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Slides modified from Dr. Frank Ferraro & Dr. Daphne Ippolito



Learning Objectives
Compare sequence-to-sequence RNNs to simple NNs & non-neural LMs

Compare sequence-to-sequence RNNs to transformers
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Review: 
A Simple Recurrent Neural Network Cell
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ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)
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Review: 
A Simple Recurrent Neural Network Cell
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ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)
ෝ𝑤𝑖+1 = softmax(𝑆ℎ𝑖)
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Review: A Multi-Layer Simple Recurrent Neural Network Cell
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Review:
Defining A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
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https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Review:
Training A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

eval predictions

compute gradient

perform SGD
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http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent 
neural networks.
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Sequence-to-Sequence / Encoder-Decoder Models
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https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be 
LSTM

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of 
the encoder.
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Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.
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ෝ𝒚𝒕
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Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as 
close as possible to the embedding of the true next token.
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Turning ෞ𝒚𝒕 into a Probability Distribution 
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding 
matric to get a score for each vocabulary word. These scores are referred to as 
logits.

The softmax function then lets us turn the logits into probabilities.
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Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Review: Loss Function
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Review: Loss Function
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Loss Function
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𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Loss Function
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Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.

Examples:

Argmax

Random sampling

Beam search
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Also sometimes called decoding



RNNs - Single Layer Decoder
The current hidden state is computed as a function 
of the previous hidden state and the embedding of 
the current word in the target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ )

The current hidden state is used to predict an 
embedding for the next word in the target 
sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss 
function:
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Usually the 
zero-vector

4/10/2024



What is the “RNN” unit?
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?
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LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

GRU: Gated Recurrent Unit (Cho et al., 2014)

Review: LSTMs/GRUs
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https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep 
around information for longer in the hidden 
state as it gets repeatedly updated.



RNN Multi-Layer Decoder 
Architecture

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1 )

For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡

𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙 )

Predicting an embedding for the next token in the sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + σ𝑙=1
𝐿 𝐖ℎ 𝑒𝐡𝑡

𝑙

Each of the b and W are learned bias and weight matrices.
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𝑙 − 1 𝑙𝑙 𝑙𝑙

1 1 1

𝑙
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RNN Encoder-Decoder 
Architectures

How do we implement an encoder-decoder model?
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RNN Encoder-Decoder 
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the 
first hidden state of the decoder.

ATTENTION & TRANSFORMERS 254/10/2024



RNN Encoder-Decoder 
Architectures
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When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence?
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[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]



Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]
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RNN Encoder-Decoder 
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score: 

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) = 

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh( 𝐖𝑎𝟐[𝐡𝑡

dec, 𝐡𝒊
enc ])
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dot product

bilinear function

MLP
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Review: Encoder Code
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Review:
Decoder Code
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Attention Decoder
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Think-Pair-Share
What are some of the strengths of seq2seq models (compared to some of the
earlier LMs we talked about)?

What are some of its weaknesses?
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Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture
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Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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Transformers
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Encoder
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Transformers
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Decoder
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Transformers
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Attention Mechanism
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Multi-Head
Attention

4/10/2024



Multi-Head Attention
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Self-attention between a sequence of 
hidden states and that same sequence 
of hidden states.

Multi-Head
Attention
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Multi-Head Attention
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Encoder-decoder attention, like what has been 
standard in recurrent seq2seq models.Multi-Head

Attention
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Attention Mechanism
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Multi-Head
Attention

Scaled Dot-Product Attention
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Scaled Dot-Product
Attention

The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Scaled Dot-Product 
Attention

This is the α vector we 
learned about before.
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The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
Attention
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Scaled Dot-Product 
Attention

This is the dot-product 
scoring function from 
previous slides
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Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take 
the linear sum of the vectors in V (value 
matrix)

• The amount to weigh each vector in V is 
dependent on how “similar” that vector is 
to the query vector

• “Similarity” is measured in terms of the 
dot product between the vectors
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Scaled Dot-Product 
Attention



Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the 
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final 
output. Queries come from the previous 
decoder layer’s outputs.
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Scaled Dot-Product 
Attention
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Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Multi-Head
Attention

MultiHeadAtt(Q,K,V) = 
      Concat head1, … headℎ WO

4/10/2024

Instead of operating on Q, K, and V mechanism 
projects each input into a smaller dimension. This is 
done h times.
 
The attention operation is performed on each of 
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly 
attend to information from different representation 
subspaces at different positions.



Multi-Head Attention
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Two different self-attention heads:Multi-Head
Attention
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Inputs to the Encoder
The input into the encoder looks like:
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= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:
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The Encoder
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Multi-Head

Attention
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention
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The Encoder
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Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm
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The Decoder
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= token embeddings + position embeddings

+
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The Decoder
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Masked Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention
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The Decoder

ATTENTION & TRANSFORMERS 57

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm
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The Decoder

ATTENTION & TRANSFORMERS 59

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(                    +                       )
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)
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Strengths of the Transformer 
Architecture
Training is easily parallelizable
◦ Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
◦ Any position can attend to any position.
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What are some of its weaknesses?



Knowledge Check
Draw a map comparing & contrasting the following LMs that we talked about:

Count-based LMs

Maxent/Logistic Regression LMs

Simple NNs

Simple RNNs

Seq2Seq RNNs

Transformers
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