CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)




Learning Objectives

Define the basic cell architecture of an RNN

Backpropagate loss through an example RNN
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Defining the Model

ML model:

* take in featurized input
*  output scores/labels
*  contains weights 0
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Review: Maxent Language Models

given some context...

compute beliefs about
what is likely...

predict the next word can we learn word-specific weights
(by type)?

4/3/2024 RECURRENT NEURAL NETWORKS



Review: Neural Language Models

given some context... W, 5 W, ,

can we learn the feature function(s) for just
the context?

compute beliefs about
what is likely...

p(w;| wi_3,w;_3,w;_1) = softmax(6,,, A (W;_3, Wi_2, W;_1))

predict the next word can we learn word-specific weights
(by type)?
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Review: Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these
representations...

compute beliefs about
what is likely...

predict the next word
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LM Comparison

COUNT-BASED MAXENT NEURAL

Class-specific Class-based Class-based

Uses features Uses embedded features
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Network Types: Flat , Flat Output

1. Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model




\Viaxent Language Models

given some context...

compute beliefs about
what is likely...

predict the next word
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Viaxent Language Models

given som

no learned
representation h

compute b
what is like
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Neural Language Models

given some context...

create/use
“distributed
representations”...

combine these matrix-vector
representations... i product

what is likely...

predict the next word
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given som

create/use
“distribute
representa

combine tf
representdg

compute b
what is like

predict the
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Common Types of
Flat , Flat Output

Feed forward networks

In Pytorch (torch.nn):
Multilayer perceptrons (MLPs)

Activation functions:

General Formulation: https://pytorch.org/docs/stable/nn.html?highlight
=activation#fnon-linear-activations-weighted-sum-
Input: x nonlinearity
Compute:
Linear layer:
hg = X https://pytorch.org/docs/stable/nn.htmli#linear-
for layer|=1toL: layers
n=Ff(Wh_+b) linear layer torch.nn.Linear(

in_features=<dim of h; >,

hidden state  (non-linear) .
out_features=<dim of h,>,

at layer | activation . : _
function at | bias=<Boolean: include bias b,>)
return argmax softmax(6h; )
y
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https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#linear-layers
https://pytorch.org/docs/stable/nn.html#linear-layers

Review: A Neural N-Gram Model

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

. N, . S, N, N,
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Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS

| ) | I S ) | ) | ) ]
S J | ) | J | J | ) ]
[j-------

BOS he fluffy gray cat meowed very loudly




Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS
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fluffy gray cat meowed very loudly




Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS
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fluffy gray cat meowed very loudly




Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS
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fluffy gray cat meowed very loudly




Review: A Neural N-Gram Model (N=3)

The

fluffy

The fluffy gray cat meowed very loudly

gray cat meowed very loudly EOS
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Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS
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A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

loudly loudly EOS

very loudly

Critical issue: the amount
of information flow is

fundamentally restricted!!!
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A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly

The fluffy gray cat meowed very loudly EOS
[ ]| ] ] | J ] | ] | ] ]
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BOS The fluffy gray cat meowed very loudly
Critical issue: the Allowing signal to flow
amount of information from one hidden state to

flow is fundamentally another could help solve
icted!!! his |
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A Classic View of Recurrent Neural
Language Modeling




A Classic View of Recurrent Neural
Language Modeling




A Classic View of Recurrent Neural
Language Modeling
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A Classic View of Recurrent Neural
Language Modeling




A Classic View of Recurrent Neural
Language Modeling

predict the next word
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
[ } [ hy =c(Wh;_{ + Uw;)
W

)
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U U
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o(x) = 1+ exp(—x)
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A Simple Recurrent Neural Network Cell
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A Simple Recurrent Neural Network Cell
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A Simple Recurrent Neural Network Cell
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hi — O'(Whi_l + Wi)

w;,, = softmax(Sh;)
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A Simple Recurrent Neural Network Cell
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A Simple Recurrent Neural Network Cell

N

. J—W——%TJ—>

must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
w;,, = softmax(Sh;)

hi — O'(Whi_l + UWl)




A Simple Recurrent Neural Network Cell

N

W, Wi,
J
TS S
W
hi—l
must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
problem: they’re tied across

hi — O'(Whi_l + UWl)

inputs/timesteps

w;,, = softmax(Sh;)

4/3/2024 RECURRENT NEURAL NETWORKS



A Simple Recurrent Neural Network Cell

N

W, Wi,
J
TS S
W
hi—l
must learn matrices U, S, W
U suggested solution: gradient
descent on prediction ability
problem: they’re tied across

inputs/timesteps
hi — O'(Whi_l + UWl)

good news for you: many toolkits
do this automatically

w;,, = softmax(Sh;)
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A Multi-Layer Simple Recurrent Neural Network Cell
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How do you learn an RNN?

As with other approaches: Compute the loss and perform gradient descent

Loss: Cross-entropy, computed per output word
o Just as with prior LM approaches!
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Defining the Objective

el: Objective / Eval
rized input (correCt) Function
res/labels
eights 0
score

Objective
Function
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Review:
Minimize Cross Entropy Loss

Cross entropy:

N True probability (i.e., T
Classifier correct output) How much y differs from

output \ / the true y
LX¢"Y(9,y) = — z Vlk]logp(y = k|x)
I label k

0
0

index of “1” objective is convex
indicates —| 1 U

correct value

(when f(x) is not learned)

0
one-hot
vector
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Gradient Descent:
Backpropagate the Error

Initialize model
Sett=0
Pick a starting value 6,
Until converged:
for example(s) sentence I: Core idea: Train the model to

1. Compute loss | on x; predict what the next word is
| = model(xi) via maximum likelihood
(equivalently, minimizing cross-
entropy loss).

2. Get gradient g, = I'(x))
3. Get scaling factor p,
4. SetB,,,=9,-p,.*g,
5. Sett+=1
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Gradient Descent:
Backpropagate the Error

Initialize model

Core idea: Train the model to

S_et t=0 . predict what the next word is
Pick a starting value 6, via maximum likelihood
Until converged: (equivalently, minimizing cross-

. entropy loss).
for example(s) sentence i: Py loss)

1. Compute loss | on x;

| = model(x;)
2. Get gradient g, = I'(x))
3. Get scaling factor p, This loss is the sum of the per-
4. Set 6 1 = et -p, *gt token cross-entropy loss

5. Sett+=1
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Recurrent NN Loss

log.2
mm - Remember: These probabilities
The are computed as a function of the
model parameters!
gray .01
blue .001
fluffy  .0005
wet .0005
The
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Recurrent NN Loss

log.2 + log.12

The .2 black .2
gray .01 wet 12
blue .001 blue .001

fluffy  .0005 fluffy  .0005

wet .0005 gray .0005
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Recurrent NN Loss

log.2 + log.12

The .2 black .2
gray .01 wet 12
blue .001 blue .001

fluffy  .0005 fluffy  .0005

wet  .0005 gray  .0005
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Recurrent NN Loss

log.2 + log.12 + log.2

The 2

black 2 black .2
gray .01 wet 12 gray .01
blue .001 blue .001 blue .001

fluffy  .0005 fluffy  .0005 bald .0005

wet .0005 gray .0005 wet .0005
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Recurrent NN Loss

log.2 + log.12 + log.2 + log.19

The 2 dog 2

black .2 black 2
gray .01 wet 12 gray .01 cat .19
blue .001 blue .001 blue .001 blue .001

fluffy  .0005 fluffy  .0005 bald .0005 fluffy ~ .0005

wet .0005 gray .0005 wet .0005 wet .0005

4/3/2024



Recurrent NN Loss

log.2 + log.12 + log.2 + log.19

The 2 dog 2

black .2 black 2
gray .01 wet 12 gray .01 cat .19
blue .001 blue .001 blue .001 blue .001

fluffy  .0005 fluffy  .0005 bald .0005 fluffy ~ .0005

wet .0005 gray .0005 wet .0005 wet .0005
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Recurrent NN Loss

log.2 + log.12 + log.2 + log.19+ log.3

black .2 black . meowed .3

gray .01 wet 12 gray .01 cat .19 purred 2

blue .001 blue  .001 blue .001 blue  .001 hissed 1
fluffy .0005  fluffy  .0005 bald  .0005  fluffy .0005 fluffy .001
wet .0005 gray .0005 wet .0005 wet .0005 wet .001

The fluffy gray dog meowed
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Recurrent NN Loss

log.2 + log.12+ log.2 + log.19+ log.3 + log.2

black .2 black . meowed .3 very
gray .01 wet A2 gray .01 cat .19 purred 2 lots A
blue .001 blue .001 blue .001 blue .001 hissed 1 softly .1
fluffy ~ .0005 fluffy  .0005 bald .0005 fluffy ~ .0005  fluffy .001  fluffy  .0005
wet .0005 gray .0005 wet .0005 wet .0005 wet .001  wet .0005
The fluffy gray dog meowed very

[ ) J | ) | J | ) L )
N > g =

cat meowed
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Recurrent NN Loss

(then negate, average)

log.2 + log.12+ log.2 + log.19+ log.3 + log.2 + log.2 + log.2

black .2 black . meowed .3 very : loudly = .2
gray .01 wet A2 gray .01 cat .19 purred 2 lots A softly .01 and A
blue .001 blue .001 blue .001 blue .001 hissed 1 softly .1 quiet .001 blue .001
fluffy  .0005 fluffy  .0005 bald .0005 fluffy ~ .0005 fluffy .001  fluffy .0005  fluffy .001 fluffy  .0005
wet .0005 gray .0005 wet .0005 wet .0005  wet .001  wet .0005  wet .001 wet .0005
The fluffy gray dog meowed very loudly EOS
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cat meowed very loudly
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Gradient Descent:
Backpropagate the Error

Initialize model

Core idea: Train the model to

S_et t=0 . predict what the next word is
Pick a starting value 6, via maximum likelihood
Until converged: (equivalently, minimizing cross-

. entropy loss).
for example(s) sentence i: Py loss)

1. Compute loss | on x;

| = model(x;) _ .
. Y This loss is the sum of the per-
2. Get grad'ent 8t~ | (Xi) token cross-entropy loss
3. Get scaling factor p, (ennegat, merge)

log.2 + log.12+ log.2 + log.19+ log3 + log2 + log2 + log.2
o e ) 2 e e
black .2 dog &2

2 bts A softly .01  and 1

4. Set8,,,=0,-p,*g,

gggggg

gray .01 purred -
—
° e — blue 001 blue .001 blue .001 blue 001 hissed 4l softly .1 quiet 001 blue 001
fluffy |
wet

fluffy .0005  fluffy .0005 bald  .0005 fluffy 0005 001 fluffy 0005 fluffy 001  fluffy 0005

wet .0005 gray .0005 wet .0005 wet .0005 001  wet 0005  wet 001 wet 0005
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Gradient Descent:
Backpropagate the Error

Sett=0
Pick a starting value 6,

Until converged: epoch: a single

for example(s) sentence i: run over all
1. Compute loss | on x. training data
2. Get gradient B¢~ I’(Xi) (mini)batch spoch (mini-)batch: a
3. Get scaling factor p, run over a subset
4. Set6,,,=9,-p,*g, of the data

5. Sett+=1
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Flavors of Gradient Descent

“Online”

“Minibatch”

“Batch”

Sett=0
Pick a starting value 6,
Until converged:

for example i in full data:
1. Compute loss | on x;
2. Get gradient

g.=I(x)

3. Get scaling factor p,
4. SetB,,=0.-p,*g,
5. Sett+=1

done

Sett=0
Pick a starting value 6,
Until converged:
get batch B c full data
setg.=0
for example(s) i in B:
1. Compute loss | on x;
2. Accumulate gradient
g, +=1'(x)
done
Get scaling factor p,
Set8,,=6,-p,*8,
Sett+=1

Sett=0
Pick a starting value 6,
Until converged:

setg,=0

for example(s) i in full data:
1. Compute loss | on x;
2. Accumulate gradient

g.+=1'(x)

done

Get scaling factor p,

Set8,,=6,-p,"8,

Sett+=1

4/3/2024
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Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives
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Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives

Vanishing gradients

Multiply the same matrices at each timestep =2 multiply many matrices
in the gradients
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Why |s Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain
rule for derivatives

Vanishing gradients

Multiply the same matrices at each timestep =2 multiply many matrices
in the gradients

One solution: clip the gradients to a max value
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