CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)




Learning Objectives

Formalize what a language model is using the Markov assumption

Create a LM using Maximum Likelihood Estimation (MLE)
Evaluate LMs with perplexity
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Review: (Some) Properties of Embeddings

1) Capture “like” (similar) words

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint  capitulation
Redmond Washington  president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship  taggers capitulating
2) Capture relationships
WOMAN vector(‘king’) —
QUEENS
/ AUNT vector(‘man’) +
/ vector(‘woman’) =
MAN vector(‘queen’)
UNCLE KINGS
QUEEN QUEEN vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) =
KING KING vector(‘Rome’)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.


https://doi.org/10.48550/arXiv.1301.3781

Review: Cosine Similarity

Divide the dot product by the length of
the two vectors

- 7 convertible Chevrolet Ford
a - b * ] ]
car cargo capacity truck
ST N ° ‘ “ off-road
‘ a | | b | fuel efficiency towing *
o °
This is the cosine of the angle between 807
them — -
— — (9
a-b
— = cos6
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Review: Cosine Similarity Range

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(B) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors
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Co-occurrence Matrix

Acquire basic contextual statistics words
(often counts) for each word type v via J
correlate:
For example: 0 Per-correl.atfed
£ word statistics
documents gi U
Q

surrounding context words

linguistic annotations (POS tags,
syntax) Assumption: Two words

are similar if their
vectors are similar
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Review: “You shall know a word by the
company it keeps!” Firth (1957

document (J/)-word (=) count matrix

As You Like It

Twelfth Night 1 2 58 117
Julius Caesar 8 12 1 0

Henry V 15 36 5 0

it 6

| love this movie! It's sweet, | 5

but with satirical humor. The ai ) the 4

dialogue is great and the aly always  lovero ;Ond g

adventure scenes are fun... and “imsica, B ol >

bGSIC bCI -of- It manages to be whimsical friend oDy dialogua°"® yet 1

g and romantic while laughing adventure "ecommend would 1

at the conventions of the whoSweet of nﬁgt"'ca' it whimsical 1

WOoOr dS fairy tale genre. | would - it ! but ' romantic | - tlmest 1

i i several swee

. recommelnd it to just about o 2930 it the humor satirical 1

coun tlng anyone. I've seen it several seen would adventure 1
i to scenes |

times, and I'm always happy _the manage genre 1

to see it again whenever | U1 and ameSand fairy 1

have a friend who hasn't whenever 15,0 While humor 1

seen it vet! _..conventions have 1

y with great 1
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Review: “You shall know a word by the
company it keeps!” Firth (1957)

document (J/)-word (=) count matrix

o | s | m | 1 | o
I T R A N T S AR

Assumption: Two documents are similar if their vectors are similar




Review: “You shall know a word by the
company it keeps!” Firth (1957)

document (J/)-word (=) count matrix

T bate | oder | ool | cown

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!
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Review: Pointwise Mutual Information
(PMI)

Raw word frequency is not a great

measure of association between Do events x and y co-occur more than if they
words were independent?

It’s very skewed: “the” and “of” are
very frequent, but maybe not the
most discriminative

Pointwise mutual information:

probability words x and y occur together

in the same context/windo
We'd rather have a measure that asks (i xt/window)

whether a context word is particularly _ p(x,y)
informative about the target word. PMICx, ) = logp(x)p(y)
(POSitive) Pointwise Mutual probability that probability that

Information ((P)PN”) word x occurs  word y occurs
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Review: Word2Vec

Mikolov et al. (2013; NeurlPS): “Distributed Representations of Words and
Phrases and their Compositionality”

Revisits the context-word approach
Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
> h, € RE: vector embeddings for each context word
> v,, € RE: vector embeddings for each target word

p(c |w) o exp(hivy,)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.


https://doi.org/10.48550/arXiv.1301.3781

Review: Word2Vec

context ({/)-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word

max 2 count(c,w) logp(c | w)
, U

C,W pairs

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.


https://doi.org/10.48550/arXiv.1301.3781

Review: Fastlext

Main idea: learn character n-gram embeddings and for the target
word (not the context) modify the word2vec model to use these

p(c |w) x exp| hY Z Z,
n—gram g in w

decompose

fluffy = £l flu luf uff ffy fy
® :

N\

é

0000

N\
. J

4 )

4,

( )
\ J
( )
\

To deterministically

compute word embeddings Learn n-gram
embeddings

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5, 135-146.
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Defining the Model

ML model:

* take in featurized input
*  output scores/labels
*  contains weights 0
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Goal of Language Modeling

pe( [...text..] )

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to
make text more likely




Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =v |wy ..wy_1)

Generation
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Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =V |wy ...wy_q), €.8.,
p(wy = meowed |The, fluffy, cat)

Generation
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Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =v|w; ..wy_q), €.8,
p(wy = meowed |The, fluffy, cat)

Generation

Develop a probabilistic model p to explain/score the word
sequence wy ... Wy

p(wy ...wy), e.g.,
p(The, fluffy, cat, meowed)
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Design Question 1: What Part of
L.anguage Do We Estimate?

pe( [...text..] )

Is [...text..] a

* Full document? A: It’s task-
* Sequence of sentences? '
* Sequence of words? dependent!

* Sequence of characters?




Design Question 2: How do we estimate
robustly?

pe([...typo-text..])

What if [...text..] has a typo?




Design Question 3: How do we
generalize?

p 0 ( [...synonymous-text..])

What if [...text..] has a word (or character
or...) we've never seen before?




Key ldea: Probability Chain Rule

p(xl’ X2y veey xS) —

p(x)p(xs |x))p (a3 | x4, %) - p(xs]x1, o)y X5_1)




Key ldea: Probability Chain Rule

p(xl, X9, ...,XS) —
p(x1)p(x; |x1)P§x3 | X1, %3) - p(X5]|X1, ov) X5—1) =

1_[ p(xille ALY xi—l)
- Y I




Example: Develop a Probabilistic Email
Classifier

Input: an email (all text)

Output (Gmail categories):

Primary, Social, Forums, Spam

argmax, p(label Y = y | email X)

Approach #2: Using Bayes rule




Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)




Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)

Q: Why is p(Y | X) what
we want to model?




Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)




A Closer Look at p()

This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?
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A Closer Look at p()

This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?

Q: What'’s an easy way to
estimate it?
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A Closer Look at p(| \)

This is a class specific language model
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A Closer Look at p(| \)

This is a class specific language model

3/25/2024

p(

p(

Won’t you
please
donate?

___—

Won'’t you
please
donate?

_

I) is different from
|) is different from

p(

N-GRAM LANGUAGE MODELS
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A Closer Look at p(| \)

This is a class specific language model

Won’t you
To learn p(| rlease || ):
donate?

For each class Class:
Get a bunch of Class documents D¢},

Learn a new language model pcj,<s on just Dejas.
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Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Other count-based models

. E t

° Laplace smoothing, add- A <« e
implement

° Interpolation models T

> Discounted backoff Advanced/

° Interpolated (modified) Kneser-Ney ——  outof

° Good-Turing scope

> Witten-Bell )

Maxent n-gram models < Featureful LMs

Neural n-gram models ) Feedforward LMs

Precursor to
H <<
Recurrent/autoregressive NNs modern LMs
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Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Other count-based models

. E t

° Laplace smoothing, add- A < e
implement

° Interpolation models T

> Discounted backoff Advanced/

° Interpolated (modified) Kneser-Ney ——  outof

° Good-Turing scope

> Witten-Bell )

Maxent n-gram models < Featureful LMs

Neural n-gram models ) Feedforward LMs

Precursor to
H <<
Recurrent/autoregressive NNs modern LMs
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“Colorless green ideas sleep furiously”
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N-Grams

Maintaining an entire inventory over sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously)
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N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
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N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
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N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”
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N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info
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N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) =

p(furiously | Celerlessgreen-ideas sleep)
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N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) =

p(furiously | ideas sleep)
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N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Celorless green ideas) *
p(furiously | Celerlessgreen ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <B0OS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol
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N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)
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N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)

2 bigram 1 p(furiously | sleep)
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N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)
2 bigram 1 p(furiously | sleep)
3 trigram 2 p(furiously | ideas sleep)

(3-gram)
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N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)
2 bigram 1 p(furiously | sleep)
trigram : :
3 (3-gram) 2 p(furiously | ideas sleep)
4 4-gram 3 p(furiously | green ideas sleep)
n n-gram n-1 p(w, | W, g - W, )
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N-Gram Probability

p(Wl) Wo, W3, ***, WS) —

S
1_[ p(Wilwi—nt1, Wiz1)
i=1




Count-Based N-Grams (Unigrams)

p(item) < count(item)




Count-Based N-Grams (Unigrams)

p(z) « count(z)




Count-Based N-Grams (Unigrams)

word type word type

l l

p(z) «< count(z)
- count(z)
Y count(v)

I

word type




Count-Based N-Grams (Unigrams)

word type word type

l l

p(z) «< count(z)
count(z)




Count-Based N-Grams (Unigrams)
The film got a great

opening and the film

went on to become a
hit . got

d

film

great
opening
and
the
went
on
to
become

hit

B R R R R R R R R RN RN
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Count-Based N-Grams (Unigrams)
The film got a great

opening and the film

went on to become a
hit . got

d

film

great
opening
and
the 0
went
on
to
become

hit

B R R R R R R R R RN RN
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Count-Based N-Grams (Unigrams)
The film got a great

opening and the film 1/16

went on to become a film 2 1/8
hit . got 1 1/16
a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 o 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

1 s



Count-Based N-Grams (Trigrams)

order matters in order matters in
conditioning count

! !
p(z|x,y) « count(x,y,z)

Count of the
sequence of items
llX y ZII




Count-Based N-Grams (Trigrams)

order matters in order matters in
conditioning count

! !
p(z|x,y) « count(x,y,z)

count(x, vy, z) # count(x, z, y) # count(y, x, z) # ...




Count-Based N-Grams (Trigrams)

p(z|x,y) < count(x,y,z)
count(x,vy, z)

B D, count(x,y, V)




Count-Based N-Grams (Trigrams)

The film got a great opening and the film went on to become a hit .

i o T

The film

The film film 0 0/1
The film got 1 ! 1/1
The film went 0 0/1
a great great 0 0/1
a great opening 1 1/1
a great and 0 ' 0/1
a great the 0 0/1
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Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Iy sl

the film

the film film 0 0/2
the film got 1 2 1/2
the film went 1 1/2
a great great 0 0/1
a great opening 1 1/1
a great and 0 ' 0/1
a great the 0 0/1
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Implementation: EOS Padding

Create an end of sentence (“chunk”) token <EOS>

Don’t estimate p(<BOS> | <EOS>)

Training & Evaluation:

1. Identify “chunks” that are relevant (sentences, paragraphs, documents)
2. Append the <EOS> token to the end of the chunk
3. Train or evaluate LM as normal
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Implementation: Memory Issues

Let V = vocab size, W = number of observed n-grams

Often, W KV

Dense count representation: O(V™), but many entries will be zero

Sparse count representation: O (W)

Sometimes selective precomputation is helpful (e.g., normalizers)
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Implementation: Unknown words

Create an unknown word token <UNK>

Training:
1. Create a fixed lexicon L of size V
2. Change any word notin Lto <UNK>
3. Train LM as normal

Evaluation:
Use UNK probabilities for any word not in training




donate?

A Closer Look at Count-based p(| = | | O )

S

This is a class specific language model

Won’t you
To learn p(| please || ):
donate?

For each class Class:
Get a bunch of Class documents D¢},

Learn a new language model pcj,<s on just Dejas.
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Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s)
Cclass (... ) for each Class

e.g., record separate trigram counts for
Primary vs. Social vs. Forums vs. Spam




Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s) ¢, (... ) for
each Class

e.g., record separate trigram counts for Primary vs.
Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables
c(Class, ...)

e.g., record how often each trigram occurs within
Primary vs. Social vs. Forums vs. Spam documents
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Evaluating Language Models

What is “correct?”

What is working “well?”

fine-tune any secondary

(hyper)parameters
L BIYY, Test
Training Data
5 Data Data
learn model parameters: perform final
* acquire primary statistics evaluation

* learn feature weights

DO NOT TUNE ON THE TEST DATA
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Fvaluating Language Models

What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors
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Evaluating Language Models

What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)
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‘II

Perplexity: Average “Surprisa

Lower is better : lower perplexity =2 less surprised

£ £
8 8
N N
o o
= =
© ©
S S

: | : 1
o o

[ |
word type word type

Less certain =» More certain =»

More surprised = Less surprised =»

Higher perplexity Lower perplexity
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Perplexity

Lower is better : lower perplexity =2 less surprised

perplexity = exp(avg crossentropy)
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Perplexity

Lower is better : lower perplexity =2 less surprised

perplexity = exp(_ﬁllogp(wl, v, Wy) )




Perplexity

Lower is better : lower perplexity =2 less surprised

e.g., n-gram history
(n-1 items)

. —1
perplexity = exp(—~ 2.;~; logp(w; | 1))




Perplexity

Lower is better : lower perplexity =2 less surprised

. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

>0, < 1: higher




Perplexity

Lower is better : lower perplexity =2 less surprised

< 0: higher

( \
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

>0, < 1: higher




Perplexity

Lower is better : lower perplexity =2 less surprised

< 0: higher

( \
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }
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Perplexity

Lower is better : lower perplexity =2 less surprised

> 0, lower is better

< 0: higher

(

( \
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }

\

Y_

<0, higher
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Perplexity

Lower is better : lower perplexity =2 less surprised

> 0, lower is better

< 0: higher

(

( \
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }
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Perplexity

Lower is better : lower perplexity =2 less surprised

base must be >0, lower is better

the same A

(

< 0: higher

\
. ~1
perplexity = exp(— Z{-‘illog\p(wi | hi)})

0, < 1: higher }
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Perplexity

Lower is better : lower perplexity =2 less surprised

. —1
perplexity = exp(— XL, logp(w; | b))

M 1
\/\Hiﬂ pwilh)
Y

weighted
geometric
average

3/25/2024
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How to Compute Average Perplexity

If you have a list of the probabilities for each observed n-gram “token:”

numpy .exp (-numpy.mean (numpy.log (probs per trigram token)))

If you have a list of observed n-gram “types” t and counts c, and log-prob. function Ip:

numpy.exp (-numpy.mean (c*1lp(t) for (t, c) 1n ngram types.items()))

If you’re computing a cross-entropy loss function (e.g., in Pytorch):

loss fn = torch.nn.CrossEntropyLoss (reduction="‘mean’)

torch.exp(loss fn(..))
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