CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

Learning Objectives

Define the basic cell architecture of an RNN

Backpropagate loss through an example RNN

4/3/2024 RECURRENT NEURAL NETWORKS

Defining the Model

ML model:

* take in featurized input
* output scores/labels
* contains weights 0

3/25/2024 N-GRAM LANGUAGE MODELS

Review: Maxent Language Models

given some context...

compute beliefs about
what is likely...

predict the next word can we learn word-specific weights
(by type)?

4/3/2024 RECURRENT NEURAL NETWORKS

Review: Neural Language Models

given some context... W, 5 W, ,

can we learn the feature function(s) for just
the context?

compute beliefs about
what is likely...

p(w;| wi_3,w;_3,w;_1) = softmax(6,,, A (W;_3, Wi_2, W;_1))

predict the next word can we learn word-specific weights
(by type)?

4/3/2024 RECURRENT NEURAL NETWORKS

Review: Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these
representations...

compute beliefs about
what is likely...

predict the next word

4/3/2024 RECURRENT NEURAL NETWORKS

LM Comparison

COUNT-BASED MAXENT NEURAL

Class-specific Class-based Class-based

Uses features Uses embedded features

4/3/2024 RECURRENT NEURAL NETWORKS 7

Network Types: Flat , Flat Output

1. Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model

\Viaxent Language Models

given some context...

compute beliefs about
what is likely...

predict the next word

4/3/2024 RECURRENT NEURAL NETWORKS

Viaxent Language Models

given som

no learned
representation h

compute b
what is like

4/3/20 10

Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vector
representations... i product

what is likely...

predict the next word

4/3/2024 RECURRENT NEURAL NETWORKS

given som

create/use
“distribute
representa

combine tf
representdg

compute b
what is like

predict the

4/3/20

Neural Language Models

12

Common Types of
Flat , Flat Output

Feed forward networks

In Pytorch (torch.nn):
Multilayer perceptrons (MLPs)

Activation functions:

General Formulation: https://pytorch.org/docs/stable/nn.html?highlight
=activation#fnon-linear-activations-weighted-sum-
Input: x nonlinearity
Compute:
Linear layer:
hg = X https://pytorch.org/docs/stable/nn.htmli#linear-
for layer|=1toL: layers
n=Ff(Wh_+b) linear layer torch.nn.Linear(

in_features=<dim of h; >,

hidden state (non-linear) .
out_features=<dim of h,>,

at layer | activation . : _
function at | bias=<Boolean: include bias b,>)
return argmax softmax(6h;)
y

4/3/2024 RECURRENT NEURAL NETWORKS 13

https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#linear-layers
https://pytorch.org/docs/stable/nn.html#linear-layers

Review: A Neural N-Gram Model

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

. N, . S, N, N,

4/3/2024 RECURRENT NEURAL NETWORKS

Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

|) | I S) |) |)]
S J |) | J | J |)]
[j-------

BOS he fluffy gray cat meowed very loudly

Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS

N I GHE b GHR I G e R b D

. J O C JC) C)

fluffy gray cat meowed very loudly

Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS

[¢][J[][][][J
) | J | J |) |)

%-----

fluffy gray cat meowed very loudly

Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS

[A][¢J[][][][J
| || J |) |)

=) T N D N

fluffy gray cat meowed very loudly

Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS

. o Jj JpJ)

fluffy gray cat meowed very loudly

Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

] | |] —] -] -] —

4/3/2024 RECURRENT NEURAL NETWORKS

A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

loudly loudly EOS

very loudly

Critical issue: the amount
of information flow is

fundamentally restricted!!!

4/3/2024 RECURRENT NEURAL NETWORKS

A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS
[]|]] | J] |] |]]

S o DR o DR o D . DN . O . (. O

BOS The fluffy gray cat meowed very loudly
Critical issue: the Allowing signal to flow
amount of information from one hidden state to

flow is fundamentally another could help solve
icted!!! his |

4/3/2024 RECURRENT NEURAL NETWORKS

A Classic View of Recurrent Neural
Language Modeling

A Classic View of Recurrent Neural
Language Modeling

A Classic View of Recurrent Neural
Language Modeling

B U S N S

A Classic View of Recurrent Neural
Language Modeling

A Classic View of Recurrent Neural
Language Modeling

predict the next word

) |
o

h., h. 4

SN

- &&

e these words

A Recurrent Neural Network Cell

) (o
S

L —— —

== =n

A Recurrent Neural Network Cell

) (o
I I

== =n

A Recurrent Neural Network Cell

En
oo

T

= e

)

A Recurrent Neural Network Cell
[} [hy =c(Wh;_{ + Uw;)
W

)
; W

Wi,
|

U U
B 1
o(x) = 1+ exp(—x)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

A Simple Recurrent Neural Network Cell

- o
hTs

e

— g

hi — O'(Whi_l + UWl)

—

o(x) =

1+ exp(—x)

A Simple Recurrent Neural Network Cell

R

A Simple Recurrent Neural Network Cell

o (|

S TS

hi — O'(Whi_l + Wi)

w;,, = softmax(Sh;)

RRRRRRRRRRRRRRRRRRRRRRR

A Simple Recurrent Neural Network Cell

N
[(Wi+1
AN N

i

. |
e
B gy U

wW
U U
w;,, = softmax(Sh;)

hi — O'(Whi_l + UWl)

A Simple Recurrent Neural Network Cell

N

. J—W——%TJ—>

must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
w;,, = softmax(Sh;)

hi — O'(Whi_l + UWl)

A Simple Recurrent Neural Network Cell

N

W, Wi,
J
TS S
W
hi—l
must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
problem: they’re tied across

hi — O'(Whi_l + UWl)

inputs/timesteps

w;,, = softmax(Sh;)

4/3/2024 RECURRENT NEURAL NETWORKS

A Simple Recurrent Neural Network Cell

N

W, Wi,
J
TS S
W
hi—l
must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
problem: they’re tied across

inputs/timesteps
hi — O'(Whi_l + UWl)

good news for you: many toolkits
do this automatically

w;,, = softmax(Sh;)

4/3/2024 RECURRENT NEURAL NETWORKS

A Multi-Layer Simple Recurrent Neural Network Cell

) (=
o |

W

~

Pl

>

4 A
Lo

()

1

(

1y

-

[h<

How do you learn an RNN?

As with other approaches: Compute the loss and perform gradient descent

Loss: Cross-entropy, computed per output word
o Just as with prior LM approaches!

4/3/2024 RECURRENT NEURAL NETWORKS 40

Defining the Objective

el: Objective / Eval
rized input (correCt) Function
res/labels
eights 0
score

Objective
Function

4/3/2024 RECURRENT NEURAL NETWORKS

Review:
Minimize Cross Entropy Loss

Cross entropy:

N True probability (i.e., T
Classifier correct output) How much y differs from

output \ / the true y
LX¢"Y(9,y) = — z Vlk]logp(y = k|x)
I label k

0
0

index of “1” objective is convex
indicates —| 1 U

correct value

(when f(x) is not learned)

0
one-hot
vector

4/3/2024 RECURRENT NEURAL NETWORKS 42

Gradient Descent:
Backpropagate the Error

Initialize model
Sett=0
Pick a starting value 6,
Until converged:
for example(s) sentence I: Core idea: Train the model to

1. Compute loss | on x; predict what the next word is
| = model(xi) via maximum likelihood
(equivalently, minimizing cross-
entropy loss).

2. Get gradient g, = I'(x))
3. Get scaling factor p,
4. SetB,,,=9,-p,.*g,
5. Sett+=1

4/3/2024 RECURRENT NEURAL NETWORKS 43

Gradient Descent:
Backpropagate the Error

Initialize model

Core idea: Train the model to

S_et t=0 . predict what the next word is
Pick a starting value 6, via maximum likelihood
Until converged: (equivalently, minimizing cross-

. entropy loss).
for example(s) sentence i: Py loss)

1. Compute loss | on x;

| = model(x;)
2. Get gradient g, = I'(x))
3. Get scaling factor p, This loss is the sum of the per-
4. Set 6 1 = et -p, *gt token cross-entropy loss

5. Sett+=1

4/3/2024 RECURRENT NEURAL NETWORKS 44

Recurrent NN Loss

log.2
mm - Remember: These probabilities
The are computed as a function of the
model parameters!
gray .01
blue .001
fluffy .0005
wet .0005
The

4/3/2024 RECURRENT NEURAL NETWORKS

Recurrent NN Loss

log.2 + log.12

The .2 black .2
gray .01 wet 12
blue .001 blue .001

fluffy .0005 fluffy .0005

wet .0005 gray .0005

4/3/2024 RECURRENT NEURAL NETWORKS

Recurrent NN Loss

log.2 + log.12

The .2 black .2
gray .01 wet 12
blue .001 blue .001

fluffy .0005 fluffy .0005

wet .0005 gray .0005

4/3/2024 RECURRENT NEURAL NETWORKS

Recurrent NN Loss

log.2 + log.12 + log.2

The 2

black 2 black .2
gray .01 wet 12 gray .01
blue .001 blue .001 blue .001

fluffy .0005 fluffy .0005 bald .0005

wet .0005 gray .0005 wet .0005

4/3/2024 RECURRENT NEURAL NETWORKS

Recurrent NN Loss

log.2 + log.12 + log.2 + log.19

The 2 dog 2

black .2 black 2
gray .01 wet 12 gray .01 cat .19
blue .001 blue .001 blue .001 blue .001

fluffy .0005 fluffy .0005 bald .0005 fluffy ~ .0005

wet .0005 gray .0005 wet .0005 wet .0005

4/3/2024

Recurrent NN Loss

log.2 + log.12 + log.2 + log.19

The 2 dog 2

black .2 black 2
gray .01 wet 12 gray .01 cat .19
blue .001 blue .001 blue .001 blue .001

fluffy .0005 fluffy .0005 bald .0005 fluffy ~ .0005

wet .0005 gray .0005 wet .0005 wet .0005

4/3/2024

Recurrent NN Loss

log.2 + log.12 + log.2 + log.19+ log.3

black .2 black . meowed .3

gray .01 wet 12 gray .01 cat .19 purred 2

blue .001 blue .001 blue .001 blue .001 hissed 1
fluffy .0005 fluffy .0005 bald .0005 fluffy .0005 fluffy .001
wet .0005 gray .0005 wet .0005 wet .0005 wet .001

The fluffy gray dog meowed

4/3/2024

Recurrent NN Loss

log.2 + log.12+ log.2 + log.19+ log.3 + log.2

black .2 black . meowed .3 very
gray .01 wet A2 gray .01 cat .19 purred 2 lots A
blue .001 blue .001 blue .001 blue .001 hissed 1 softly .1
fluffy ~ .0005 fluffy .0005 bald .0005 fluffy ~ .0005 fluffy .001 fluffy .0005
wet .0005 gray .0005 wet .0005 wet .0005 wet .001 wet .0005
The fluffy gray dog meowed very

[) J |) | J |) L)
N > g =

cat meowed

4/3/2024

Recurrent NN Loss

(then negate, average)

log.2 + log.12+ log.2 + log.19+ log.3 + log.2 + log.2 + log.2

black .2 black . meowed .3 very : loudly = .2
gray .01 wet A2 gray .01 cat .19 purred 2 lots A softly .01 and A
blue .001 blue .001 blue .001 blue .001 hissed 1 softly .1 quiet .001 blue .001
fluffy .0005 fluffy .0005 bald .0005 fluffy ~ .0005 fluffy .001 fluffy .0005 fluffy .001 fluffy .0005
wet .0005 gray .0005 wet .0005 wet .0005 wet .001 wet .0005 wet .001 wet .0005
The fluffy gray dog meowed very loudly EOS

[J | J |) J | J | J |)]
[> > g > >)

cat meowed very loudly

4/3/2024

Gradient Descent:
Backpropagate the Error

Initialize model

Core idea: Train the model to

S_et t=0 . predict what the next word is
Pick a starting value 6, via maximum likelihood
Until converged: (equivalently, minimizing cross-

. entropy loss).
for example(s) sentence i: Py loss)

1. Compute loss | on x;

| = model(x;) _ .
. Y This loss is the sum of the per-
2. Get grad'ent 8t~ | (Xi) token cross-entropy loss
3. Get scaling factor p, (ennegat, merge)

log.2 + log.12+ log.2 + log.19+ log3 + log2 + log2 + log.2
o e) 2 e e
black .2 dog &2

2 bts A softly .01 and 1

4. Set8,,,=0,-p,*g,

gggggg

gray .01 purred -
—
° e — blue 001 blue .001 blue .001 blue 001 hissed 4l softly .1 quiet 001 blue 001
fluffy |
wet

fluffy .0005 fluffy .0005 bald .0005 fluffy 0005 001 fluffy 0005 fluffy 001 fluffy 0005

wet .0005 gray .0005 wet .0005 wet .0005 001 wet 0005 wet 001 wet 0005

4/3/2024 RECURRENT NEURAL NETWORKS 54

Gradient Descent:
Backpropagate the Error

Sett=0
Pick a starting value 6,

Until converged: epoch: a single

for example(s) sentence i: run over all
1. Compute loss | on x. training data
2. Get gradient B¢~ I’(Xi) (mini)batch spoch (mini-)batch: a
3. Get scaling factor p, run over a subset
4. Set6,,,=9,-p,*g, of the data

5. Sett+=1

4/3/2024 RECURRENT NEURAL NETWORKS 55

Flavors of Gradient Descent

“Online”

“Minibatch”

“Batch”

Sett=0
Pick a starting value 6,
Until converged:

for example i in full data:
1. Compute loss | on x;
2. Get gradient

g.=I(x)

3. Get scaling factor p,
4. SetB,,=0.-p,*g,
5. Sett+=1

done

Sett=0
Pick a starting value 6,
Until converged:
get batch B c full data
setg.=0
for example(s) i in B:
1. Compute loss | on x;
2. Accumulate gradient
g, +=1'(x)
done
Get scaling factor p,
Set8,,=6,-p,*8,
Sett+=1

Sett=0
Pick a starting value 6,
Until converged:

setg,=0

for example(s) i in full data:
1. Compute loss | on x;
2. Accumulate gradient

g.+=1'(x)

done

Get scaling factor p,

Set8,,=6,-p,"8,

Sett+=1

4/3/2024

RECURRENT NEURAL NETWORKS

56

Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives

4/3/2024 RECURRENT NEURAL NETWORKS

Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives

Vanishing gradients

Multiply the same matrices at each timestep =2 multiply many matrices
in the gradients

4/3/2024 RECURRENT NEURAL NETWORKS 58

Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives

Vanishing gradients

Multiply the same matrices at each timestep =2 multiply many matrices
in the gradients

One solution: clip the gradients to a max value

4/3/2024 RECURRENT NEURAL NETWORKS 59

	Slide 1: CMSC 473/673 Natural Language Processing
	Slide 2: Learning Objectives
	Slide 3: Defining the Model
	Slide 4: Review: Maxent Language Models
	Slide 5: Review: Neural Language Models
	Slide 6: Review: Neural Language Models
	Slide 7: LM Comparison
	Slide 8: Network Types: Flat Input, Flat Output
	Slide 9: Maxent Language Models
	Slide 10: Maxent Language Models
	Slide 11: Neural Language Models
	Slide 12: Neural Language Models
	Slide 13: Common Types of Flat Input, Flat Output
	Slide 14: Review: A Neural N-Gram Model
	Slide 15: Review: A Neural N-Gram Model (N=3)
	Slide 16: Review: A Neural N-Gram Model (N=3)
	Slide 17: Review: A Neural N-Gram Model (N=3)
	Slide 18: Review: A Neural N-Gram Model (N=3)
	Slide 19: Review: A Neural N-Gram Model (N=3)
	Slide 20: Review: A Neural N-Gram Model (N=3)
	Slide 21: A Neural N-Gram Model (N=3)
	Slide 22: A Recurrent Neural Language Model
	Slide 23: A Classic View of Recurrent Neural Language Modeling
	Slide 24: A Classic View of Recurrent Neural Language Modeling
	Slide 25: A Classic View of Recurrent Neural Language Modeling
	Slide 26: A Classic View of Recurrent Neural Language Modeling
	Slide 27: A Classic View of Recurrent Neural Language Modeling
	Slide 28: A Recurrent Neural Network Cell
	Slide 29: A Recurrent Neural Network Cell
	Slide 30: A Recurrent Neural Network Cell
	Slide 31: A Recurrent Neural Network Cell
	Slide 32: A Simple Recurrent Neural Network Cell
	Slide 33: A Simple Recurrent Neural Network Cell
	Slide 34: A Simple Recurrent Neural Network Cell
	Slide 35: A Simple Recurrent Neural Network Cell
	Slide 36: A Simple Recurrent Neural Network Cell
	Slide 37: A Simple Recurrent Neural Network Cell
	Slide 38: A Simple Recurrent Neural Network Cell
	Slide 39: A Multi-Layer Simple Recurrent Neural Network Cell
	Slide 40: How do you learn an RNN?
	Slide 41: Defining the Objective
	Slide 42: Review: Minimize Cross Entropy Loss
	Slide 43: Gradient Descent: Backpropagate the Error
	Slide 44: Gradient Descent: Backpropagate the Error
	Slide 45: Recurrent NN Loss
	Slide 46: Recurrent NN Loss
	Slide 47: Recurrent NN Loss
	Slide 48: Recurrent NN Loss
	Slide 49: Recurrent NN Loss
	Slide 50: Recurrent NN Loss
	Slide 51: Recurrent NN Loss
	Slide 52: Recurrent NN Loss
	Slide 53: Recurrent NN Loss
	Slide 54: Gradient Descent: Backpropagate the Error
	Slide 55: Gradient Descent: Backpropagate the Error
	Slide 56: Flavors of Gradient Descent
	Slide 57: Why Is Training RNNs Hard?
	Slide 58: Why Is Training RNNs Hard?
	Slide 59: Why Is Training RNNs Hard?

