
CMSC 473/673
Natural Language Processing
Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

4/10/2024 ATTENTION & TRANSFORMERS 1

Slides modified from Dr. Frank Ferraro & Dr. Daphne Ippolito

Learning Objectives
Compare sequence-to-sequence RNNs to simple NNs & non-neural LMs

Compare sequence-to-sequence RNNs to transformers

4/10/2024 ATTENTION & TRANSFORMERS 2

decoding

encoding

wiwi-1

hi-1 hi

wi+1wi

Review:
A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)

4/10/2024 ATTENTION & TRANSFORMERS 3

decoding

encoding

wiwi-1

hi-1 hi

wi+1wi

Review:
A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)
ෝ𝑤𝑖+1 = softmax(𝑆ℎ𝑖)

4/10/2024 ATTENTION & TRANSFORMERS 4

decoding

encoding

wiwi-1

h(1)
i-1 h (1)

i

wi+1wi

Review: A Multi-Layer Simple Recurrent Neural Network Cell

W W

U U

S S

h(2)
i-1 h (2)

i

W W

… …

h(L)
i-1 h (L)

i

W W

4/10/2024 ATTENTION & TRANSFORMERS 5

Review:
Defining A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

wi-2

wi-1

wi-1

wi

wi

wi+1

hi-2 hi-1 hi

4/10/2024 6ATTENTION & TRANSFORMERS

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Review:
Training A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Negative log-
likelihood

get predictions

eval predictions

compute gradient

perform SGD

4/10/2024 ATTENTION & TRANSFORMERS 7

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

ATTENTION & TRANSFORMERS 84/10/2024

Sequence-to-Sequence / Encoder-Decoder Models

4/10/2024 ATTENTION & TRANSFORMERS 9

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS),
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be
LSTM

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the
sequence.

ATTENTION & TRANSFORMERS 104/10/2024

Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of
the encoder.

ATTENTION & TRANSFORMERS 114/10/2024

Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

ATTENTION & TRANSFORMERS 12

ෝ𝒚𝒕

4/10/2024

Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as
close as possible to the embedding of the true next token.

ATTENTION & TRANSFORMERS 134/10/2024

Turning ෞ𝒚𝒕 into a Probability Distribution
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding
matric to get a score for each vocabulary word. These scores are referred to as
logits.

The softmax function then lets us turn the logits into probabilities.

ATTENTION & TRANSFORMERS 14

Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

4/10/2024

Review: Loss Function

ATTENTION & TRANSFORMERS 154/10/2024

Review: Loss Function

ATTENTION & TRANSFORMERS 164/10/2024

Loss Function

ATTENTION & TRANSFORMERS 17

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

4/10/2024

Loss Function

ATTENTION & TRANSFORMERS 184/10/2024

Generating Text
To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

Examples:

Argmax

Random sampling

Beam search

ATTENTION & TRANSFORMERS 194/10/2024

Also sometimes called decoding

RNNs - Single Layer Decoder
The current hidden state is computed as a function
of the previous hidden state and the embedding of
the current word in the target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ)

The current hidden state is used to predict an
embedding for the next word in the target
sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss
function:

ATTENTION & TRANSFORMERS 20

Usually the
zero-vector

4/10/2024

What is the “RNN” unit?

ATTENTION & TRANSFORMERS 21

?

4/10/2024

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

GRU: Gated Recurrent Unit (Cho et al., 2014)

Review: LSTMs/GRUs

4/10/2024 ATTENTION & TRANSFORMERS 22

https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep
around information for longer in the hidden
state as it gets repeatedly updated.

RNN Multi-Layer Decoder
Architecture

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1)

For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡

𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙)

Predicting an embedding for the next token in the sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + σ𝑙=1
𝐿 𝐖ℎ 𝑒𝐡𝑡

𝑙

Each of the b and W are learned bias and weight matrices.

ATTENTION & TRANSFORMERS 23

𝑙 − 1 𝑙𝑙 𝑙𝑙

1 1 1

𝑙

4/10/2024

RNN Encoder-Decoder
Architectures

How do we implement an encoder-decoder model?

ATTENTION & TRANSFORMERS 244/10/2024

RNN Encoder-Decoder
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the
first hidden state of the decoder.

ATTENTION & TRANSFORMERS 254/10/2024

RNN Encoder-Decoder
Architectures

ATTENTION & TRANSFORMERS 26

When predicting the next English
word, how much weight should the
model put on each French word in
the source sequence?

T
ra

n
sl

a
te

 F
r

to
 E

n

4/10/2024

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

ATTENTION & TRANSFORMERS 27

T
ra

n
sl

a
te

 F
r

to
 E

n

4/10/2024

RNN Encoder-Decoder
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score:

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) =

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh(𝐖𝑎𝟐[𝐡𝑡

dec, 𝐡𝒊
enc])

ATTENTION & TRANSFORMERS 28

dot product

bilinear function

MLP

4/10/2024

Review: Encoder Code

4/10/2024 ATTENTION & TRANSFORMERS 29

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Review:
Decoder Code

4/10/2024 ATTENTION & TRANSFORMERS 30

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Attention Decoder

4/10/2024 ATTENTION & TRANSFORMERS 31

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Think-Pair-Share
What are some of the strengths of seq2seq models (compared to some of the
earlier LMs we talked about)?

What are some of its weaknesses?

4/10/2024 ATTENTION & TRANSFORMERS 32

Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture

ATTENTION & TRANSFORMERS 344/10/2024

Transformers
The Transformer is a non-recurrent non-convolutional
(feed-forward) neural network designed for language
understanding

• introduces self-attention in addition to encoder-
decoder attention

ATTENTION & TRANSFORMERS 354/10/2024

Transformers

ATTENTION & TRANSFORMERS 36

Encoder

4/10/2024

Transformers

ATTENTION & TRANSFORMERS 37

Decoder

4/10/2024

Transformers

ATTENTION & TRANSFORMERS 384/10/2024

Attention Mechanism

ATTENTION & TRANSFORMERS 39

Multi-Head
Attention

4/10/2024

Multi-Head Attention

ATTENTION & TRANSFORMERS 40

Self-attention between a sequence of
hidden states and that same sequence
of hidden states.

Multi-Head
Attention

4/10/2024

Multi-Head Attention

ATTENTION & TRANSFORMERS 41

Encoder-decoder attention, like what has been
standard in recurrent seq2seq models.Multi-Head

Attention

4/10/2024

Attention Mechanism

ATTENTION & TRANSFORMERS 42

Multi-Head
Attention

Scaled Dot-Product Attention

4/10/2024

Scaled Dot-Product
Attention

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

ATTENTION & TRANSFORMERS 43

Scaled Dot-Product
Attention

This is the α vector we
learned about before.

4/10/2024

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
Attention

ATTENTION & TRANSFORMERS 44

Scaled Dot-Product
Attention

This is the dot-product
scoring function from
previous slides

4/10/2024

Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take
the linear sum of the vectors in V (value
matrix)

• The amount to weigh each vector in V is
dependent on how “similar” that vector is
to the query vector

• “Similarity” is measured in terms of the
dot product between the vectors

12/12/2023 – TRANSFORMERS 45

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final
output. Queries come from the previous
decoder layer’s outputs.

ATTENTION & TRANSFORMERS 46

Scaled Dot-Product
Attention

4/10/2024

Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕

ATTENTION & TRANSFORMERS 47

Multi-Head
Attention

MultiHeadAtt(Q,K,V) =
 Concat head1, … headℎ WO

4/10/2024

Instead of operating on Q, K, and V mechanism
projects each input into a smaller dimension. This is
done h times.

The attention operation is performed on each of
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.

Multi-Head Attention

ATTENTION & TRANSFORMERS 48

Two different self-attention heads:Multi-Head
Attention

4/10/2024

Inputs to the Encoder
The input into the encoder looks like:

ATTENTION & TRANSFORMERS 49

= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:

4/10/2024

The Encoder

ATTENTION & TRANSFORMERS 50

Multi-Head

Attention

4/10/2024

The Encoder

ATTENTION & TRANSFORMERS 51

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

4/10/2024

The Encoder

ATTENTION & TRANSFORMERS 52

Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm

4/10/2024

The Encoder

ATTENTION & TRANSFORMERS 53

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 54

= token embeddings + position embeddings

+

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 55

Masked Multi-

Head Attention

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 56

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 57

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 58

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

4/10/2024

The Decoder

ATTENTION & TRANSFORMERS 59

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(+)
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)

4/10/2024

Strengths of the Transformer
Architecture
Training is easily parallelizable
◦ Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
◦ Any position can attend to any position.

ATTENTION & TRANSFORMERS 604/10/2024

What are some of its weaknesses?

Knowledge Check
Draw a map comparing & contrasting the following LMs that we talked about:

Count-based LMs

Maxent/Logistic Regression LMs

Simple NNs

Simple RNNs

Seq2Seq RNNs

Transformers

4/10/2024 ATTENTION & TRANSFORMERS 61

Submit on Google
Classroom after

class

	Slide 1: CMSC 473/673 Natural Language Processing
	Slide 2: Learning Objectives
	Slide 3: Review: A Simple Recurrent Neural Network Cell
	Slide 4: Review: A Simple Recurrent Neural Network Cell
	Slide 5: Review: A Multi-Layer Simple Recurrent Neural Network Cell
	Slide 6: Review: Defining A Simple RNN in Python
	Slide 7: Review: Training A Simple RNN in Python
	Slide 8: Sequence-to-Sequence RNNs
	Slide 9: Sequence-to-Sequence / Encoder-Decoder Models
	Slide 10: Inputs to the Encoder
	Slide 11: Outputs from the Encoder
	Slide 12: Inputs to the Decoder
	Slide 13: Outputs from the Decoder
	Slide 14: Turning open paren bold italic y bold italic t close paren hat into a Probability Distribution
	Slide 15: Review: Loss Function
	Slide 16: Review: Loss Function
	Slide 17: Loss Function
	Slide 18: Loss Function
	Slide 19: Generating Text
	Slide 20: RNNs - Single Layer Decoder
	Slide 21: What is the “RNN” unit?
	Slide 22: Review: LSTMs/GRUs
	Slide 23: RNN Multi-Layer Decoder Architecture
	Slide 24: RNN Encoder-Decoder Architectures
	Slide 25: RNN Encoder-Decoder Architectures
	Slide 26: RNN Encoder-Decoder Architectures
	Slide 27: Attention
	Slide 28: RNN Encoder-Decoder Architectures
	Slide 29: Review: Encoder Code
	Slide 30: Review: Decoder Code
	Slide 31: Attention Decoder
	Slide 32: Think-Pair-Share
	Slide 34: Transformers
	Slide 35: Transformers
	Slide 36: Transformers
	Slide 37: Transformers
	Slide 38: Transformers
	Slide 39: Attention Mechanism
	Slide 40: Multi-Head Attention
	Slide 41: Multi-Head Attention
	Slide 42: Attention Mechanism
	Slide 43: Scaled Dot-Product Attention
	Slide 44: Scaled Dot-Product Attention
	Slide 45: Scaled Dot-Product Attention
	Slide 46: Scaled Dot-Product Attention
	Slide 47: Multi-Head Attention
	Slide 48: Multi-Head Attention
	Slide 49: Inputs to the Encoder
	Slide 50: The Encoder
	Slide 51: The Encoder
	Slide 52: The Encoder
	Slide 53: The Encoder
	Slide 54: The Decoder
	Slide 55: The Decoder
	Slide 56: The Decoder
	Slide 57: The Decoder
	Slide 58: The Decoder
	Slide 59: The Decoder
	Slide 60: Strengths of the Transformer Architecture
	Slide 61: Knowledge Check

