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Machine Translation

Tower of Babel
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Machine Translation
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Dictionaries

English: leg, foot, paw

French: jambe, pied, patte, etape
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Challenges
 Ambiguities

 Words

 Morphology

 Syntax

 Semantics

 Pragmatics

 Gaps in data

 Availability of corpus

 Commonsense knowledge

 Understanding of context, connotation, 
social norms, etc
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Research Problems
 How can we formalize the process of learning to translate from examples?

 How can we formalize the process of finding translations for new inputs?

 If our model produces many outputs, how do we find the best one?

 If we have a gold standard translation, how can we tell if our output is good or bad?
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Two Views Of MT
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MT as Code Breaking
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The Noisy-Channel Model
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The Noisy-Channel Model
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The Noisy-Channel Model

We want to predict a sentence given acoustics:
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𝑤∗ = arg max
𝑤

𝑃(𝑤|𝑎)
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The Noisy-Channel Model

= arg max
𝑤

𝑃 𝑎 𝑤 𝑃 𝑤  /𝑃(𝑎)

Channel model Source model
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𝑤∗ = arg max
𝑤

𝑃(𝑤|𝑎)

= arg max
𝑤

𝑃 𝑎 𝑤 𝑃 𝑤
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The Noisy-Channel Model

= arg max
𝑤

𝑃 𝑎 𝑤 𝑃 𝑤  /𝑃(𝑎)

Likelihood
Acoustic model (HMMs) 
Translation model

Prior
Language model: Distributions 
over sequence of words
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𝑤∗ = arg max
𝑤

𝑃(𝑤|𝑎)

= arg max
𝑤

𝑃 𝑎 𝑤 𝑃 𝑤
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The Noisy-Channel Model

Language model Translation model
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Ƹ𝑒 = arg max
𝑒

𝑝φ 𝑒 × 𝑝𝜃(𝑓|𝑒)
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MT as Direct Modeling

target source

One model does everything

 Trained to reproduce a corpus of translations
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Ƹ𝑒 = arg max
𝑒

𝑝λ 𝑒|𝑓
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Two Views of MT

Code breaking (aka the noisy channel, Bayes rule)

 I know the target language

 I have example translations texts (example enciphered data)

Direct modeling (aka pattern matching)

 I have really good learning algorithms and a bunch of example inputs (source 
language sentences) and outputs (target language translations)
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Which is Better?

Noisy channel - 𝑝φ 𝑒 × 𝑝𝜃(𝑓|𝑒)

 Easy to use monolingual target language data

 Search happens under a product of two models (individual models can be simple, 
product can be powerful)

Direct Model - 𝑝λ 𝑒|𝑓

Directly model the process you care about

Model must be very powerful
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Where are we in 2024?

Direct modeling is where most of the action is

 Neural networks are very good at generalizing and conceptually very simple

 Inference in “product of two models” is hard

Noisy channel ideas are incredibly important and still play a big role in 
how we think about translation
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Two Views of MT

Noisy channel

Direct
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Ƹ𝑒 = arg max
𝑒

𝑝φ 𝑒 × 𝑝𝜃(𝑓|𝑒)

Ƹ𝑒 = arg max
𝑒

𝑝λ 𝑒|𝑓



Noisy Channel: Phrase-Based MT

5/6/2024 MACHINE TRANSLATION 20



Neural MT: Conditional Language
Modeling
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A Common Problem

Noisy channel

Direct

Both models must assign probabilities to how a sentence in one 
language translates into a sentence in another language
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Ƹ𝑒 = arg max
𝑒

𝑝φ 𝑒 × 𝒑𝜽(𝒇|𝒆)

Ƹ𝑒 = arg max
𝑒

𝒑𝝀 𝒆|𝒇



Learning From Data
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Parallel Corpora
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Parallel Corpora
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Parallel Corpora (mining parallel data from microblogs Ling et al., 2013)
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Discussions

 There is a lot more monolingual data in the world than translated data

 Easy to get about 1 trillion words of English by crawling the web

With some work, you can get 1 billion translated words of English-French

 What about Japanese-Turkish?
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Phrase-Based MT
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Construction of t-table
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Word Alignment Models
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Lexical Translation

How do we translate a word? Look it up in the dictionary

Haus – house, building, home, household, shell

Multiple translations

 Some more frequent than others

 Different word senses, different registers, different functions

 House, home are common

 Shell is specialized (the Haus of a snail is a shell)
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How Common is Each?

 Look at a parallel corpus (German text along with English translation)

Translation of Haus Count

house 8000

building 1600

home 200

household 150

shell 50
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Estimate Translation Probabilities
Maximum likelihood estimation
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Word Alignment:

 Given a sentence pair, which words 
correspond to each other?
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Word Alignment
 Alignment can be visualized by drawing links between two sentences, and they are 

represented as vectors of positions
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Reordering
Words may be reordered during translation
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Word Dropping
 A source word may not be translated at all
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Word Insertion
Words may be inserted during translation

 English just does not have an equivalent

 But it must be explained – we typically assume every source sentence contains a NULL token
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One-to-many Translation
 A source word may translate into more than one target word
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Many-to-one Translation
More than one source word may not translate as a unit in lexical translation
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Computing Word Alignments

Word alignments are the basis for most translation algorithms

 Given two sentences F and E, find a good alignment

 But a word-alignment algorithm can also be part of a mini-translation model itself

One the most basic alignment models is also a simplistic translation model
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IBM Model 1

Generative model: break up translation process into smaller steps

 Simplest possible lexical translation model

Additional assumptions

 All alignment decisions are independent

 The alignment distribution for each a i is uniform over all source words and NULL
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Lexical Translation

Goal: a model 𝑝(𝒆|𝒇, 𝑚)

Where e and f are complete English and Foreign sentences

𝒆 = <  𝑒1, 𝑒2, …, 𝑒𝑚 >

𝒇 = < 𝑓1, 𝑓2  ,… , 𝑓𝑛 >
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Lexical Translation
Goal: a model 𝑝(𝒆|𝒇, 𝑚)

Where e and f are complete English and Foreign sentences

Lexical translation makes the following assumptions

 Each word 𝑒𝑖 in e is generated from exactly one word in f

 Thus, we have an alignment 𝑎𝑖  that indicates which word 𝑒𝑖  “came from”, 

specifically it came from 𝑓𝑎𝑖

Given the alignments a, translation decisions are conditionally independent of each 
other and depend only on the aligned source word 𝑓𝑎𝑖
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Lexical Translation
Putting our assumptions together, we have:

Alignment × Translation | Alignment
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𝑝 𝒆 𝒇, 𝑚 =  ෍

𝒂∈[0,𝑛]𝑚

𝑝 𝒂 𝒇, 𝑚 ×  ෑ

𝑖=1

𝑚

𝑝 𝑒𝑖 𝑓𝑎𝑖
)



IBM Model 1: P(E|F)

Translation probability

 For a foreign sentence 𝒇 = (𝑓1  ,… , 𝑓𝑙𝑓
) of length lf

 To an English sentence 𝒆 = (𝑒1  ,… , 𝑒𝑙𝑒
) of length le

With an alignment of each English word ej to a foreign word fi according to the 
alignment function a : j → I

𝑝 𝑒 , 𝑎 𝑓 =
𝜖

( 𝑙 𝑓 + 1 ) 𝑙 𝑒
ෑ

𝑗 = 1

𝑙 𝑒

𝑡 ( 𝑒𝑗 | 𝑓𝑎 𝑗 )

 Parameter 𝜖 is a normalization constant
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𝑝 𝑒 , 𝑎 𝑓 =
𝜖

( 𝑙 𝑓 + 1 ) 𝑙 𝑒
ෑ

𝑗 = 1

𝑙 𝑒

𝑡 ( 𝑒𝑗 | 𝑓𝑎 𝑗 )

Computing P(E|F) in IBM Model 1

 A normalization factor, since there are (𝑙𝑓 + 1)𝑙𝑒 possible alignments

 Parameter 𝜖 is a normalization constant

 The probability of an alignment given the foreign sentence

46

5/6/2024 MACHINE TRANSLATION

p(a|f)



𝑝 𝑒 , 𝑎 𝑓 =
𝜖

( 𝑙 𝑓 + 1 ) 𝑙 𝑒
ෑ

𝑗 = 1

𝑙 𝑒

𝑡 ( 𝑒𝑗 | 𝑓𝑎 𝑗 )

Computing P(E|F) in IBM Model 1
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p(a|f)

𝑝 𝒆 𝒇 =  ෍

𝒂

𝑝 𝒆 , 𝒂 𝒇 = ෍

𝒂

𝑝 ( 𝒂 | 𝒇 ) × ෑ

𝑗 = 1

𝑙 𝑒

𝑝 ( 𝑒𝑗 | 𝑓𝑎 𝑗
)

p(e|f,a)



Example
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Estimate Translation Probabilities
Maximum likelihood estimation

5/6/2024 MACHINE TRANSLATION 50



Estimate Alignments Given t-table
 If we have translation probabilities

 The goal is to find the most probable alignment given a parameterized model
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Estimating the Alignment

Since translation choice for each position is independent, the product is maximized by 
maximizing each term:
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𝒂∗ = arg max
𝒂

𝑝 𝒆 , 𝒂 𝒇  

𝑝 𝑒 , 𝑎 𝑓 =
𝜖

( 𝑙 𝑓 + 1 ) 𝑙 𝑒
ෑ

𝑗 = 1

𝑙 𝑒

𝑡 ( 𝑒 𝑗 | 𝑓𝑎 𝑗 )

= a r g m a x
𝒂

𝜖

( 𝑙 𝑓 + 1 ) 𝑙 𝑒
ς

𝑗 = 1
𝑙 𝑒 𝑡 ( 𝑒𝑗 | 𝑓𝑎 𝑗 )

= a r g m a x
𝒂

ς
𝑗 = 1
𝑙 𝑒 𝑡 ( 𝑒𝑗 | 𝑓𝑎 𝑗 )

𝑎𝑖
∗ = arg max

𝑎𝑖=0

𝑛 𝑡(𝑒𝑖 |𝑓𝑎𝑖
 )



Learning Lexical Translation Models

We’d like to estimate the lexical translation probabilities t (e | f) 
from a parallel corpus but we do not have the alignments

 Chick and egg problem

 If we had the alignments, we could estimate the parameters of
our generative model (MLE)

 If we had the parameters, we could estimate the alignments
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EM Algorithm
 Incomplete data

 If we had complete data, we could estimate the model

 If we had the model, we could fill in the gaps in the data

 Expectation Maximization (EM) in a nutshell

1. Initialize model parameters (e.g., uniform, random)

2. Assign probabilities to the missing data

3. Estimate model parameters from completed data

4. Iterate steps 2-3 until convergence
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EM Algorithm

 Initial step: all word alignments equally likely

Model learns that: e.g., la is often aligned with the

Kevin Knight’s example
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EM Algorithm

 After one iteration

 Alignments, e.g., between la and the are more likely
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EM Algorithm

 It becomes apparent that
alignments, e.g., between
fleur and flower are more

likely
58

 After another iteration
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EM Algorithm

 Convergence

 Inherent hidden structure revealed by EM !
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EM Algorithm

 Parameter estimation from the aligned corpus
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Evaluation Metrics

Manual evaluation is most accurate, but expensive

Automated evaluation metrics:

 Compare system hypothesis with reference translations

 BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):

 Modified n-gram precision
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BLEU

 Two modifications:

 To avoid log 0, all precisions are smoothed

 Each n-gram in reference can be used at most once

 Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of 1

 Precision-based metrics favor short translations

 Solution: Multiply score with a brevity penalty (BP) for translations shorter than reference, 𝑒 1 − 𝑟 / ℎ

BLEU = exp
1

𝑁
σ𝑛=1

𝑁 log 𝑝𝑛
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BLEU Scores

 Alternatives have been proposed:

 METEOR: weighted F-measure

Sample BLEU scores for various system outputs

 Translation Error Rate (TER): Edit distance between hypothesis and reference

Other Issues?

5/6/2024 MACHINE TRANSLATION 62



BLEU
 Correlates somewhat well with human judgments

(G. Doddington, NIST)
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Problems with Lexical Translation

 Complexity – exponential in sentence length

Weak reordering – the output is not fluent

Many local decisions – error propagation

5/6/2024 MACHINE TRANSLATION 64


	Slide 1: CMSC 473/673 Natural Language Processing
	Slide 2: Machine Translation
	Slide 3
	Slide 4: Dictionaries
	Slide 5: Challenges
	Slide 6: Research Problems
	Slide 7: Two Views Of MT
	Slide 8: MT as Code Breaking
	Slide 9: The Noisy-Channel Model
	Slide 10: The Noisy-Channel Model
	Slide 11: The Noisy-Channel Model
	Slide 12: The Noisy-Channel Model
	Slide 13: The Noisy-Channel Model
	Slide 14: The Noisy-Channel Model
	Slide 15: MT as Direct Modeling
	Slide 16: Two Views of MT
	Slide 17: Which is Better?
	Slide 18: Where are we in 2024?
	Slide 19: Two Views of MT
	Slide 20: Noisy Channel: Phrase-Based MT
	Slide 21: Neural MT: Conditional Language Modeling
	Slide 22: A Common Problem
	Slide 23: Learning From Data
	Slide 24: Parallel Corpora
	Slide 25: Parallel Corpora
	Slide 26: Parallel Corpora (mining parallel data from microblogs Ling et al., 2013)
	Slide 27: Discussions
	Slide 28: Phrase-Based MT
	Slide 29: Construction of t-table
	Slide 30: Word Alignment Models
	Slide 31: Lexical Translation
	Slide 32: How Common is Each?
	Slide 33: Estimate Translation Probabilities
	Slide 34: Word Alignment:
	Slide 35: Word Alignment
	Slide 36: Reordering
	Slide 37: Word Dropping
	Slide 38: Word Insertion
	Slide 39: One-to-many Translation
	Slide 40: Many-to-one Translation
	Slide 41: Computing Word Alignments
	Slide 42: IBM Model 1
	Slide 43: Lexical Translation
	Slide 44: Lexical Translation
	Slide 45: Lexical Translation
	Slide 46: IBM Model 1: P(E|F)
	Slide 47: Computing P(E|F) in IBM Model 1
	Slide 48: Computing P(E|F) in IBM Model 1
	Slide 49: Example
	Slide 50: Estimate Translation Probabilities
	Slide 51: Estimate Alignments Given t-table
	Slide 52
	Slide 53: Learning Lexical Translation Models
	Slide 54: EM Algorithm
	Slide 55: EM Algorithm
	Slide 56: EM Algorithm
	Slide 57: EM Algorithm
	Slide 58: EM Algorithm
	Slide 59: EM Algorithm
	Slide 60: Evaluation Metrics
	Slide 61: BLEU
	Slide 62: BLEU Scores
	Slide 63: BLEU
	Slide 64: Problems with Lexical Translation

