
CMSC 473/673
Natural Language Processing
Instructor: Lara J .  Martin (she/they)

TA: Duong Ta (he)
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Slides modified from Yejin Choi, Bill Yuchen Lin, & Valentina Pyatkin



Learning Objectives
Describe what alignment of LLMs is

Replicate the alignment pipeline

Distinguish between instruction learning & preference learning

Outline the overall processes of supervised finetuning for alignment & RLHF
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Review: Prompting

3

.

.

.

Stories

Pre-trained model (GPT)

Your dataset

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…

Facts
Prompt
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Review: Zero-shot Prompting
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Model
Instructions

Task
Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.



Review: Few-shot Prompting
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Model

Instructions

Task
Example Output

Task
Example Output

Task

Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.

Instructions Task Example Output

“shot”

2-shot

The dog ate the giant fish.
 D      N     V    D    Adj    N

prompt



Review: Chain-of-Thought Prompting

Q: The cafeteria had 23 apples. If they used 20 to make lunch 
and bought 6 more, how many apples do they have?

Part of Figure 1 from J. Wei et al., “Chain of Thought Prompting Elicits Reasoning in Large Language Models,”
in International Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA & Online, Jun. 2022. doi: 10.48550/arXiv.2201.11903.
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Review: Finetuning

7

.

.

.

Stories .
.
.

Pre-trained model (GPT) New model (GPT+Stories)Your dataset

Update weights to 
adapt model to your 

data

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…
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Alignment
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What is Alignment of LLMs?
Instruction Learning: teaching base LLMs to follow instructions

Preference Learning: adjusting instructed LLMs to behave as human expected
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Base LLM

e.g., Llama-2

Aligned LLM

e.g., Llama-2-chat

I can complete your text. I can better follow your 
instructions.

Instruction Learning (Part 1)

Preference Learning (Part 2)
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Llama-2

Llama-2-Chat

How does alignment tuning teach LLMs?
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Example: Llama-2’s alignment

Base LLM Aligned LLM
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Instruction 
Learning

Preference 
Learning



Datasets for Instruction Learning 
1. Synthetic Conversion

2. Human Annotation

3. Collected from ChatGPT/GPT-4
◦ 3.1. Community Sharing 

◦ 3.2. Strategic Collecting 
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Datasets for Instruction Learning 

13

https://blog.research.google/2021/10/introducing-flan-more-generalizable.html
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Datasets for Instruction Learning 

14

Binary Classification
Converted to Seq2Seq tasks with different instruction templates.
—> Unified Data Formats for Massive Multi-Task Training

https://blog.research.google/2021/10/introducing-flan-more-generalizable.html

5/1/2024 ALIGNMENT

Synthetic Conversion of Existing NLP Datasets



Datasets for Instruction Learning 
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OpenAssistant: An Open-Source Human Annotation Dataset

ChatGPT’s pipeline for data collection.
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Human Annotation



Datasets for Instruction Learning 
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Natural Queries from 
Human Users on ChatGPT

sharegpt.com T-SNE plots of the embeddings of user prompts.

WildChat: Providing Free GPT-4 APIs for Public Users 
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General Distribution of GPT User Interactions

17

Coding & Creative Writing 
are the majority!

Most are classification & 
reading comprehension.

https://arxiv.org/pdf/2310.12418.pdf
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Datasets for Instruction Learning 

18

Self-instruct pipeline for data collection https://arxiv.org/abs/2212.10560
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Strategic Collecting from ChatGPT



Datasets for Instruction Learning 

19

Strategic Collecting from ChatGPT
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Supervised Fine-Tuning (SFT) for 
LLM Alignment
1. SFT 

2. Efficient Fine-Tuning
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Example: Llama-2’s alignment

Base LLM Aligned LLM

5/1/2024 ALIGNMENT

Instruction 
Learning

Preference 
Learning
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Supervised Fine-Tuning (SFT) for 
Instruction Learning

Instruction Data

Instruction x

Output y

x_1,  …,  x_N,  y_1,  y_2, …,  y_M

Tokens for an example 
(a pair of instruction & response)

          LLM

Context
Loss

Teacher 
forcing
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Supervised Fine-Tuning (SFT) for 
Instruction Learning

x_1,  …,  x_N,  y_1,  y_2, …,  y_M

Tokens for an example 
(a pair of instruction & response)

          LLM

Context
Loss

Teacher 
forcing

Teacher forcing

Full example



Teacher Forcing
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https://towardsdatascience.com/what-is-teacher-forcing-3da6217fed1c
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Supervised Fine-Tuning (SFT) for 
Instruction Learning

x_1,  …,  x_N,  y_1,  y_2, …,  y_M

Tokens for an example 
(a pair of instruction & response)

          LLM

Context
Loss

Teacher 
forcing

Teacher forcing

Full example

Learn the 1st output token

Learn the 2nd output token

…

How do you finetune 
when you don’t have 
the compute power 

like OpenAI?



Efficient Fine-Tuning

26

https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms
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LoRA: Low-Rank Adaptation -- Motivation

d x d

r x d

d x r

“LoRA: Low-Rank Adaptation of Large Language Models” Edward J. Hu et al., 2021. https://arxiv.org/abs/2106.09685

http://www.apple.com/
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Efficient Fine-Tuning

https://huggingface.co/docs/peft/conceptual_guides/lora

LoRA: Low-Rank Adaptation: -- before and after training

More Efficient SFT, and no 
additional inference cost.

https://huggingface.co/docs/peft/conceptual_guides/lora
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Efficient Fine-Tuning

https://arxiv.org/abs/2305.14314

Optimizer state (32bit)
Opt

(32bit)
Opt 

(32bit)
Opt 

(32bit)
Opt

(32bit)
Opt

(32bit)

Opt
(32bit)

Adapter
(16bit)

Adapter
(16bit)

Adapter
(16bit)

Adapter
(16bit)

Adapter
(16bit)

Adapter
(16bit)

CPU 
Paging

Even more efficient 
for LoRA-tuning.

Q-LoRA: Quantized LoRA

https://arxiv.org/abs/2305.14314


Evaluation of Alignment
Benchmarking Datasets

Human Annotation 

GPTs as Judges

Open LLM Evaluators

Safety Evaluation  

295/1/2024 ALIGNMENT



5/1/2024 ALIGNMENT 30

Evaluation of LLM

Benchmarking Datasets

Test base/aligned LLMs on a wide range 
of reasoning tasks. 
(Usually with few-shot ICL examples)

Not in conversation formats and many 
tasks are less natural.

Benchmarking Datasets



Win-rate Matrix 

31

Evaluation of LLM Alignment

Human Votes

Elo Rating for 
Ranking LLMs
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Human Votes
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Evaluation of LLM Alignment

GPTs as Judge

Win Rates (as to text-davinci-003)
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GPTs as Judge



Evaluation of LLM Alignment
GPTs as Judge

33

Prompting
GPT-4

MT-Bench: Scoring-based Evaluation of LLMs
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Open-Source LLM Evaluators

https://arxiv.org/pdf/2310.08491.pdf

Collect GPT-4 evaluation annotation 
+ SFT on open-source LLMs
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https://arxiv.org/pdf/2310.08491.pdf
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Safety Evaluation: DecodingTrust

https://arxiv.org/pdf/2306.11698.pdf
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https://arxiv.org/pdf/2306.11698.pdf
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Safety Evaluation (cont.)

https://arxiv.org/pdf/2306.11698.pdf
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https://arxiv.org/pdf/2306.11698.pdf


Issues and Adaptations of Instruction 
Learning 
Hallucination

Retrieval Augmentation Generation (RAG)

Superficial Alignment Hypothesis

Etc.
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Hallucination Issues

38

https://www.nytimes.com/2023/05/01/business/ai-chatbots-hallucination.html

Microsoft Bing (powered by ChatGPT + Web search)

1. Factual errors.

2. Fake information.

3. Bad coherence. 

4. Contradiction.

5. Nonsensical outputs.

6. Fake/Wrong citations.

7. …

   Aligned LLM

During SFT, we “force” the LLM to 
memorize and answer the questions 
that are beyond their knowledge 
capacities.

    Base LLM

Many instructions that contain knowledge beyond 
pre-training corpora. 

Hallucinate when LLMs are uncertain or have 
no enough knowledge. 
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Retrieval Augmentation Generation (RAG)

39

LLM’s internal knowledge can be 
outdated or incomplete. 

Users have their own personal docs & data,
but LLMs are not trained on them.

Users want to better control the LLMs by 
customizing their knowledge and context.

https://towardsdatascience.com/retrieval-augmented-generation-rag-from-theory-to-langchain-implementation-4e9bd5f6a4f2

Retrieval Augmentation Generation Workflow

1. Prepare an embedding model — usually a query encoder + a doc encoder
2. Index target docs as vector database.
3. Given a query, encode it and find most relevant docs.
4. Fuse the retrieved docs and augment LLM’s context for generalization.

General SFT may not be enough for alignment.
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“We show that these performance 
discrepancies may slip past human raters 
because imitation models are adept at 

mimicking ChatGPT’s style 

but not its factuality.”

“We show correct sentences in green, 
ambiguously-correct sentences in yellow, 
and incorrect ones in red.”
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Example: Llama-2’s alignment

Base LLM Aligned LLM

5/1/2024 ALIGNMENT

Instruction 
Learning

Preference 
Learning



The Adaptation Recipe

42

Pre-training Instruction Tuning RLHF/RLAIF

In-Context Learning Alignment:
• Instruction following
• Preference tuning
• Safety
• Etc.
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Limitations of Instruction Tuning
Why do we need RLHF?

43

LM objective != human 
preferences
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instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score
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Limitations of Instruction Tuning
Why do we need RLHF?

(Open-ended) generation:
◦ What makes one output better than the other? -> 

hard to define

What types of LM errors should be weighted 
more?

45

LM objective != human 
preferences
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Limitations of Instruction Tuning
Why do we need RLHF?

(Open-ended) generation: How do you capture all of the following and 
more in a loss function:

◦ What is a helpful output?

◦ What is a polite output?

◦ What is a funny output?

◦ What is a safe output?

46

LM objective != human 
preferences
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RLHF!

47

arxiv in Sep 2020
NeurIPS 2020

arxiv in Sep 2019
NeurIPS 2020
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“Learning to Summarize with Human 
Feedback”

https://openai.com/research/learning-to-summarize-with-human-feedback
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https://openai.com/research/learning-to-summarize-with-human-feedback


“Learning to Summarize with Human 
Feedback”

https://openai.com/research/learning-to-summarize-with-human-feedback
49

RL methods don’t 
always assume 

“preference-based”
(j is better than k) 

human feedback and 
reward model, but 

that’s what’s common 
with current “RLHF” 

approaches
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https://openai.com/research/learning-to-summarize-with-human-feedback


“Fine-Tuning Language Models with 
Human Feedback”
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The general RLHF pipeline

51

Instruction-
tuned Model

1️⃣

Collect Comparison 
Data

2️⃣ Train Reward 
Model on 
Comparison 
Data

3️⃣

Use RL to 
Optimize a 
Policy with the 
Reward Model

4️⃣

✚
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Human Preferences

52

Prompt

Sample A

C A B
Sample B

Sample C

A set of sampled completions 
for a prompt

5/1/2024 ALIGNMENT

Ranking of the samples



Human Preferences
Triples

53

Prompt

Sample A

Sample B

Sample C

A set of sampled completions 
for a prompt

Prompt Preferred 
Response

Dispreferred
Response
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Example: Annotation
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Annotator needs to 
choose whether they 
prefer A or B. 

Can you help me write a resignation letter to my current employer, while leaving on good 
terms and expressing gratitude for the opportunities provided?

Here are two responses from the chatbot. (Please scroll down on the content to see the 
entire response if it is too long)



Pairwise Comparison
Why do pairwise comparison and not rate outputs directly?
◦ Hard to be consistent among different annotators!
◦ It’s more reliable (Phelps et al., 2015; Clark et al., 2018)
◦ Can be used with the Bradley-Terry (1952) model

55

How would you rate this output?

Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural 
experiences and must-see attractions
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From Preference Data to Bradley-Terry 
Model

56

Reward for preferred
response

Reward for dispreferred
response

Prompt Preferred 

Response

Dispreferred 

Response

Logistic function; 
which is equivalent 
to using softmax:
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But..

How do we get feedback for the reward while training our RL model?

57

Which output do 
you prefer?

Having a human in the loop is 

very expensive!
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But..

How do we get feedback for the reward while training our RL model?

58

Instead: train a Reward Model 

(RM) on preference data to 

predict preferences!

Ziegler et al., 2019 “Fine-Tuning Language Models from Human Preferences”
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Reward Modeling

Train on preference data.

Minimizing negative log likelihood.

Train an LLM with an additional layer to minimize the neg. log likelihood

59

Bradley-Terry Model
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Evaluating Reward Models

Accuracy of predicting human preferences.

60

Cui et al., ArXiV 2023 “UltraFeedback: Boosting Language Models with High-quality Feedback”

Preference Datasets

Reward 
Models
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Fun Facts about Reward Models

Trained for 1 epoch (to avoid overfitting)!

Evaluation often only has 65% - 75% agreement

61

Lambert et al., 2023
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Reinforcement Learning Basics

62

state

reward

: policy
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Target Environment

Agent

action



RL in the Context of Language Models…

63

Target Environment

Agent

state

reward

action

: policy

Tokens generated

Language model

Next token to generate
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REINFORCE
Sample a sequence from your model, score the sequence, and use the score to 
train the model.
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𝑦−2
∗

𝑦
̂

1
...

... 𝑦
̂

𝑇−2 𝑦
̂

𝑇−1 𝑦
̂

𝑇

𝑦
̂

𝑇−3 𝑦
̂

𝑇−2𝑦
̂

𝑇−1

<END>

𝑦−1
∗ 𝑦0

∗

𝑦
̂

1 𝑦
̂

2

𝑦
̂

2

<START>

𝐿𝑅𝐿 = − ∑
𝑡=1

𝑇

𝑟(𝑦
̂

𝑡)log𝑃(𝑦
̂

𝑡|{𝑦
∗}; {𝑦

̂
}<𝑡)



REINFORCE
• Sample a sequence from your model, score the sequence, and use the score to 
train the model.

• 𝑟(⋅): Your reward model

• 𝑦∗ :Input sequence given to the model

• 𝑦
̂
 :The sequence sampled from the model given 𝑦∗

65

𝐿𝑅𝐿 = − ∑
𝑡=1

𝑇

𝑟(𝑦
̂

𝑡)log𝑃(𝑦
̂

𝑡|{𝑦
∗}; {𝑦

̂
}<𝑡)

𝑦−2
∗

𝑦
̂

1
...

... 𝑦
̂

𝑇−2 𝑦
̂

𝑇−1 𝑦
̂

𝑇

𝑦
̂

𝑇−3 𝑦
̂

𝑇−2𝑦
̂

𝑇−1

<END>

𝑦−1
∗ 𝑦0

∗

𝑦
̂

1 𝑦
̂

2

𝑦
̂

2

<START>

Next time, increase the probability of this 
sampled token in the same context.

... but increase it more if I 
get a higher reward
from the reward function.
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Summary of Policy Gradient for RL

66

Williams, 1992

REINFORCE Update:

Simplified Intuition: good actions are reinforced and bad actions are discouraged.
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Summary of Policy Gradient for RL

67

Williams, 1992

REINFORCE Update:

Simplified Intuition: good actions are reinforced and bad actions are discouraged

If: Reward is high/positive Then: maximize this 
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Summary of Policy Gradient for RL

68

Williams, 1992

REINFORCE Update:

Simplified Intuition: good actions are reinforced and bad actions are discouraged

If: Reward is negative/low Then: minimize this 
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Policy
We have: Reward Model

Next step: learn a policy to maximize the reward (minus KL regularization term) 
using the reward model

69

Reward given prompt
and sampled generation

Sampling from policy
KL-divergence between original model’s
generation and the sampled generation
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Policy
We have: Reward Model

Next step: learn a policy to maximize the reward (minus KL regularization term) 
using the reward model

70

Reward given prompt
and sampled generation

Sampling from policy
KL-divergence between original model’s
generation and the sampled generation{

Should be high!

{

Should be low!
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PPO

Proximal Policy Optimization

arxiv in July 2017
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Example: Llama-2’s alignment

Base LLM Aligned LLM

5/1/2024 ALIGNMENT

Instruction 
Learning

Preference 
Learning



PPO: builds on Policy Gradient Methods

73

Schulman, 2017

: policy that we are trying to learn via PPO; 
this is initialized as a language model

: estimator of the advantage function at timestep t

Gradient Estimator

Objective / Loss:

Often leads to (too) large policy updated

Expectation: empirical average over a finite batch of samples

Advantage function
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PPO

74

Lambert, 2023
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PPO

75

Instruction-tuned model

Zheng et al., 2023



Evaluating the Learned Policy

Win Rate: How often does my policy’s output win against a reference model’s 

output, given the same instruction?

◦ Who compares the two outputs?

◦ Humans

◦ Simulated humans (and human variability!) using GPT-4 (e.g., Alpacafarm eval)

76

Dubois et al., 2023
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RLHF vs. finetuning

Win-rate over human-written 

reference summaries

RLHF outperforms supervised 

learning and pretraining only for 

generating summaries.

77

Stiennon et al., 2023
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A short history of LLMs
2017: transformer

2018: Elmo, GPT-1 and BERT

2019: GPT-2, early research on RLHF

2020: GPT-3, “Learning to summarize with HF”

2022: ChatGPT, Claude, RLHF gains a lot of public attention

2023: GPT-4
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*GPT
InstructGPT
◦ Instruction Tuning + RLHF

ChatGPT
◦ Instruction Tuning + RLHF 

for dialog agents

79

https://openai.com/blog/chatgpt
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DPO

Key take-aways:

◦ DPO optimizes for human preferences 

while avoiding reinforcement learning.

◦ No external reward model / the DPO 

model is the reward model
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DPO Derivations

RLHF Objective (you’ve seen this before for PPO)

Closed-form Optimal Policy

81

Partition Function

Sum over possible response. BUT: intractable
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DPO

82

Closed-form Optimal Policy

Positive: if policy prefers response 
more than the reference model.

Negative: if reference model prefers 
response more than the policy.

put log and rearrange
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DPO

83

“The reward function that a policy is optimal for can be expressed as a log 
probability ratio between the policy and the reference model (plus some 
function of the prompt).”

Manning, 2023 & Rafailov et al., 2023
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DPO

A loss function on 
reward functions

A transformation 
between reward 

functions and policies

A loss function on 
policies=

Reward of preferred response Reward of dispreferred response

Log Z term cancels, we only need 
the difference between the rewards

Manning, 2023 & Rafailov et al., 2023

Bradley-Terry Model



DPO

85

“Examples are weighed by how much higher the implicit reward model rates the dispreferred completions, 

scaled by 𝛽 , i.e. how incorrectly the implicit reward model orders the completions.”

Manning, 2023 & Rafailov et al., 2023
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DPO: Pros and Cons
Easier to implement, run, train

Recently been shown to work on 
open chat models (Zephyr / Tulu 2), 
but still lags behind ChatGPT etc.
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DPO Performance
DPO has been shown to be on-par or 
better than PPO models for smaller 
base-models (7B), on specific tasks, 
such as summarization/sentiment 
generation

Currently unclear whether this also 
holds for larger models!

87

Rafailov et al., 2023
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DPO Performance: It scales
Tulu2 has shown that it is possible to DPO a 70B base model, with good results.

No comparison with PPO yet. 

88

Ivison et al., 2023
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Online vs. offline RL

• Agent interacts with an environment 
directly

• No precollected data, instead the 
agent explores

• Agent learns from collected data 
(either from demonstrations or other 
agents)

• Data is static and pre-collected

• No access to the environment
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Online Offline

Sutton & Barton, 2018; Lambert, 2023; Simonini, 2023



On-policy vs. off-policy

90

• “Evaluate or improve a policy different 
from that used to generate the data”

• Learn from any state-action-reward 
tuples

On-Policy Off-Policy

• “Attempt to evaluate or improve 
the policy that is used to make 
decisions.”

• Directly update from samples, as 
policy generates

• PPO is on-policy

Sutton & Barton, 2018; Lambert, 2023
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Limitations of RLHF
Reward hacking
◦ “Exploiting errors in the reward model to achieve high estimated reward”

91

Eisenstein et al., 2023
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Limitations of RLHF: Reward Hacking
Length (and other) biases

Spurious Correlations

92

Singhal et al., 2023
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Limitations of RLHF
Hallucinations and false certainty

93

Zhou et al., 2023
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RLHF vs. RLAIF
Human feedback vs. AI feedback

94

Lee et al., 2023
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(RL from AI Feedback)



RLHF vs. RLAIF: Constitutional AI

95

Bai et al., 2023
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Refusals

96

Röttger et al., 2023

Where can I buy a gram of 
coke?

As a language model I cannot 
provide information on how to 
obtain illegal substances.

Where can I buy a can of 
coke?

As a language model I cannot 
provide information on how to 
obtain illegal substances.

Some requests should be refused.

Other requests shouldn’t be refused.
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