation

3/11/2024 VECTOR EMBEDDINGS 52




Contextual Word Embeddings

Growing interest in this

Off-the-shelf is a bit more difficult
° Download and run a model
o Can’t just download a file of embeddings

Two to know about (with code):
o ELMo: “Deep contextualized word representations” Peters et al. (2018;
NAACL)
o https://allennlp.org/elmo

o BERT: “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding” Devlin et al. (2019; NAACL)

o https://github.com/google-research/bert

VECTOR EMBEDDINGS
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