CMSC 473/673
Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)




Learning Objectives

Differentiate between encoding/decoding and encoder-decoder networks

Consider when to use various sampling algorithms

Discuss the uses of finetuning
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Another way of illustrating it
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Sequence-to-Sequence / Encoder-Decoder Models
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I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurlPS),
Montréal, Canada, 2014, pp. 3104-3112. https://proceedings.neurips.cc/paper files/paper/2014/hash/aldac55a4f27472c5d894eclc3c743d2-Abstract.html
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https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Review: RNN Encoder-Decoder
Architectures
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Review: Inputs to the Encoder

The encoder takes as input the embeddings corresponding to each token in the
seguence.

Vocabulary » Embedding matrix
the [ ]

a D = / Encoder \
ny s

| ]
embedding dimension

vocab size

1 432 2019 1234
kitten] ] T T T T T
The hippo ate my homework

4/15/2024 DECODING, SAMPLING, AND TRANSFORMER FINE-TUNING 9




x1,-..,xTP(K=i)

V1o ooes Vi—1

Review: Outputs from the Encoder

The encoder outputs a sequence of vectors. These are called the hidden state of
the encoder.

enc enc
hl hT

L]

L]

() (o) Ceond) (o) (owood)

432 2019 1234

O

The hippo ate my homework

4/15/2024 10




Xlseuos XT w P(Y, =)
Review: Inputs to the

The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.
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Review: Outputs from the

The decoder outputs an embedding yt . The goal is for this embedding to be as
close as possible to the embedding of the true next token.
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Review: Generating Text

To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

Also sometimes called decoding

Examples:

Argmax

Beam search X1y eee s XT w P(Y, = i)—> er;%n:]nng] ch;cs):irt\ic\’nr/‘o;ifor
Random sampling Vs oo s Vit
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Review: Attention

Better approach: an attention mechanism

Compute a linear combination of the encoder hidden states.
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Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.
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Review: Attention Decoder

Input
Hidden

Encoder ouputs

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Limitations of Recurrent
architecture

Slow to train.

o Can’t be easily parallelized.
> The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
o |f two tokens are K positions apart, there are K opportunities for knowledge of the first token
to be erased from the hidden state before a prediction is made at the position of the second

token.
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Review: Generating Text

To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

Also sometimes called decoding

Examples:

Argmax

Beam search X1y eee s XT w P(Y, = i)—> zz:r;i)tlmrg‘ ch;zzgi;o;ifor
Random sampling Vs oo s Vit
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Greedy Search (Argmax
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Beam Search
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Random Sampling
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Top-K Sampling

1.0
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A. Holtzman, J. Buys, M. Forbes, and Y. Choi, “The Curious Case of Neural Text Degeneration,” in International Conference on Learning Representations (ICLR), 2020, p. 16.
https://openreview.net/forum?id=rygeGQyrFvH
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https://openreview.net/forum?id=rygGQyrFvH

Top-P Sampling
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Think-Pair-Share

When might you want to use one sampling algorithm over the other?
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Transformers
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The Transformer is a non-recurrent non-convolutional

(feed-forward) neural network designed for language
understanding

* introduces self-attention in addition to encoder-
decoder attention
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Transformers
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Transformers
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Fine-tuning

Start with pre-trained
model

Freeze the model
(don’t touch it)
except for the last
layer

o Start with generalized
“foundational” model

° Train on a new, small
dataset for your
specific task
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Language Models are Unsupervised Multitask Learners

Alec Radford ™' Jeffrey Wu "' Rewon Child' David Luan' Dario Amodei ™' Ilya Sutskever ™'

Abstract

Natural language processing tasks, such as ques-
tion answering, machine translation, reading com-
prehension, and summarization, are typically
approached with supervised learning on task-
specific datasets. We demonstrate that language
models begin to learn these tasks without any ex-
plicit supervision when trained on a new dataset
of millions of webpages called WebText. When
conditioned on a document plus questions, the an-
swers generated by the language model reach 55
F1 on the CoQA dataset - matching or exceeding
the performance of 3 out of 4 baseline systems
without using the 127000+ training examples.
The capacity of the language model is essential
to the success of zero-shot task transfer and in-
creasing it improves performance in a log-linear
fashion across tasks. Our largest model, GPT-2,
is a 1.5B parameter Transformer that achieves
state ol the art results on 7 out of 8 tested lan-
guage modeling datasets in a zero-shot setting

ISP & TR N = P DT D

competent generalists. We would like to move towards more
general systems which can perform many tasks — eventually
without the need to manually create and label a training
dataset for each one.

The dominant approach to creating ML systems is to col-
lect a dataset of training examples demonstrating correct
behavior for a desired task, train a system Lo imitate these
behaviors, and then test its performance on independent
and identically distributed (I1D} held-out examples. This
has served well to make progress on narrow experts. Bul
the often erratic behavior of captioning models (Lake et al.,
2017), reading comprehension systems (Jia & Liang, 2017),
and image classifiers (Alcorn et al., 2018) on the diversity
and variety of possible inputs highlights some of the short-
comings of this approach.

Our suspicion is that the prevalence of single task training
on single domain datasets is a major contributor to the lack
of generalization observed in current systems. Progress
towards robust systems with current architectures is likely
to require training and measuring performance on a wide
range of domains and tasks. Recently, several benchmarks




Pre-trained models

Most LLMs people use today are pre-trained foundational models
° Has a grasp on human language but not trained on a specific task

Trained on “the Internet” = Impossible to know all of what it’s train on
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What types of things can go wrong with
finetuning?

Underfitting — finetuning data is too different from what the foundational model
was train on

Overfitting — overwrites what the model learned originally
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