CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

Learning Objectives

Formalize what a language model is using the Markov assumption

Create a LM using Maximum Likelihood Estimation (MLE)
Evaluate LMs with perplexity

3/25/2024 N-GRAM LANGUAGE MODELS 2

Review: (Some) Properties of Embeddings

1) Capture “like” (similar) words

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel = martial arts grafitti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating
2) Capture relationships
WOMAN vector(‘king’) —
QUEENS
/ AUNT vector(‘man’) +
/ vector(‘woman’) =
MAN vector(‘queen’)
UNCLE KINGS
QUEEN QUEEN vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) =
KING KING vector(‘Rome’)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: Cosine Similarity

Divide the dot product by the length of
the two vectors

- 7 convertible Chevrolet Ford
a - b *]]
car cargo capacity truck
ST N ° ‘ “ off-road
‘ a | | b | fuel efficiency towing *
o °
This is the cosine of the angle between 807
them — -
— — (9
a-b
— = cos6

3/25/2024 N-GRAM LANGUAGE MODELS

Review: Cosine Similarity Range

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(B) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

3/25/2024 N-GRAM LANGUAGE MODELS

Co-occurrence Matrix

Acquire basic contextual statistics words
(often counts) for each word type v via J
correlate:
For example: 0 Per-correl.atfed
£ word statistics
documents gi U
Q

surrounding context words

linguistic annotations (POS tags,
syntax) Assumption: Two words

are similar if their
vectors are similar

3/25/2024 N-GRAM LANGUAGE MODELS

Review: “You shall know a word by the
company it keeps!” Firth (1957

document (J/)-word (=) count matrix

As You Like It

Twelfth Night 1 2 58 117
Julius Caesar 8 12 1 0

Henry V 15 36 5 0

it 6

| love this movie! It's sweet, | 5

but with satirical humor. The ai) the 4

dialogue is great and the aly always lovero ;Ond g

adventure scenes are fun... and “imsica, B ol >

bGSIC bCI -of- It manages to be whimsical friend oDy dialogua°"® yet 1

g and romantic while laughing adventure "ecommend would 1

at the conventions of the whoSweet of nﬁgt"'ca' it whimsical 1

WOoOr dS fairy tale genre. | would - it ! but ' romantic | - tlmest 1

i i several swee

. recommelnd it to just about o 2930 it the humor satirical 1

coun tlng anyone. I've seen it several seen would adventure 1
i to scenes |

times, and I'm always happy _the manage genre 1

to see it again whenever | U1 and ameSand fairy 1

have a friend who hasn't whenever 15,0 While humor 1

seen it vet! _..conventions have 1

y with great 1

3/25/2024

N-GRAM LANGUAGE MODELS

Review: “You shall know a word by the
company it keeps!” Firth (1957)

document (J/)-word (=) count matrix

o | s | m | 1 | o
I T R A N T S AR

Assumption: Two documents are similar if their vectors are similar

Review: “You shall know a word by the
company it keeps!” Firth (1957)

document (J/)-word (=) count matrix

T bate | oder | ool | cown

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

3/25/2024 N-GRAM LANGUAGE MODELS 9

Review: Pointwise Mutual Information
(PMI)

Raw word frequency is not a great

measure of association between Do events x and y co-occur more than if they
words were independent?

It’s very skewed: “the” and “of” are
very frequent, but maybe not the
most discriminative

Pointwise mutual information:

probability words x and y occur together

in the same context/windo
We'd rather have a measure that asks (i xt/window)

whether a context word is particularly _ p(x,y)
informative about the target word. PMICx,) = logp(x)p(y)
(POSitive) Pointwise Mutual probability that probability that

Information ((P)PN”) word x occurs word y occurs

N-GRAM LANGUAGE MODELS 10

3/25/2024

Review: Word2Vec

Mikolov et al. (2013; NeurlPS): “Distributed Representations of Words and
Phrases and their Compositionality”

Revisits the context-word approach
Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
> h, € RE: vector embeddings for each context word
> v,, € RE: vector embeddings for each target word

p(c |w) o exp(hivy,)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: Word2Vec

context ({/)-word (=) count matrix

| apricot T

aardvark 0

computer 0 0 2 1
data 0 10 1 6
pinch 1 1 0 0
result 0 0 1 4
sugar 1 1 0 0

Context: those other words within a small “window” of a target word

max 2 count(c,w) logp(c | w)
, U

C,W pairs

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in

3/25/2024 International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: Fastlext

Main idea: learn character n-gram embeddings and for the target
word (not the context) modify the word2vec model to use these

p(c |w) x exp| hY Z Z,
n—gram g in w

decompose

fluffy = £l flu luf uff ffy fy
® :

N\

é

0000

N\
. J

4)

4,

()
\ J
()
\

To deterministically

compute word embeddings Learn n-gram
embeddings

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5, 135-146.

3/25/2024

Defining the Model

ML model:

* take in featurized input
* output scores/labels
* contains weights 0

3/25/2024 N-GRAM LANGUAGE MODELS

Goal of Language Modeling

pe([...text..])

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to
make text more likely

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =v |wy ..wy_1)

Generation

3/25/2024 N-GRAM LANGUAGE MODELS

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =V |wy ...wy_q), €.8.,
p(wy = meowed |The, fluffy, cat)

Generation

3/25/2024 N-GRAM LANGUAGE MODELS 17

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens w, ... wy_1, create a classifier
p to predict the next word wy

p(wy =v|w; ..wy_q), €.8,
p(wy = meowed |The, fluffy, cat)

Generation

Develop a probabilistic model p to explain/score the word
sequence wy ... Wy

p(wy ...wy), e.g.,
p(The, fluffy, cat, meowed)

3/25/2024 N-GRAM LANGUAGE MODELS

Design Question 1: What Part of
L.anguage Do We Estimate?

pe([...text..])

Is [...text..] a

* Full document? A: It’s task-
* Sequence of sentences? '
* Sequence of words? dependent!

* Sequence of characters?

Design Question 2: How do we estimate
robustly?

pe([...typo-text..])

What if [...text..] has a typo?

Design Question 3: How do we
generalize?

p 0 ([...synonymous-text..])

What if [...text..] has a word (or character
or...) we've never seen before?

Key ldea: Probability Chain Rule

p(xl’ X2y veey xS) —

p(x)p(xs |x))p (a3 | x4, %) - p(xs]x1, o)y X5_1)

Key ldea: Probability Chain Rule

p(xl, X9, ...,XS) —
p(x1)p(x; |x1)P§x3 | X1, %3) - p(X5]|X1, ov) X5—1) =

1_[p(xille ALY xi—l)
- Y I

Example: Develop a Probabilistic Email
Classifier

Input: an email (all text)

Output (Gmail categories):

Primary, Social, Forums, Spam

argmax, p(label Y = y | email X)

Approach #2: Using Bayes rule

Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)

Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)

Q: Why is p(Y | X) what
we want to model?

Classity Using Bayes Rule

p(label Y | email X) x p(X | Y) * p(Y)

A Closer Look at p()

This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?

3/25/2024 N-GRAM LANGUAGE MODELS

A Closer Look at p()

This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?

Q: What'’s an easy way to
estimate it?

3/25/2024 N-GRAM LANGUAGE MODELS

A Closer Look at p(| \)

This is a class specific language model

3/25/2024 N-GRAM LANGUAGE MODELS 30

A Closer Look at p(| \)

This is a class specific language model

3/25/2024

p(

p(

Won’t you
please
donate?

___—

Won'’t you
please
donate?

_

I) is different from
|) is different from

p(

N-GRAM LANGUAGE MODELS

31

A Closer Look at p(| \)

This is a class specific language model

Won’t you
To learn p(| rlease ||):
donate?

For each class Class:
Get a bunch of Class documents D¢},

Learn a new language model pcj,<s on just Dejas.

3/25/2024 N-GRAM LANGUAGE MODELS 32

Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Other count-based models

. E t

° Laplace smoothing, add- A <« e
implement

° Interpolation models T

> Discounted backoff Advanced/

° Interpolated (modified) Kneser-Ney —— outof

° Good-Turing scope

> Witten-Bell)

Maxent n-gram models < Featureful LMs

Neural n-gram models) Feedforward LMs

Precursor to
H <<
Recurrent/autoregressive NNs modern LMs

3/25/2024 N-GRAM LANGUAGE MODELS

Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Other count-based models

. E t

° Laplace smoothing, add- A < e
implement

° Interpolation models T

> Discounted backoff Advanced/

° Interpolated (modified) Kneser-Ney —— outof

° Good-Turing scope

> Witten-Bell)

Maxent n-gram models < Featureful LMs

Neural n-gram models) Feedforward LMs

Precursor to
H <<
Recurrent/autoregressive NNs modern LMs

3/25/2024 N-GRAM LANGUAGE MODELS

“Colorless green ideas sleep furiously”

3/25/2024 N-GRAM LANGUAGE MODELS

N-Grams

Maintaining an entire inventory over sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously)

3/25/2024 N-GRAM LANGUAGE MODELS 36

N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

3/25/2024 N-GRAM LANGUAGE MODELS

N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *

3/25/2024 N-GRAM LANGUAGE MODELS 38

N-Grams

Maintaining an entire joint inventory over sentences could be too
much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 39

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

3/25/2024 N-GRAM LANGUAGE MODELS 40

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

3/25/2024 N-GRAM LANGUAGE MODELS 41

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) =

p(furiously | Celerlessgreen-ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 42

N-Grams

p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) =

p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 43

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 44

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Celorless green ideas) *
p(furiously | Celerlessgreen ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 45

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 46

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *
p(green | Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

3/25/2024 N-GRAM LANGUAGE MODELS 48

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <B0OS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *
p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol

3/25/2024 N-GRAM LANGUAGE MODELS 49

N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)

3/25/2024 N-GRAM LANGUAGE MODELS

N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)

2 bigram 1 p(furiously | sleep)

3/25/2024 N-GRAM LANGUAGE MODELS

N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)
2 bigram 1 p(furiously | sleep)
3 trigram 2 p(furiously | ideas sleep)

(3-gram)

3/25/2024 N-GRAM LANGUAGE MODELS

N-Gram Terminology

Commonly History Size
called (Markov order)

unigram p(furiously)
2 bigram 1 p(furiously | sleep)
trigram : :
3 (3-gram) 2 p(furiously | ideas sleep)
4 4-gram 3 p(furiously | green ideas sleep)
n n-gram n-1 p(w, | W, g - W,)

3/25/2024 N-GRAM LANGUAGE MODELS 53

N-Gram Probability

p(Wl) Wo, W3, ***, WS) —

S
1_[p(Wilwi—nt1, Wiz1)
i=1

Count-Based N-Grams (Unigrams)

p(item) < count(item)

Count-Based N-Grams (Unigrams)

p(z) « count(z)

Count-Based N-Grams (Unigrams)

word type word type

l l

p(z) «< count(z)
- count(z)
Y count(v)

I

word type

Count-Based N-Grams (Unigrams)

word type word type

l l

p(z) «< count(z)
count(z)

Count-Based N-Grams (Unigrams)
The film got a great

opening and the film

went on to become a
hit . got

d

film

great
opening
and
the
went
on
to
become

hit

B R R R R R R R R RN RN

3/25/2024

Count-Based N-Grams (Unigrams)
The film got a great

opening and the film

went on to become a
hit . got

d

film

great
opening
and
the 0
went
on
to
become

hit

B R R R R R R R R RN RN

3/25/2024

Count-Based N-Grams (Unigrams)
The film got a great

opening and the film 1/16

went on to become a film 2 1/8
hit . got 1 1/16
a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 o 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

1 s

Count-Based N-Grams (Trigrams)

order matters in order matters in
conditioning count

! !
p(z|x,y) « count(x,y,z)

Count of the
sequence of items
llX y ZII

Count-Based N-Grams (Trigrams)

order matters in order matters in
conditioning count

! !
p(z|x,y) « count(x,y,z)

count(x, vy, z) # count(x, z, y) # count(y, x, z) # ...

Count-Based N-Grams (Trigrams)

p(z|x,y) < count(x,y,z)
count(x,vy, z)

B D, count(x,y, V)

Count-Based N-Grams (Trigrams)

The film got a great opening and the film went on to become a hit .

i o T

The film

The film film 0 0/1
The film got 1 ! 1/1
The film went 0 0/1
a great great 0 0/1
a great opening 1 1/1
a great and 0 ' 0/1
a great the 0 0/1

3/25/2024 N-GRAM LANGUAGE MODELS 65

Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Iy sl

the film

the film film 0 0/2
the film got 1 2 1/2
the film went 1 1/2
a great great 0 0/1
a great opening 1 1/1
a great and 0 ' 0/1
a great the 0 0/1

3/25/2024 N-GRAM LANGUAGE MODELS 66

Implementation: EOS Padding

Create an end of sentence (“chunk”) token <EOS>

Don’t estimate p(<BOS> | <EOS>)

Training & Evaluation:

1. Identify “chunks” that are relevant (sentences, paragraphs, documents)
2. Append the <EOS> token to the end of the chunk
3. Train or evaluate LM as normal

3/25/2024 N-GRAM LANGUAGE MODELS 67

Implementation: Memory Issues

Let V = vocab size, W = number of observed n-grams

Often, W KV

Dense count representation: O(V™), but many entries will be zero

Sparse count representation: O (W)

Sometimes selective precomputation is helpful (e.g., normalizers)

3/25/2024 N-GRAM LANGUAGE MODELS 68

Implementation: Unknown words

Create an unknown word token <UNK>

Training:
1. Create a fixed lexicon L of size V
2. Change any word notin Lto <UNK>
3. Train LM as normal

Evaluation:
Use UNK probabilities for any word not in training

donate?

A Closer Look at Count-based p(| = | | O)

S

This is a class specific language model

Won’t you
To learn p(| please ||):
donate?

For each class Class:
Get a bunch of Class documents D¢},

Learn a new language model pcj,<s on just Dejas.

3/25/2024 N-GRAM LANGUAGE MODELS

Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s)
Cclass (...) for each Class

e.g., record separate trigram counts for
Primary vs. Social vs. Forums vs. Spam

Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s) ¢, (...) for
each Class

e.g., record separate trigram counts for Primary vs.
Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables
c(Class, ...)

e.g., record how often each trigram occurs within
Primary vs. Social vs. Forums vs. Spam documents

3/25/2024 N-GRAM LANGUAGE MODELS 72

Evaluating Language Models

What is “correct?”

What is working “well?”

fine-tune any secondary

(hyper)parameters
L BIYY, Test
Training Data
5 Data Data
learn model parameters: perform final
* acquire primary statistics evaluation

* learn feature weights

DO NOT TUNE ON THE TEST DATA

3/25/2024 N-GRAM LANGUAGE MODELS

Fvaluating Language Models

What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

3/25/2024 N-GRAM LANGUAGE MODELS

Evaluating Language Models

What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)

3/25/2024 N-GRAM LANGUAGE MODELS

‘II

Perplexity: Average “Surprisa

Lower is better : lower perplexity =2 less surprised

£ £
8 8
N N
o o
= =
© ©
S S

: | : 1
o o

[|
word type word type

Less certain =» More certain =»

More surprised = Less surprised =»

Higher perplexity Lower perplexity

3/25/2024 N-GRAM LANGUAGE MODELS

Perplexity

Lower is better : lower perplexity =2 less surprised

perplexity = exp(avg crossentropy)

3/25/2024 N-GRAM LANGUAGE MODELS 77

Perplexity

Lower is better : lower perplexity =2 less surprised

perplexity = exp(_ﬁllogp(wl, v, Wy))

Perplexity

Lower is better : lower perplexity =2 less surprised

e.g., n-gram history
(n-1 items)

. —1
perplexity = exp(—~ 2.;~; logp(w; | 1))

Perplexity

Lower is better : lower perplexity =2 less surprised

. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

>0, < 1: higher

Perplexity

Lower is better : lower perplexity =2 less surprised

< 0: higher

(\
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

>0, < 1: higher

Perplexity

Lower is better : lower perplexity =2 less surprised

< 0: higher

(\
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }

3/25/2024 N-GRAM LANGUAGE MODELS

Perplexity

Lower is better : lower perplexity =2 less surprised

> 0, lower is better

< 0: higher

(

(\
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }

\

Y_

<0, higher

3/25/2024 N-GRAM LANGUAGE MODELS]

Perplexity

Lower is better : lower perplexity =2 less surprised

> 0, lower is better

< 0: higher

(

(\
. ~1
perplexity = exp(— Z{-"zllog\p(wi | hi)})

0, < 1: higher }

3/25/2024 N-GRAM LANGUAGE MODELS

Perplexity

Lower is better : lower perplexity =2 less surprised

base must be >0, lower is better

the same A

(

< 0: higher

\
. ~1
perplexity = exp(— Z{-‘illog\p(wi | hi)})

0, < 1: higher }

3/25/2024 N-GRAM LANGUAGE MODELS

Perplexity

Lower is better : lower perplexity =2 less surprised

. —1
perplexity = exp(— XL, logp(w; | b))

M 1
\/\Hiﬂ pwilh)
Y

weighted
geometric
average

3/25/2024

N-GRAM LANGUAGE MODELS 86

How to Compute Average Perplexity

If you have a list of the probabilities for each observed n-gram “token:”

numpy .exp (-numpy.mean (numpy.log (probs per trigram token)))

If you have a list of observed n-gram “types” t and counts c, and log-prob. function Ip:

numpy.exp (-numpy.mean (c*1lp(t) for (t, c) 1n ngram types.items()))

If you’re computing a cross-entropy loss function (e.g., in Pytorch):

loss fn = torch.nn.CrossEntropyLoss (reduction="‘mean’)

torch.exp(loss fn(..))

3/25/2024 N-GRAM LANGUAGE MODELS

	Slide 1: CMSC 473/673 Natural Language Processing
	Slide 2: Learning Objectives
	Slide 3: Review: (Some) Properties of Embeddings
	Slide 4: Review: Cosine Similarity
	Slide 5: Review: Cosine Similarity Range
	Slide 6: Co-occurrence Matrix
	Slide 7: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 8: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 9: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 10: Review: Pointwise Mutual Information (PMI)
	Slide 11: Review: Word2Vec
	Slide 12: Review: Word2Vec
	Slide 13: Review: FastText
	Slide 14: Defining the Model
	Slide 15: Goal of Language Modeling
	Slide 16: Two Perspectives: Prediction vs. Generation
	Slide 17: Two Perspectives: Prediction vs. Generation
	Slide 18: Two Perspectives: Prediction vs. Generation
	Slide 19: Design Question 1: What Part of Language Do We Estimate?
	Slide 20: Design Question 2: How do we estimate robustly?
	Slide 21: Design Question 3: How do we generalize?
	Slide 22: Key Idea: Probability Chain Rule
	Slide 23: Key Idea: Probability Chain Rule
	Slide 24: Example: Develop a Probabilistic Email Classifier
	Slide 25: Classify Using Bayes Rule
	Slide 26: Classify Using Bayes Rule
	Slide 27: Classify Using Bayes Rule
	Slide 28: A Closer Look at p open paren , , , , , , , , , , close paren
	Slide 29: A Closer Look at p open paren , , , , , , , , , , close paren
	Slide 30: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 31: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 32: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 33: Language Models & Smoothing
	Slide 34: Language Models & Smoothing
	Slide 35
	Slide 36: N-Grams
	Slide 37: N-Grams
	Slide 38: N-Grams
	Slide 39: N-Grams
	Slide 40: N-Grams
	Slide 41: N-Grams
	Slide 42: N-Grams
	Slide 43: N-Grams
	Slide 44: N-Grams
	Slide 45: N-Grams
	Slide 46: Trigrams
	Slide 47: Trigrams
	Slide 48: Trigrams
	Slide 49: Trigrams
	Slide 50: N-Gram Terminology
	Slide 51: N-Gram Terminology
	Slide 52: N-Gram Terminology
	Slide 53: N-Gram Terminology
	Slide 54: N-Gram Probability
	Slide 55: Count-Based N-Grams (Unigrams)
	Slide 56: Count-Based N-Grams (Unigrams)
	Slide 57: Count-Based N-Grams (Unigrams)
	Slide 58: Count-Based N-Grams (Unigrams)
	Slide 59: Count-Based N-Grams (Unigrams)
	Slide 60: Count-Based N-Grams (Unigrams)
	Slide 61: Count-Based N-Grams (Unigrams)
	Slide 62: Count-Based N-Grams (Trigrams)
	Slide 63: Count-Based N-Grams (Trigrams)
	Slide 64: Count-Based N-Grams (Trigrams)
	Slide 65
	Slide 66
	Slide 67: Implementation: EOS Padding
	Slide 68: Implementation: Memory Issues
	Slide 69: Implementation: Unknown words
	Slide 70: A Closer Look at Count-based p open paren , , , , , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , , , , , , , , close paren
	Slide 71: Two Ways to Learn Class-specific Count-based Language Models
	Slide 72: Two Ways to Learn Class-specific Count-based Language Models
	Slide 73: Evaluating Language Models
	Slide 74: Evaluating Language Models
	Slide 75: Evaluating Language Models
	Slide 76: Perplexity: Average “Surprisal”
	Slide 77: Perplexity
	Slide 78: Perplexity
	Slide 79: Perplexity
	Slide 80: Perplexity
	Slide 81: Perplexity
	Slide 82: Perplexity
	Slide 83: Perplexity
	Slide 84: Perplexity
	Slide 85: Perplexity
	Slide 86: Perplexity
	Slide 87: How to Compute Average Perplexity

