CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)




What is smoothing (in language modeling)?

setting some words as UNK so that the model can deal with out-of-vocabulary words

setting some words as UNK so that the model can deal wi...

removing common words to even out the distribution

getting rid of zeroes in counts

vV




Perplexity is a measure of...

how unexpected the test data is to your LM

how realistic a LM is according to the test data

how predictable a LM is according to the test data

how accurate a LM is using the test data




Review: Add-A estimation

Other names: Laplace
smoothing, Lidstone
smoothing

p(z) = count(z) + 1
Pretend we saw each word A COUTlt(Z) + A

more times than we did —
Y.,(count(v) + 1)

Add A to all the counts




Review: An Extended Trigram Example

The film got a great opening and the film went on to become a hit ..

Y Ad-1 count | Norm. | Probabltypz | 3]

The film 1 1/17
The film film 0 1 1/17
The film got 1 2 2/17
. 17
The film went 0 1 (=1+16*1) 1/17
The film ooV 0 1 1/17
The film EOS 0 1 1/17
a great great 0 1 1/17
a great opening 1 2 e 2/17
a great and 0 1 1/17
a great the 0 1 1/17
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Review:
Language Model with Maxent n-grams

label

M
|
pr(Bly) = l_[ maxent(Yy, J\Ci_nﬂ;i_l, xz,)
=1

\ "-gram
M

B 1_[ exp(Ox,f (V) Xi—nt1:i-1))

Iterate through all

T
possible output vocab =1 ZX’ eXp(gxl f(y, xi_n+1:i_1))

types x'---just like in
count-based LMs /




Review: Maxent Language Models

given some context...

compute beliefs about
what is likely...

p(w;| w;_3,w;_,,w;_;) = softmax(6,,.

predict the next word
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Review:
Won'’t you
A Closer Look at Maxent p( | »== | | O )

This is a class-based language model, but incor\pﬁthe label into the features

Won’t you
To learn p(| please || ):
donate?

Define features f that make use of the specific label Class

Unlike count-based models, you don’t need “separate” models here
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Maxent Language Models

given some context...

compute beliefs about
what is likely...

predict the next word can we learn word-specific weights
(by type)?
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Neural Language Models

glven some context... Wi 5

can we learn the feature function(s) for just
the context?

compute beliefs about
what is likely...

p(w;| wi_3,w;_3,w;_1) = softmax(6,,, A (W;_3, Wi_2, W;_1))

predict the next word can we learn word-specific weights
(by type)?
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Neural Language Models

given some context...

create/use
“distributed
representations”...

compute beliefs about
what is likely...

predict the next word
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Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vector
representations... product

what is likely...

predict the next word
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Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vector
representations... i product

what is likely...

predict the next word
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Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vector
representations... i product

compute beliefs about
what is likely...

predict the next word
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A Neural N-Gram Model

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

[ Wi, ]9[ Wiq ]9[ Wi ]9[ Wisq H Wi ]9[ Wiq ]9[ Wi ]9[ Wis1 ]
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS
[ W¢i-2 ] [ Wia ] [ Wi ] [ Wiig ] [ Wi, ] [ Wia ] [ Wi ] [ Wisg ]
ho | Lhy ) Ch o ) Db ) [y | Uhyg | [hy
- Cwy | Lw ) Cwes | Lwy | Lwey | [
BOS he gray fluffy cat meowed very loudly
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly

[ Wis1 ]

[Wi-z] [Wi-l] [Wi][wi+1][wi-2] [Wi-l][
- 1

h h, Ch ) (he ) (hy ) (hy )

BOS The gray fluffy cat meowed
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly

[Wi-z] [Wi-l] [Wi][wi+1][wi-2] [Wi-l][
- 1

[ Wis1 ]

h h, e Lo ) (he ) (e ) [hy

BOS The gray fluffy cat meowed
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS
[ W/Ti\-z ] [ WAi\-l ] [ VXi ] [ W¢i+1 ] [ Wi, ] [ Wia ] [ Wi ] [ Wisg ]
hf 3 h;-z h:—l hi h;. hi-2 hi-1 hi

o | Cha ) | (B ) (he ) Chy ) Cha ) [

Wis Wi Wi fwa | Lw, | Dwg | [w

BOS The gray fluffy cat meowed very loudly
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

[ W/Ti\-z ] [ WAi\-l ] [ Wi ] [ W|+1 ] [ Wz ] [ Wiq ] [ W; ] [ Witq ]
| 7- ho ) ([ h )
Wi Wi, ﬂ - - Cow

BOS The gray fluffy meowed very loudly
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray
[ Wi, [ Wis ] [ Wi ]
= A A
hi-3 hi—2 hi-l
A +— 1  +— 1
Wi Wi Wi
BOS The gray
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cat meowed very loudly EOS
[ Wi ] [ Wi, ] [ Wi1 ] Wi [ Wiiq ]
4 A A 4 )
hi hi—3 hi—2 hi—l hi
— 7 +— 1 4+ 1+
Wi Wi Wi Wiq
fluffy cat meowed very loudly

pA



Defining the Objective

el: Objective / Eval
rized input (correCt) Function
res/labels
eights 0
score

Objective
Function
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Review:
Maximize Log-Likelihood (Classification)

Original maxent equation

exp(ty f (x))
Yy exp(6y,f (x))

log 1_[ po (V;lx;) = z log pg (y; \M-fferem-ng(tms
i i

though Z depends on 8)

( 1
VL =) O5fG) — logZ(x:)
L

= F(6)




Review:
Minimize Cross Entropy Loss

Cross entropy:

N True probability (i.e., T
Classifier correct output) How much y differs from

output \ / the true y

Lxent (5;’ y) —

|

0
0

index of “1” objective is convex
indicates —| 1 U

correct value

(when f(x) is not learned)

0
one-hot
vector
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‘II

“A Neural Probabilistic Language Model,
Bengio et al. (2003)

BASELINES

Test
Bm

Interpolation

Kneser-Ney

packoff > T 3%
e s - m
Clisasczl?sfsfed 3 clg(s)soes 312
Clisasczl?j:fed > clz(s)soes 312
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‘II

“A Neural Probabilistic Language Model,
Bengio et al. (2003)

BASELINES NPLM

Bm

Mix with

Interpolation i non-
: . im. neural
Kneser-Ney 3 . 373 . e
backoff
Kneser-Ney : - 11 5 60 50 No 268
backoff 5 60 50 Yes 257
Class-based 500 5 30 100 No 276
backoff = I S
acko classes 5 30 100 Yes 252
Class-based 500
backoff > classes S

“we were not able to see signs of over- fitting (on the validation set), possibly
because we ran only 5 epochs (over 3 weeks using 40 CPUs)” (Sect. 4.2)
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A Closer Look at Neural p( V:p'y \)

This is a class-based language model, but incorporate the label into
the embedding representation

Won’t you
To learn please ;
p( donate? | )

Define an embedding method that makes use of the specific label
Class

Unlike count-based models, you don’t need “separate” models here

4/1/2024
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LM Comparison for p(| “ses. \ )

N-GRAM/COUNT-BASED MAXENT/LR NEURAL

Class-specific Class-based Class-based

Uses features Uses embedded features
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