CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

Learning Objectives

Define the basic cell architecture of an RNN

Backpropagate loss through an example RNN

Defining the Model

Review: Maxent Language Models

given some context... **W**_{i-3} W_{i-2} W_{i-1} compute beliefs about what is likely... $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$ can we learn word-specific weights predict the next word W_i

(by type)?

Review: Neural Language Models

given some context... **W**_{i-3} W_{i-2} W_{i-1} can we *learn* the feature function(s) for *just* the context? compute beliefs about what is likely... $p(w_i|w_{i-3}, w_{i-2}, w_{i-1}) = \text{softmax}(\theta_{w_i} \cdot f(w_{i-3}, w_{i-2}, w_{i-1}))$ can we learn word-specific weights predict the next word (by type)? W_i

Review: Neural Language Models

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

 W_i

LM Comparison

COUNT-BASED

MAXENT

NEURAL

Class-specific

Class-based

Uses features

Class-based

Uses *embedded* features

Network Types: Flat Input, Flat Output

Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model

Maxent Language Models

given some context...

compute beliefs about what is likely...

predict the next word

Maxent Language Models

Neural Language Models

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

Neural Language Models

Common Types of Flat Input, Flat Output

```
Feed forward networks
```

Multilayer perceptrons (MLPs)

General Formulation:

```
Input: x
Compute:
```

```
h_0 = x
for layer I = 1 to L:
h_I = f_I(W_I h_{I-1} + b_I) linear layer
```

```
hidden state (non-linear) at layer I activation function at I return \mathop{\rm argmax}\limits_{\mathcal{V}} \operatorname{softmax}(\theta h_L)
```

In Pytorch (torch.nn):

Activation functions:

https://pytorch.org/docs/stable/nn.html?highlight
=activation#non-linear-activations-weighted-sumnonlinearity

Linear layer:

https://pytorch.org/docs/stable/nn.html#linearlayers

```
torch.nn.Linear(
    in_features=<dim of h<sub>l-1</sub>>,
    out_features=<dim of h<sub>l</sub>>,
    bias=<Boolean: include bias b<sub>l</sub>>)
```


A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

Allowing signal to flow from one hidden state to another could help solve this!

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

A Simple Recurrent Neural Network Cell

$$h_i = \sigma(Wh_{i-1} + Uw_i)$$

$$\widehat{w}_{i+1} = \operatorname{softmax}(Sh_i)$$

A Simple Recurrent Neural Network Cell

A Multi-Layer Simple Recurrent Neural Network Cell

How do you learn an RNN?

As with other approaches: Compute the loss and perform gradient descent

Loss: Cross-entropy, computed per output word

• Just as with prior LM approaches!

Defining the Objective

Review: Minimize Cross Entropy Loss

vector

Cross entropy:

How much \hat{y} differs from the true y

objective is convex (when f(x) is not learned)

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i I = model(x_i)
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_{t}
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on $x_i \leftarrow I = model(x_i)$
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_{t}
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

44

log.2

Remember: These probabilities are *computed* as a function of the model parameters!

The

The

log.2 + log.12

word	prob.	word	prob.
The	.2	black	.2
gray	.01	wet	.12
blue	.001	blue	.001
fluffy	.0005	fluffy	.0005
wet	.0005	gray	.0005

4/3/2024

word	prob.	word	prob.
The	.2	black	.2
gray	.01	wet	.12
blue	.001	blue	.001
fluffy	.0005	fluffy	.0005
wet	.0005	gray	.0005

log.2	+	log.12 +	log.2
108.2	-	10g.12 T	105.4

word	prob.	word	prob.	word	prob.
The	.2	black	.2	black	.2
gray	.01	wet	.12	gray	.01
blue	.001	blue	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005
wet	.0005	gray	.0005	wet	.0005

word	prob.	word	prob.	word	prob.	word	prob.
The	.2	black	.2	black	.2	dog	.2
gray	.01	wet	.12	gray	.01	cat	.19
blue	.001	blue	.001	blue	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005

word	prob.	word	prob.	word	prob.	word	prob.
The	.2	black	.2	black	.2	dog	.2
gray	.01	wet	.12	gray	.01	cat	.19
blue	.001	blue	.001	blue	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005

50

log.2	+	log.12 +	log.2	+	log.19 +	log.3

word	prob.	word	prob.	word	prob.	word	prob.	word	prob
The	.2	black	.2	black	.2	dog	.2	meowed	.3
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001
									•••

word	prob.	word	prob.	word	prob.	word	prob.	word	prob	word	prob.
The	.2	black	.2	black	.2	dog	.2	meowed	.3	very	.2
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2	lots	.1
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1	softly	. 1
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001	wet	.0005
								•••			

(then negate, average)

 $\log .2 + \log .12 + \log .2 + \log .19 + \log .3 + \log .2 + \log .2 + \log .2$

word	prob.	word	prob.	word	prob.	word	prob.	word	prob	word	prob.	word	prob	word	prob.
The	.2	black	.2	black	.2	dog	.2	meowed	.3	very	.2	loudly	.2	EOS	.3
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2	lots	.1	softly	.01	and	.1
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1	softly	. 1	quiet	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001	fluffy	.0005	fluffy	.001	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001	wet	.0005	wet	.001	wet	.0005

Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on x_i $I = model(x_i)$
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_t
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

(then negate, average)

Gradient Descent: Backpropagate the Error

Flavors of Gradient Descent

"Online"

Set t = 0Pick a starting value θ_t Until converged:

for example i in full data:

- 1. Compute loss I on x_i
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_+
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

done

"Minibatch"

Set t = 0

Pick a starting value
$$\theta_t$$

Until converged:

get batch $B \subset full$ data

set $g_t = 0$

for example(s) i in B:

1. Compute loss I on x_i

2. Accumulate gradient

 $g_t += l'(x_i)$

done

Get scaling factor ρ_t

Set $\theta_{t+1} = \theta_t - \rho_t * g_t$

Set t += 1

"Batch"

```
Set t = 0
Pick a starting value \theta_{+}
Until converged:
  set g_t = 0
  for example(s) i in full data:
      1. Compute loss I on x<sub>i</sub>
      2. Accumulate gradient
           g_{+} += I'(x_{i})
   done
  Get scaling factor ρ<sub>+</sub>
  Set \theta_{t+1} = \theta_t - \rho_t * g_t
  Set t += 1
```

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

Multiply the *same* matrices at *each* timestep → multiply *many* matrices in the gradients

Why Is Training RNNs Hard?

Conceptually, it can get strange

But really getting the gradient just requires many applications of the chain rule for derivatives

Vanishing gradients

Multiply the *same* matrices at *each* timestep → multiply *many* matrices in the gradients

One solution: clip the gradients to a max value