
CMSC 473/673
Natural Language Processing
Instructor: Lara J.  Martin (she/they)

TA: Duong Ta (he)
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Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner



Learning Objectives
Define featurization & other ML terminology

Define some “classification” terminology

Formalize NLP Tasks at a high-level
◦ Document classification

◦ Part of speech tagging

◦ Syntactic parsing

◦ Entity id/coreference
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Helpful ML Terminology
Model: the (computable) way to go from features (input) to labels/scores
(output)

Weights/parameters (θ): vectors of numbers that control how the model 
produces labels/scores from inputs. These are learned through training.
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ModelInput Output

1.352
36.26
262.4
925
…

θ

(Prompt)



ML/NLP Framework

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ
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Helpful ML Terminology
Model: the (computable) way to go from features (input) to labels/scores 
(output)

Weights/parameters: vectors of numbers that control how the model produces 
labels/scores from inputs. These are learned through training. 

Objective function: an algorithm/calculation, whose variables are the weights of 
the model, that we numerically optimize in order to learn appropriate weights 
based on the labels/scores. The model’s weights are adjusted.

Evaluation function: an algorithm/calculation that scores how “correct” the 
model’s predictions are. The model’s weights are not adjusted.
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Note: The evaluation and 
objective functions are often 

different!



(More) Helpful ML Terminology
Learning: 

• the process of adjusting the model’s weights to learn to make good predictions.

Inference / Prediction / Decoding / Classification: 

• the process of using a model’s existing weights to make (hopefully!) good 
predictions
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ML/NLP Framework for Learning

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Objective 
Function

score

give feedback 
to the model

Objective 
Function/ 
Learning
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ML/NLP Framework for Prediction

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Evaluation 
Function
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instances

First: Featurization / Encoding / Representation

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score
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features: 
K-dimensional vector 
representations (one 

per instance)



ML Term: “Featurization”
The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the 
input language x

𝑓 𝑥 = (𝑓1 𝑥 ,… , 𝑓𝐾(𝑥))

Each of these is a feature 
(/feature function)
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ML Term: “Featurization”
The procedure of extracting features for some input

Often viewed as a 𝐾-dimensional vector function f of the input language 𝑥
𝑓 𝑥 = (𝑓1 𝑥 ,… , 𝑓𝐾(𝑥))

In supervised settings, it can equivalently be viewed as a 𝐾-dimensional vector function 
f of the input language 𝑥 and a potential label 𝑦

◦ 𝑓 𝑥, 𝑦 = (𝑓1 𝑥, 𝑦 , … , 𝑓𝐾(𝑥, 𝑦))

Features can be thought of as “soft” rules
◦ E.g., positive sentiments tweets may be more likely to have the word “happy”
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Defining Appropriate Features
Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired
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Defining Appropriate Features
Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we’ll come back to this!)

Often binary-valued (0 or 1), but can be real-valued
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Three Common Types of Featurization in 
NLP
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1. Bag-of-words (or bag-of-
characters, bag-of-relations)

2. Linguistically-inspired 
features

3. Dense features via 
embeddings



Three Common Types of Featurization in 
NLP

• easy to define / extract
• sometimes still very useful
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3. Dense features via 
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Three Common Types of Featurization in 
NLP

• easy to define / extract
• sometimes still very useful

• harder to define
• helpful for interpretation
• depending on task: 

conceptually helpful
• currently, not freq. used
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Three Common Types of Featurization in 
NLP

1. Bag-of-words (or bag-of-
characters, bag-of-relations)

2. Linguistically-inspired 
features

3. Dense features via 
embeddings

• easy to define / extract
• sometimes still very useful

• harder to define
• helpful for interpretation
• depending on task: 

conceptually helpful
• currently, not freq. used

• harder to define
• harder to extract (unless 

there’s a model to run)
• currently: freq. used
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Three Common Types of 
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
◦ Identify unique sufficient atomic sub-parts (e.g., words in a document)

◦ Define simple features over these, e.g.,
◦ Binary (0 or 1) ➔ indicating presence

◦ Natural numbers ➔ indicating number of times in a context

◦ Real-valued ➔ various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features

3. Dense features via embeddings
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Example: Document Classification via 
Bag-of-Words Features

Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

Let’s make a core assumption: the 
label can be predicted from 

counts of individual word types
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TECH

NOT TECH



Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

TECH

NOT TECH

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types

𝑓𝑖 𝑥 =# of times word 
 type i appears
 in document x

With V word types, 
define V feature 

functions 𝑓𝑖 𝑥  as
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Example: Document Classification via 
Bag-of-Words Features



Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

TECH

NOT TECH

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types

𝑓𝑖 𝑥 =# of times word 
 type i appears
 in document x

With V word types, 
define V feature 

functions 𝑓𝑖 𝑥  as
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𝑓 𝑥 = 𝑓𝑖 𝑥 𝑖

𝑉

Example: Document Classification via 
Bag-of-Words Features



Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

TECH

NOT TECH

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types
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Example: Document Classification via 
Bag-of-Words Features

feature 𝑓𝑖 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

sniffle 0

…



Electronic alerts have been used 
to assist the authorities in 
moments of chaos and potential 
danger: after the Boston bombing 
in 2013, when the Boston suspects 
were still at large, and last month 
in Los Angeles, during an active 
shooter scare at the airport.

TECH

NOT TECH
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Example: Document Classification via 
Bag-of-Words Features

feature 𝑓𝑖 𝑥 value

alerts 1

assist 1

bombing 1

Boston 2

…

sniffle 0

…

feature weight

alerts .043

assist -0.25

bombing 0.8

Boston -0.00001

…

w: weightsf(x): “bag of words”



Three Common Types of 
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
◦ Identify unique sufficient atomic sub-parts (e.g., words in a document)

◦ Define simple features over these, e.g.,
◦ Binary (0 or 1) ➔ indicating presence

◦ Natural numbers ➔ indicating number of times in a context

◦ Real-valued ➔ various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features
◦ Define features from words, word spans, or linguistic-based annotations extracted from 

the document

3. Dense features via embeddings

2/5/2024 NLP TASKS 24



Three Common Types of 
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
◦ Identify unique sufficient atomic sub-parts (e.g., words in a document)

◦ Define simple features over these, e.g.,
◦ Binary (0 or 1) ➔ indicating presence

◦ Natural numbers ➔ indicating number of times in a context

◦ Real-valued ➔ various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features
◦ Define features from words, word spans, or linguistic-based annotations extracted from 

the document

3. Dense features via embeddings
◦ Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, …
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Will be 
discussed 
in a future 

lecture



Second: Classification Terminology

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score
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Classification Types (Terminology)

Name Number of 
Tasks 

(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification

Multi-class 
Classification

Multi-label 
Classification

Multi-task 
Classification
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Classification Types (Terminology)
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Name Number of 
Tasks 

(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2
Sentiment: Choose one of 

{positive or negative}

Multi-class 
Classification

Multi-label 
Classification

Multi-task 
Classification



Classification Types (Terminology)

Name Number of 
Tasks 

(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2
Sentiment: Choose one of 

{positive or negative}

Multi-class 
Classification

1 > 2
Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification

Multi-task 
Classification
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Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2
Sentiment: Choose one of 

{positive or negative}

Multi-class 
Classification

1 > 2
Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification

1 > 2
Sentiment: Choose multiple 

of {positive, angry, sad, 
excited, …}

Multi-task 
Classification
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Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2
Sentiment: Choose one of 

{positive or negative}

Multi-class 
Classification

1 > 2
Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification

1 > 2
Sentiment: Choose multiple 

of {positive, angry, sad, 
excited, …}

Multi-task 
Classification

> 1
Per task: 2 or > 2 

(can apply to binary 
or multi-class)

Task 1: part-of-speech
Task 2: named entity tagging

…
----------------------

Task 1: document labeling
Task 2: sentiment
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Text Annotation Tasks
1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation
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Text Annotation Tasks
1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

2/5/2024 NLP TASKS 33
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Text Classification
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

…
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Text Classification
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

…

2/5/2024 NLP TASKS 35

Model

a document
 
a fixed set of 
classes  C = {c1, 
c2,…, cJ}

a predicted class c 
from C



Text Classification: Hand-coded Rules?
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

…

2/5/2024 NLP TASKS 36

Rules based on combinations of words or other features

spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high

If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?



Text Classification: Supervised Machine 
Learning
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

…
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Model

a document d

a fixed set of classes  C = {c1, 
c2,…, cJ}

a training set of m hand-labeled 
documents (d1,y1),....,(dm,ym), y 
\in C

a learned 
classifier γ that 
maps documents 
to classes



Text Classification: Supervised Machine 
Learning
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Age/gender identification

Language Identification

Sentiment analysis

…
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Model

a document d

a fixed set of classes  C = {c1, 
c2,…, cJ}

a training set of m hand-labeled 
documents (d1,y1),....,(dm,ym), y 
\in C

a learned 
classifier γ that 
maps documents 
to classes

Naïve Bayes
Logistic regression

Neural network
Support-vector machines

k-Nearest Neighbors
…



Text Annotation Tasks
1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation
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Slide courtesy Jason Eisner, with mild edits



(WSD)

Build a special classifier just for tokens of “plant”
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 



WSD for

Build a special classifier just for tokens of “sentence”
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 
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p(class | token in context) 

slide courtesy of D. Yarowsky (modified)
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 



What features?  Example: “word to 
[the] left [of correction]”

slide courtesy of D. Yarowsky (modified)

Spelling correction using an 
n-gram language model 
(n ≥ 2) would use words to 
left and right to help 
predict the true word.

Similarly, an HMM would 
predict a word’s class using 
classes to left and right.

But we’d like to throw in all 
kinds of other features, 
too …
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generates a whole bunch of potential 
cues – use data to find out which 

ones work best
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slide courtesy of D. Yarowsky (modified)

An assortment of possible cues ...



merged ranking
of all cues 

of all these types

This feature is 
relatively weak, 

but weak 
features are still 
useful, especially 

since 
very few features 
will fire in a given 

context.
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slide courtesy of D. Yarowsky (modified)

An assortment of possible cues ...



Final decision list for lead (abbreviated)

List of all features,
 ranked by their weight.

(These weights are for a simple 
“decision list” model where the single 

highest-weighted feature that fires 
gets to make the decision all by itself.

  However, a log-linear model, which 
adds up the weights of all features 
that fire, would be roughly similar.)
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Text Annotation Tasks
1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence (i.e., order matters)

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation
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Part of Speech Tagging
We could treat tagging as a token classification problem
◦ Tag each word independently given features of context

◦ And features of the word’s spelling (suffixes, capitalization)
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Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).

2/5/2024 NLP TASKS 62

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT

Slide courtesy Ray Mooney, with mild edits



Sequence Labeling as Classification
Classify each token independently but use as input features, information about 
the surrounding tokens (sliding window).
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John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN

Slide courtesy Ray Mooney, with mild edits



Part of Speech Tagging
Or we could use an HMM: 

Start PN   Verb    Det     Noun  Prep Noun   Prep     Det  Noun 

Bill  directed   a    cortege  of   autos  through  the  dunes

0.4 0.6

0.001

probs
from tag 
bigram 
model

probs from
unigram 
replacement

Start Stop

Det

Adj

N

Det

Adj

N

Det

Adj

N

Det

Adj

N

Adj:directed…
Noun:autos…Adj:directed…

Adj:cool 0.0009
Noun:cool 0.007

2/5/2024 NLP TASKS 64

Det:the 0.32

Slide courtesy Jason Eisner, with mild edits



Part of Speech Tagging
We could treat tagging as a token classification problem

◦ Tag each word independently given features of context
◦ And features of the word’s spelling (suffixes, capitalization)

Or we could use an HMM: 
◦ The point of the HMM is basically that the tag of one word might depend on the tags of adjacent 

words.

Combine these two ideas??
◦ We’d like rich features (e.g., in a log-linear model), but we’d also like our feature functions to 

depend on adjacent tags.
◦ So, the problem is to predict all tags together.
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wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these words one at a time

predict the label for the word

from these hidden states

“cell”

Can We Use Neural, Recurrent Methods?
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Text Annotation Tasks
1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation
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Slide courtesy Jason Eisner, with mild edits



Example: Finding Named Entities
Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of 
interest

◦ Person names

◦ Organizations (companies, government organisations, committees, etc.)

◦ Locations (cities, countries, rivers, etc.)

◦ Date and time expressions

◦ Measures (percent, money, weight, etc.), 

◦ email addresses, web addresses, street addresses, etc. 

◦ Domain-specific: names of drugs, medical conditions, 

◦ names of ships, bibliographic references etc.

2/5/2024 NLP TASKS 68Cunningham and Bontcheva (2003, RANLP Tutorial)



NE Types
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Slide courtesy Jim Martin



Named Entity Recognition
CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased 
fares by $6 per round trip on flights to some cities also served by lower-cost carriers. 
American Airlines, a unit AMR, immediately matched the move, spokesman Tim 
Wagner said. United, a unit of UAL, said the increase took effect Thursday night and 
applies to most routes where it competes against discount carriers, such as Chicago to 
Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.
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