CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner

NLP TASKS

Learning Objectives

Define featurization & other ML terminology

Define some "classification" terminology

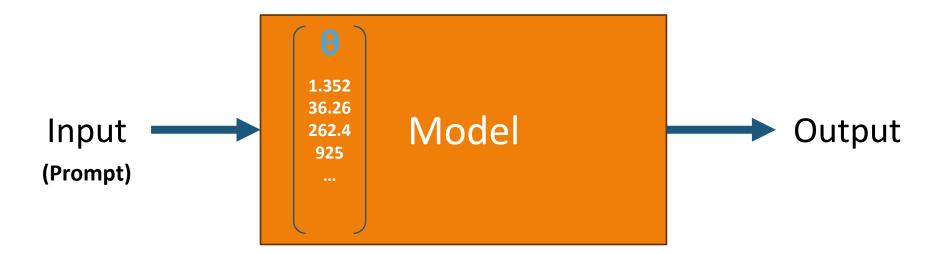
Formalize NLP Tasks at a high-level

- Document classification
- Part of speech tagging
- Syntactic parsing
- Entity id/coreference

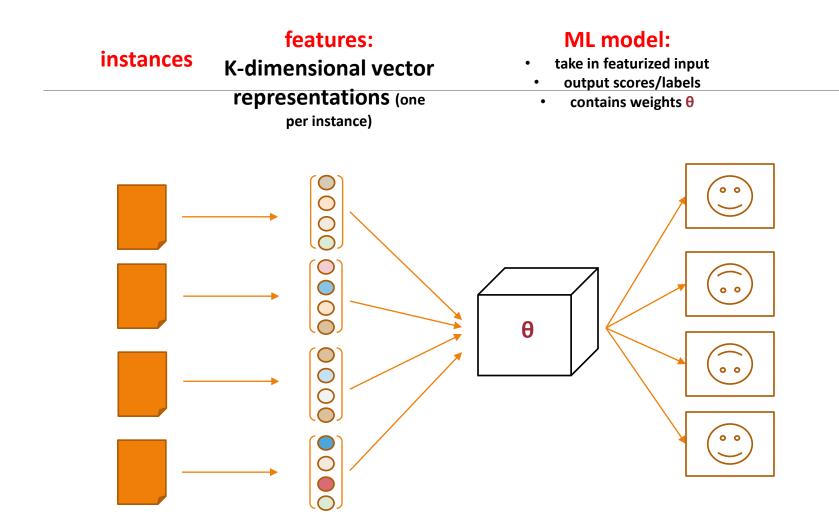
Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters (θ): vectors of numbers that control how the model produces labels/scores from inputs. These are learned through training.



ML/NLP Framework



Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters: vectors of numbers that control how the model produces labels/scores from inputs. These are learned through training.

Objective function: an algorithm/calculation, whose variables are the **weights** of the **model**, that we numerically optimize in order to learn appropriate weights based on the labels/scores. The **model's** weights are adjusted.

Evaluation function: an algorithm/calculation that scores how "correct" the **model's** predictions are. The **model's** weights are not adjusted.

Note: The evaluation and objective functions are often different!

(More) Helpful ML Terminology

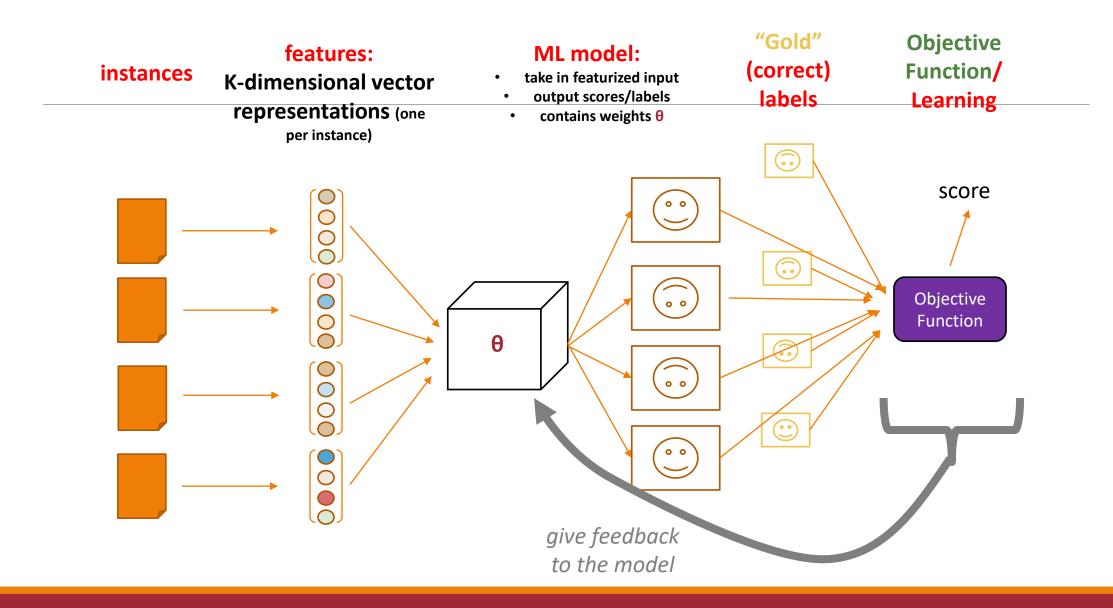
Learning:

• the process of adjusting the model's weights to learn to make good predictions.

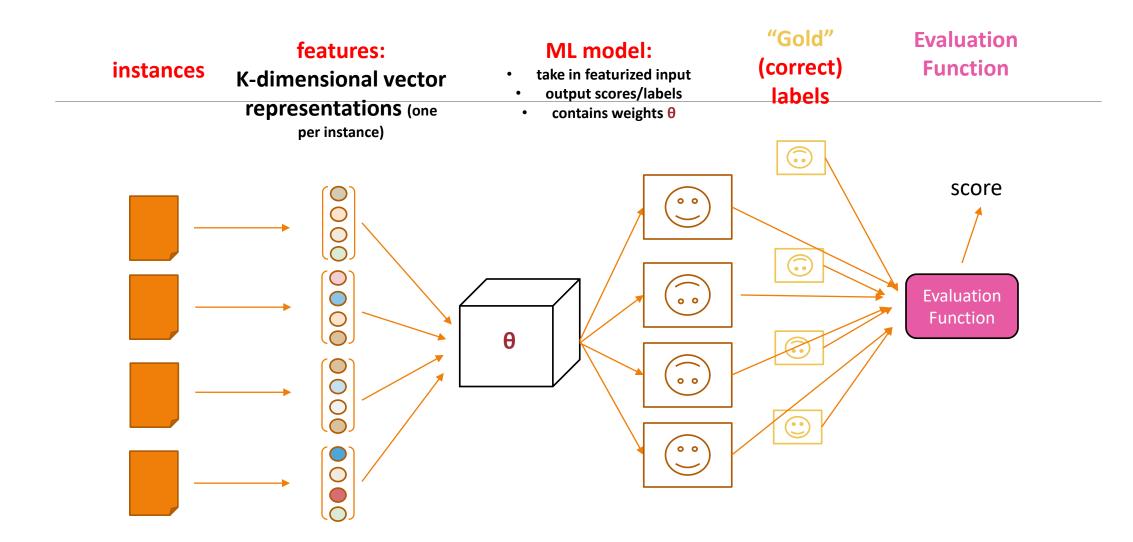
Inference / Prediction / Decoding / Classification:

 the process of using a model's existing weights to make (hopefully!) good predictions

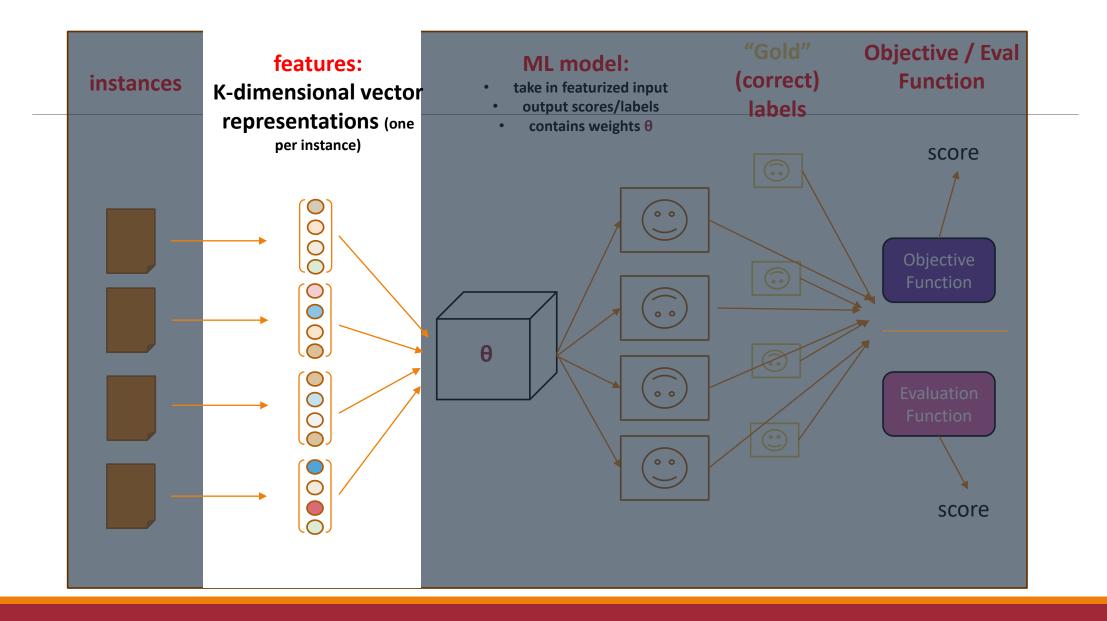
ML/NLP Framework for Learning



ML/NLP Framework for Prediction



First: Featurization / Encoding / Representation



ML Term: "Featurization"

The procedure of extracting **features** for some input

Often viewed as a K-dimensional vector function *f* of the input language *x*

$$f(x) = (f_1(x), \dots, f_K(x))$$

Each of these is a feature (/feature function)

ML Term: "Featurization"

The procedure of extracting **features** for some input

Often viewed as a *K*-dimensional vector function f of the input language x $f(x) = (f_1(x), \dots, f_K(x))$

In supervised settings, it can equivalently be viewed as a K-dimensional vector function f of the input language x and a potential label y

• $f(x, y) = (f_1(x, y), ..., f_K(x, y))$

Features can be thought of as "soft" rules

• E.g., positive sentiments tweets may be more likely to have the word "happy"

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we'll come back to this!)

Often binary-valued (0 or 1), but can be real-valued

1. Bag-of-words (or bag-ofcharacters, bag-of-relations)

2. Linguistically-inspired features

1. Bag-of-words (or bag-ofcharacters, bag-of-relations)

2. Linguistically-inspired features

- easy to define / extract
- sometimes still very useful

1. Bag-of-words (or bag-ofcharacters, bag-of-relations)

2. Linguistically-inspired features

- easy to define / extract
- sometimes still very useful
- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used

1. Bag-of-words (or bag-ofcharacters, bag-of-relations)

2. Linguistically-inspired features

- easy to define / extract
- sometimes still very useful
- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used
- harder to define
- harder to extract (unless there's a model to run)
- currently: freq. used

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers \rightarrow indicating number of times in a context
 - Real-valued \rightarrow various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
- 3. Dense features via embeddings

Example: Document Classification via Bag-of-Words Features

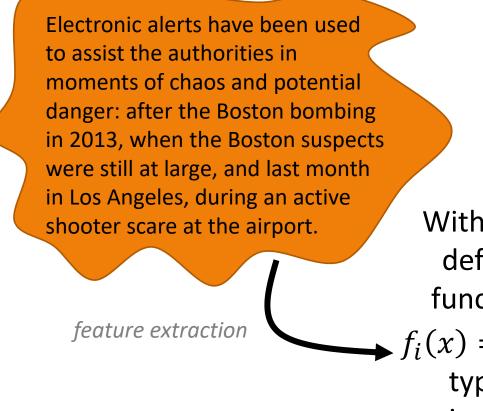
Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH

NOT TECH

Let's make a core assumption: the label can be predicted from counts of individual word types

Example: Document Classification via Bag-of-Words Features



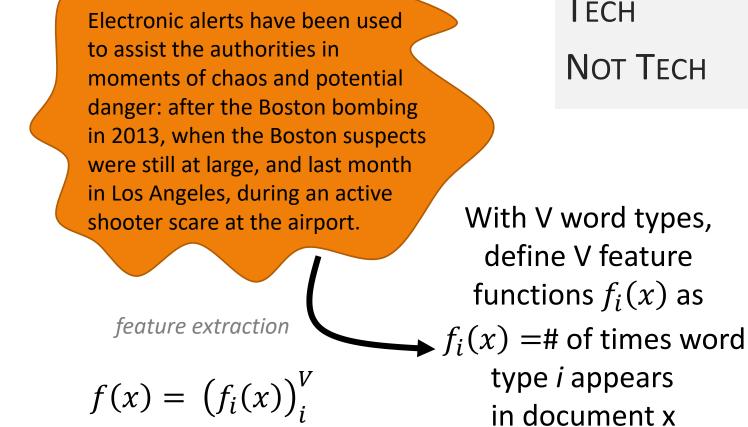
TECH

NOT TECH

With V word types, define V feature functions $f_i(x)$ as $f_i(x) = \#$ of times word type *i* appears in document x

Core assumption: the label can be predicted from counts of individual word types

Example: Document Classification via **Bag-of-Words Features**

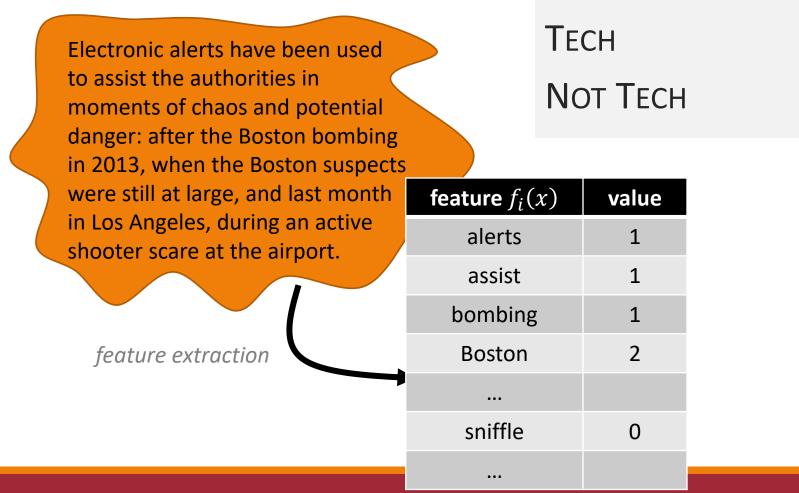


TECH

NOT TECH

Core assumption: the label can be predicted from counts of individual word types

Example: Document Classification via Bag-of-Words Features



Core assumption: the label can be predicted from counts of individual word types

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

Тесн

NOT TECH

f(x): "bag of words"

value

1

1

1

2

0

w: weights

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001

feature $f_i(x)$

alerts

assist

bombing

Boston

...

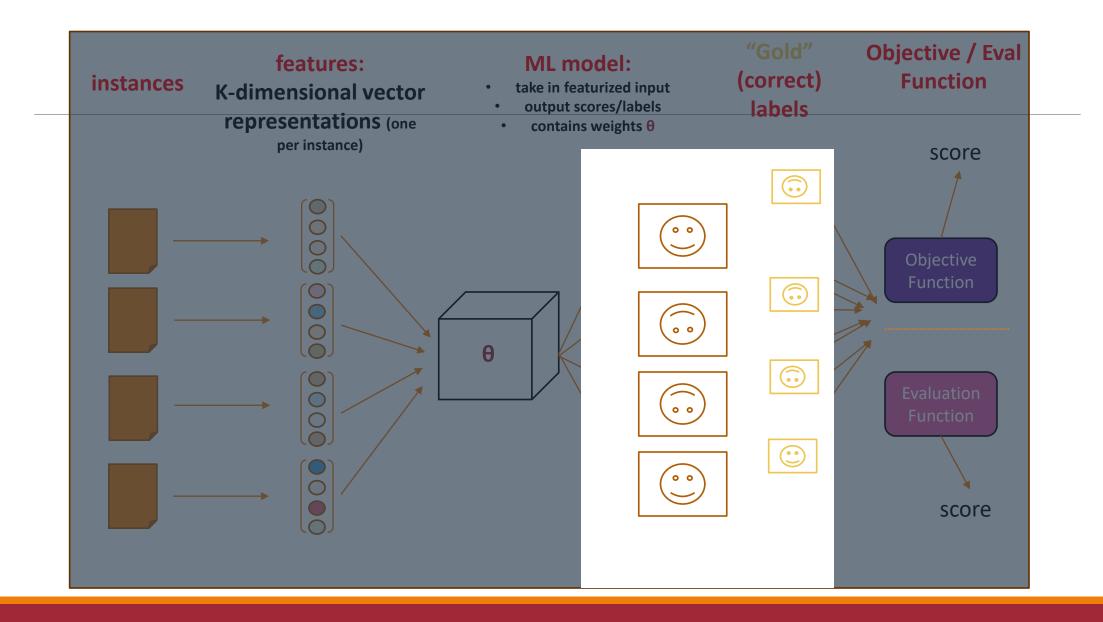
sniffle

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) \rightarrow indicating presence
 - Natural numbers \rightarrow indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguistic-based annotations extracted from the document
- 3. Dense features via embeddings

- 1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify unique sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers \rightarrow indicating number of times in a context
 - Real-valued \rightarrow various other score (we'll see examples throughout the semester)
- 2. Linguistically-inspired features
 - Define features from words, word spans, or linguistic-based annotations extracted from the document
- 3. Dense features via embeddings
 - Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, ...

Will be discussed in a future lecture

Second: Classification Terminology



Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification			
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification			
Multi-task Classification			

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
Multi-task Classification			

	Name	Number of	# Label Types	Example	
		Tasks (Domains) Labels are Associated with			
	(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}	
	Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}	
	Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}	
	Multi-task Classification	> 1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling	
2/5/202				Task 2: sentiment	21

Text Annotation Tasks

- 1. Classify the entire document ("text categorization")
- 2.Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5.Syntactic annotation (parsing)
- 6.Semantic annotation

7.Text generation

Text Annotation Tasks

1. Classify the entire document ("text categorization")

2. Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases ("chunking")

5.Syntactic annotation (parsing)

6.Semantic annotation

Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis

...

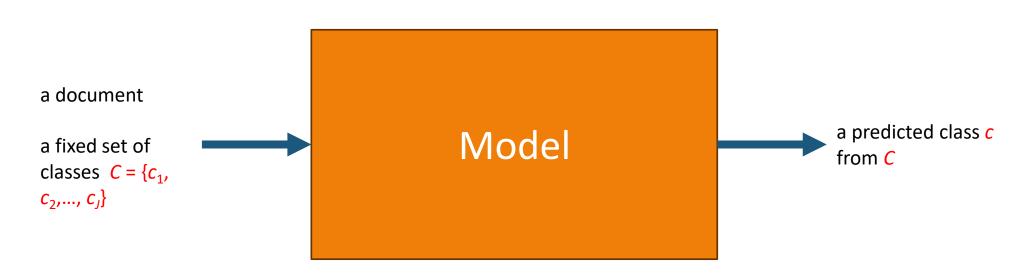
Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Age/gender identification Language Identification Sentiment analysis



...

Text Classification: Hand-coded Rules?

Assigning subject categories, topics, or Age/gender identification genres Language Identification

Spam detection

Authorship identification

Sentiment analysis

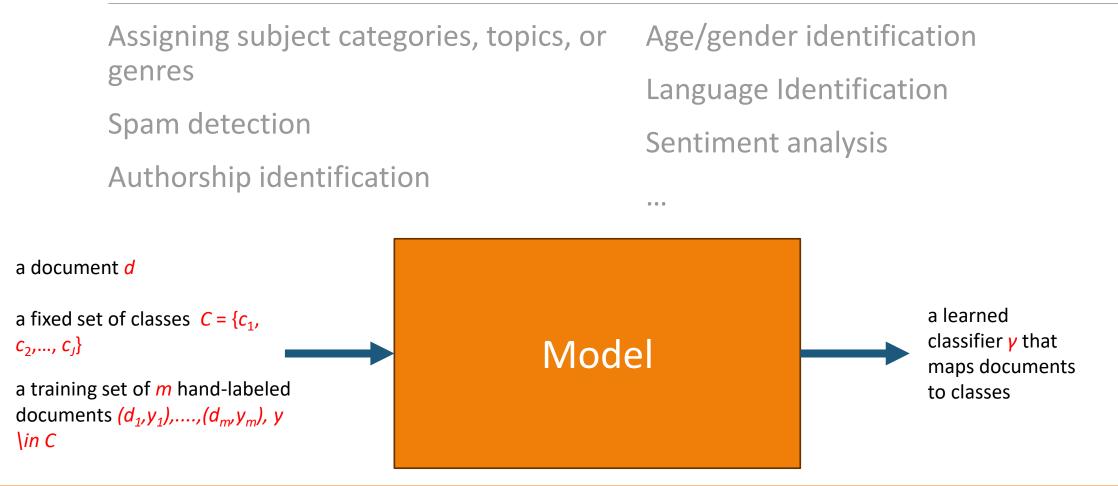
Rules based on combinations of words or other features spam: black-list-address OR ("dollars" AND "have been selected")

> Accuracy can be high If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Text Classification: Supervised Machine Learning



Text Classification: Supervised Machine Learning

Age/gender identification Assigning subject categories, topics, or genres Language Identification Spam detection Sentiment analysis Authorship identification ... **Naïve Bayes** a document d Logistic regression a learned a fixed set of classes $C = \{c_1, c_2\}$ Neural network classifier **y** that $C_2, ..., C_l$ Support-vector machines maps documents a training set of *m* hand-labeled k-Nearest Neighbors to classes documents $(d_1, y_1), \dots, (d_m, y_m), y$... \in C

Text Annotation Tasks

1.Classify the entire document ("text categorization")

2.Classify word tokens individually

- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5.Syntactic annotation (parsing)
- 6.Semantic annotation

7.Text generation

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

- \Rightarrow (A) Manufacturing plant or
- \Rightarrow (B) Living plant

Training Data: Build a special classifier just for tokens of "plant"

Sense	Context				
(1) Manufacturing	union responses to <i>plant</i> closures				
,, ,,	computer disk drive <i>plant</i> located in				
""	company manufacturing <i>plant</i> is in Orlando				
(2) Living	animal rather than <i>plant</i> tissues can be				
""	to strain microscopic <i>plant</i> life from the				
""	and Golgi apparatus of <i>plant</i> and animal cells				

Test Data:

Sense	Context
???	vinyl chloride monomer <i>plant</i> , which is
???	molecules found in <i>plant</i> tissue from the

slide courtesy of D. Yarowsky (modified)

WSD for Machine Translation

(English \rightarrow Spanish)

Problem:

... He wrote the last **sentence** two years later ...

 \Rightarrow sentencia (legal sentence) or

 \Rightarrow *frase* (grammatical sentence)

Training Data: Build a special classifier just for tokens of "sentence"

Translation	Context	
(1) sentencia	for a maximum sentence for a young offender	
,, ,,	of the minimum <i>sentence</i> of seven years in jail	
""	were under the sentence of death at that time	
(2) frase	read the second <i>sentence</i> because it is just as	
,, ,,	The next sentence is a very important	
,, ,,	It is the second sentence which I think is at	

Test Data:

Translation	Context
???	cannot criticize a sentence handed down by
???	listen to this sentence uttered by a former

slide courtesy of D. Yarowsky (modified

Accent Restoration in Spanish & French

Problem:

Input: ... deja travaille cote a cote ...
↓
Output: ... déjà travaillé côte à côte ...

Examples:

- ... appeler l'autre cote de l'atlantique ...
 - \Rightarrow *côté* (meaning side) or
 - \Rightarrow *côte* (meaning coast)
- ... une famille des pecheurs ...
 - \Rightarrow *pêcheurs* (meaning fishermen) or
 - \Rightarrow *pécheurs* (meaning sinners)

Accent Restoration in Spanish & French

Training Data:

Pattern	Context					
(1) côté	du laisser de cote faute de temps					
""	appeler l' autre cote de l' atlantique					
** **	passe de notre cote de la frontiere					
(2) côte	vivre sur notre cote ouest toujours					
""	creer sur la cote du labrador des					
** **	travaillaient cote a cote , ils avaient					

Test Data:

Pattern	Context				
???	passe de notre cote de la frontiere				
???	creer sur la cote du labrador des				

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...

 $\Rightarrow l\epsilon d$ (as in *lead mine*) or

 \Rightarrow *li*:*d* (as in *lead role*)

Training Data:

Pronunciation	Context				
(1) l∈d	it monitors the <i>lead</i> levels in drinking				
"""	conference on <i>lead</i> poisoning in				
"""	strontium and <i>lead</i> isotope zonation				
(2) li:d	maintained their <i>lead</i> Thursday over				
"""	to Boston and <i>lead</i> singer for Purple				
,, ,,	Bush a 17-point <i>lead</i> in Texas , only 3				

Test Data:

Pronunciation	Context		
???	median blood <i>lead</i> concentration was		
???	his double-digit <i>lead</i> nationwide . The		

slide courtesy of D. Yarowsky (modified,

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...

 \Rightarrow aid or

 \Rightarrow aide

Training Data:

Spelling	Context
(1) aid	and cut the foreign aid/aide budget in fiscal 1996
** **	they offered federal aid/aide for flood-ravaged states
(2) aide	fired presidential aid/aide Dick Morris after
** **	and said the chief aid/aide to Sen. Baker, Mr. John

Test Data:

Spelling	Context
???	said the longtime aid/aide to the Mayor of St
???	will squander the <i>aid/aide</i> it receives from the

slide courtesy of D. Yarowsky (modified

What features? Example: "word to [the] left [of correction]"

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n-gram language model $(n \ge 2)$ would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

An assortment of possible cues ...

		Position	Collocation		l∈d	li:d		
N-grams		+1 L	lead level/N		219	0		
	-1 W	narrow lead		0	70			
	(word,	+1 W	lead in		207	898		
	lemma,	-1w,+1w	of lead in		162	0		
	part-of-speech)	-1w,+1w	the lead in		0	301		
		+1P,+2P	lead, <nou< th=""><th>N></th><th>234</th><th>7</th><th></th><th></th></nou<>	N>	234	7		
	Wide-context collocations		<i>zinc</i> (in $\pm k$ words)		235	0		
			<i>copper</i> (in $\pm k$ words)		130	0		
	Verb-object	-V L	follow/V + 1e	ead	0	527		
	relationships -V I		take/V + lead	1	1	665		
				Frequenc	y as	Frequ	iency as]
generates a whole bunch of potential			Word to left	Aid		Aide		
cues – use data to find out which			foreign		718		1	1
ones work best			federal		297		0	
			western		146		0	
24			provide		88		0	

2/5/2024

slide courtesy of D. Yarowsky (modified

An assortment of possible cues ...

	Position	Collocation	led	li:d	This feature is
N-grams	+1 L	lead level/N	219	0	relatively weak,
	-1 W	narrow lead	0	70	but weak
(word,	+1 W	lead in	207	898	features are still
lemma,	-1w,+1w	of lead in	162	0	useful, especially
part-of-speech)	-1w,+1w	the lead in	0	301	since
	+1P,+2P	lead, <noun></noun>	234	7	very few features
Wide-context	±k w	<i>zinc</i> (in $\pm k$ words)	235	0	will fire in a given
collocations	$\pm k w$	<i>copper</i> (in $\pm k$ words)	130	0	context.
Verb-object	-V L	follow/V + lead	0	527	
relationships	- Y L	take/V + lead	1	665	
morgod ranking		11.40 $follow/V + lead$		\Rightarrow	li:d
merged ranking of all cues		11.20 <i>zinc</i> (in $\pm k$ wor	ds)	\Rightarrow	l∈d
of all these types		11.10 lead level/N		\Rightarrow	l∈d
or an enese types		10.66 of lead in		\Rightarrow	l€d
		10.59 the lead in		\Rightarrow	li:d
		10.51 lead role		\Rightarrow	li:d

lide courtesy of D. Yarowsky (modified)

Final decision list for *lead* (abbreviated)

List of all features, ranked by their weight.

(These weights are for a simple "decision list" model where the single highest-weighted feature that fires gets to make the decision all by itself.

However, a log-linear model, which adds up the weights of all features that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	follow/V + lead	\Rightarrow li:d
11.20	<i>zinc</i> (in $\pm k$ words)	$\Rightarrow l\epsilon d$
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	\Rightarrow li:d
10.51	lead role	\Rightarrow li:d
10.35	<i>copper</i> (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	\Rightarrow li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	\Rightarrow li:d
	000	

slide courtesy of D. Yarowsky (modified)

Text Annotation Tasks

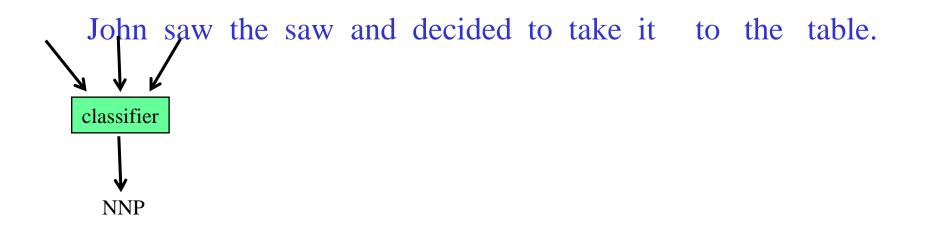
- **1**.Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence (i.e., order matters)
- 4.Identify phrases ("chunking")
- 5.Syntactic annotation (parsing)
- 6.Semantic annotation

7.Text generation

Part of Speech Tagging

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

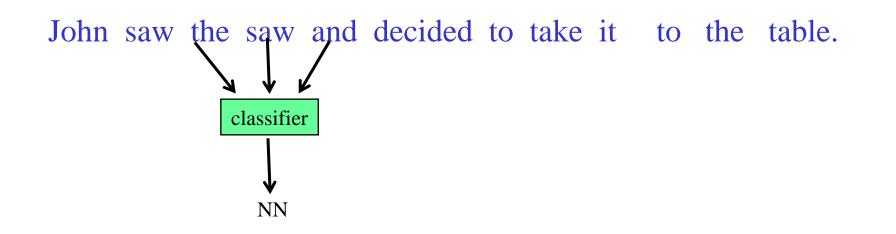


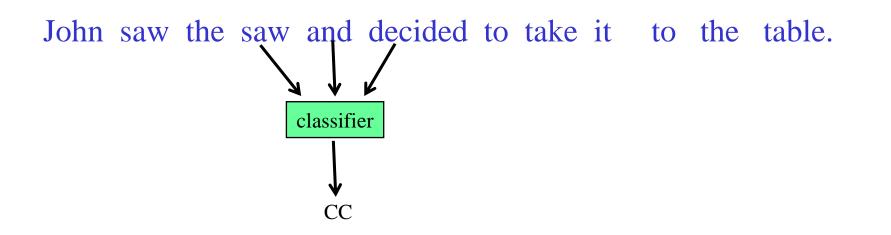
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

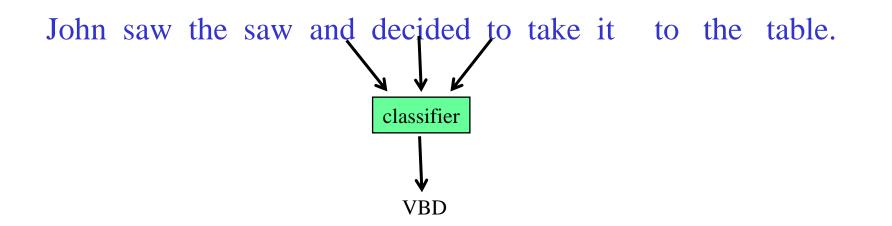
John saw the saw and decided to take it to the table.

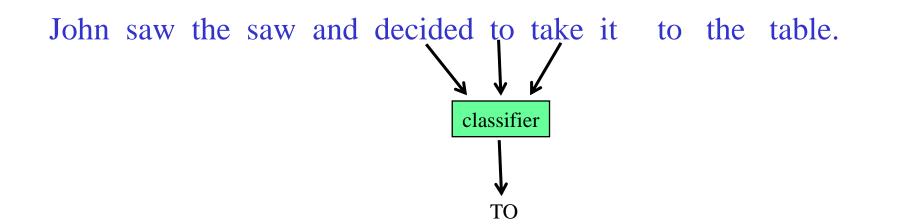
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table. classifierbr



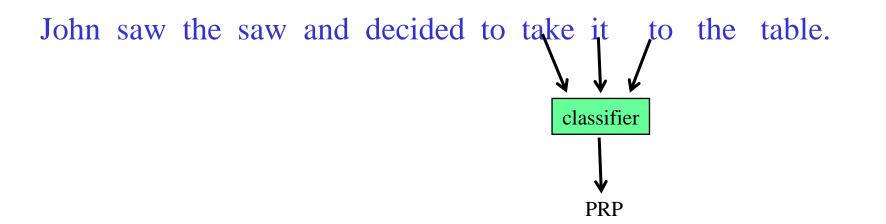






Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.



Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

DT

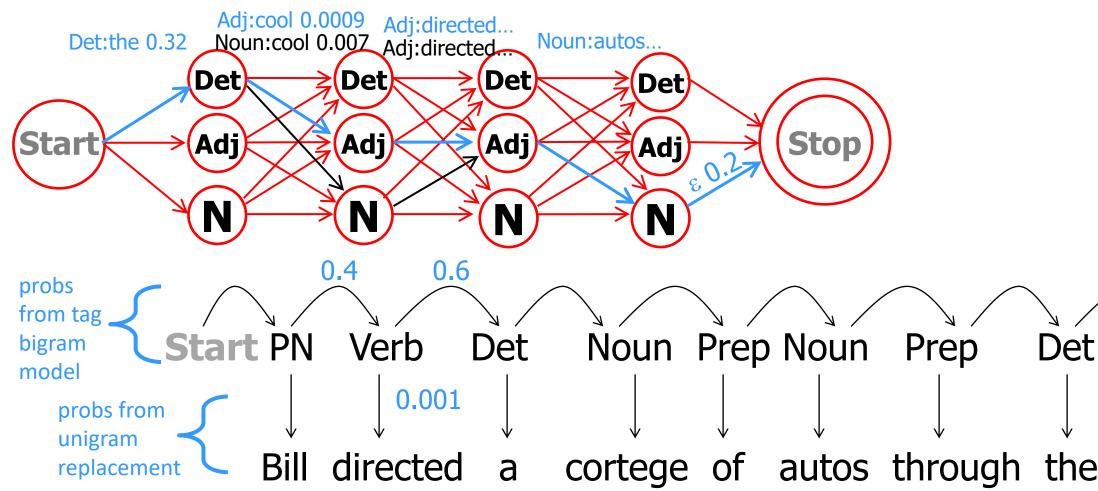
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

NN

Part of Speech Tagging

Or we could use an HMM:



Part of Speech Tagging

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

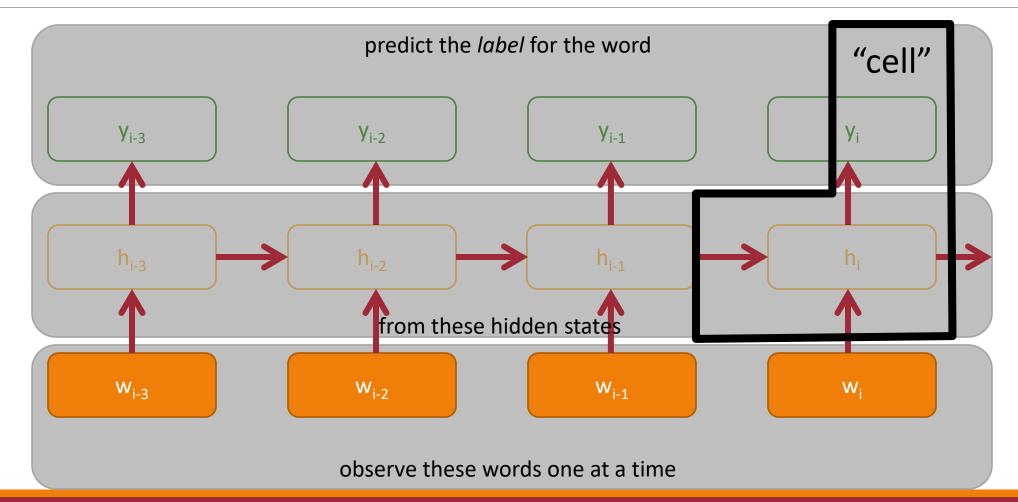
Or we could use an HMM:

• The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Combine these two ideas??

- We'd like rich features (e.g., in a log-linear model), but we'd also like our feature functions to depend on adjacent tags.
- So, the problem is to predict **all** tags together.

Can We Use Neural, Recurrent Methods?



Text Annotation Tasks

- **1**.Classify the entire document ("text categorization")
- 2.Classify word tokens individually
- 3.Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- **5**.Syntactic annotation (parsing)
- 6.Semantic annotation

7.Text generation

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of interest

- Person names
- Organizations (companies, government organisations, committees, etc.)
- Locations (cities, countries, rivers, etc.)
- Date and time expressions
- Measures (percent, money, weight, etc.),
- email addresses, web addresses, street addresses, etc.
- Domain-specific: names of drugs, medical conditions,
- names of ships, bibliographic references etc.

NE Types

Туре	Tag	Sample Categories	
People	PER	Individuals, fictional characters, small groups	
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams	
Location	LOC	Physical extents, mountains, lakes, seas	
Geo-Political Entity	GPE	Countries, states, provinces, counties	
Facility	FAC	Bridges, buildings, airports	
Vehicles	VEH	Planes, trains, and automobiles	
Туре	Example		
People	<i>Turing</i> is often considered to be the father of modern computer science.		
Organization	The <i>IPCC</i> said it is likely that future tropical cyclones will become more intense.		
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.		
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-		
	trict.		
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln		
	Tunnel.		
Vehicles	The updated Mini Cooper retains its charm and agility.		

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.