CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

Slides modified from Dr. Frank Ferraro

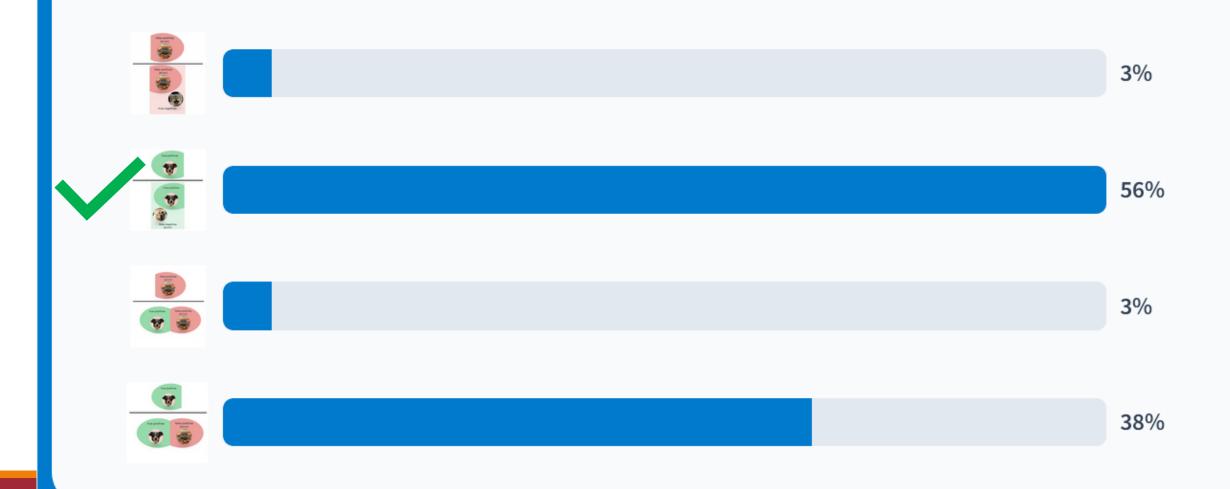
Learning Objectives

Develop an intuition about precision & recall

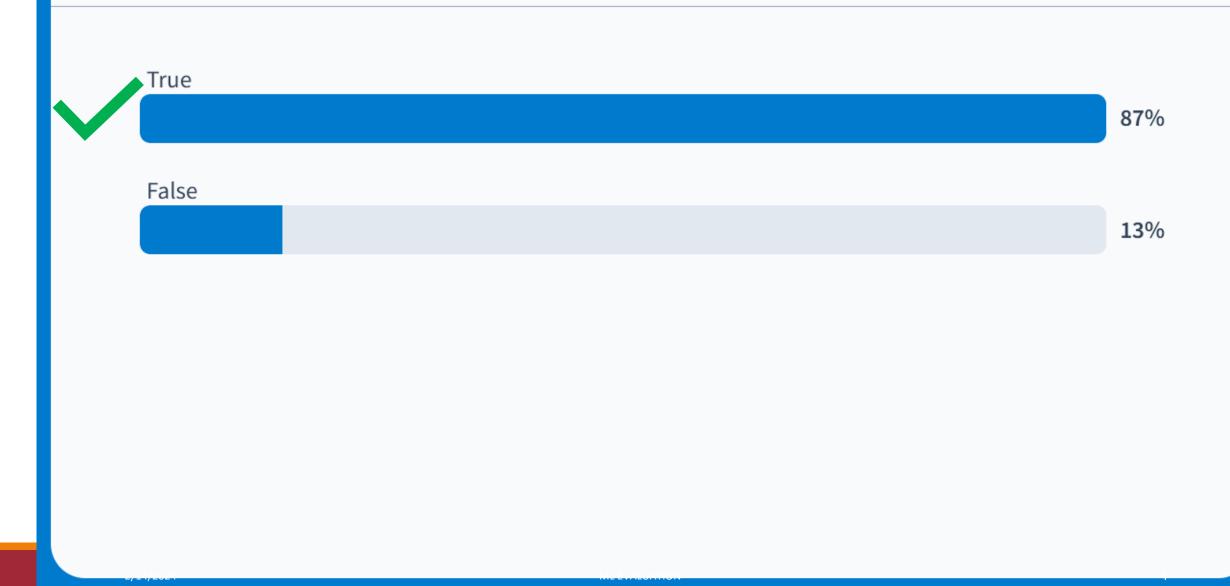
Extend P/R to multi-class problems

Identify when you might want certain evaluation metrics over others

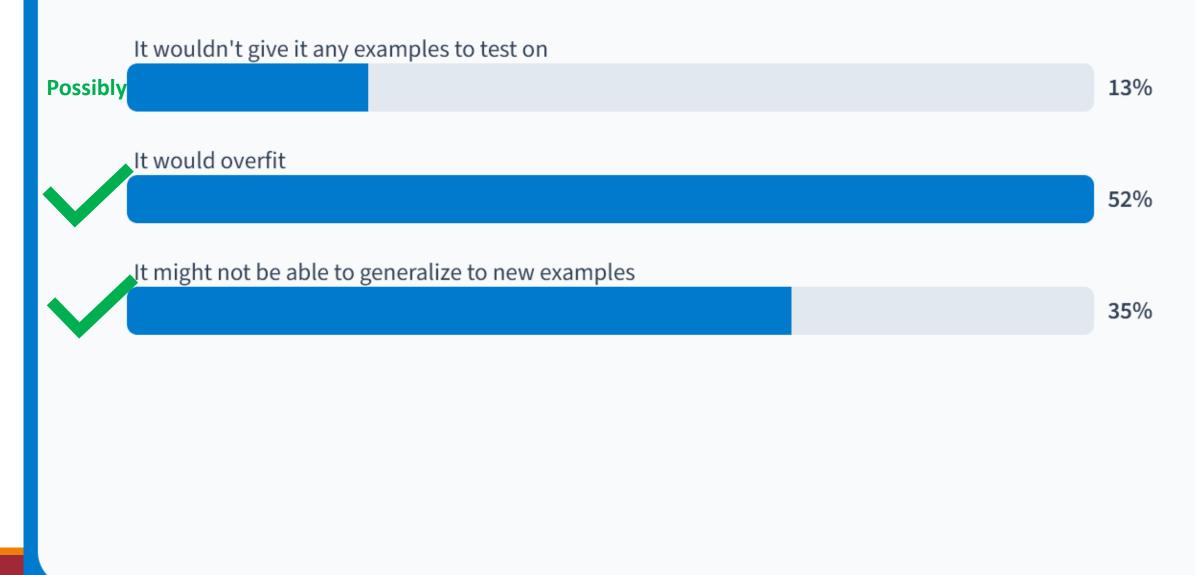
If you are classifying pictures of dogs, what would be the "equation" for *recall* (where the top of the image is the numerator and the bottom of the image is the denominator)?



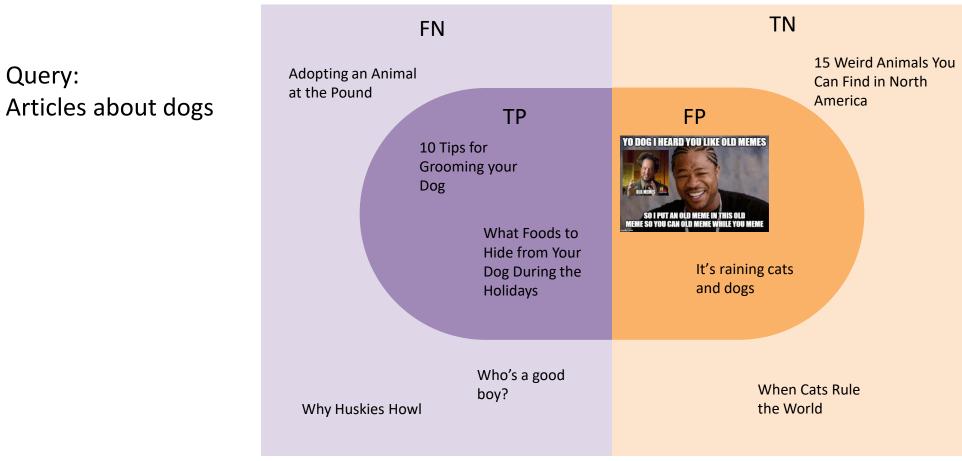
The difference between classification & regression is that a regression model will produce a continuous output.



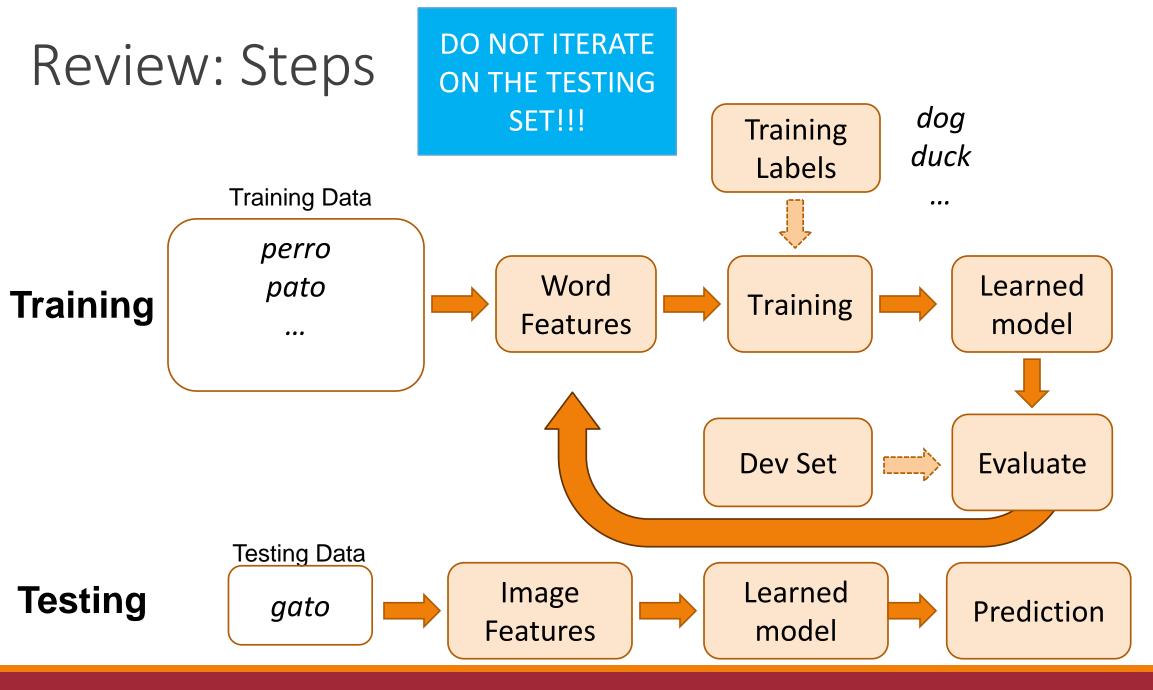
Why would you want to divide up your data (instead of training on it all)?



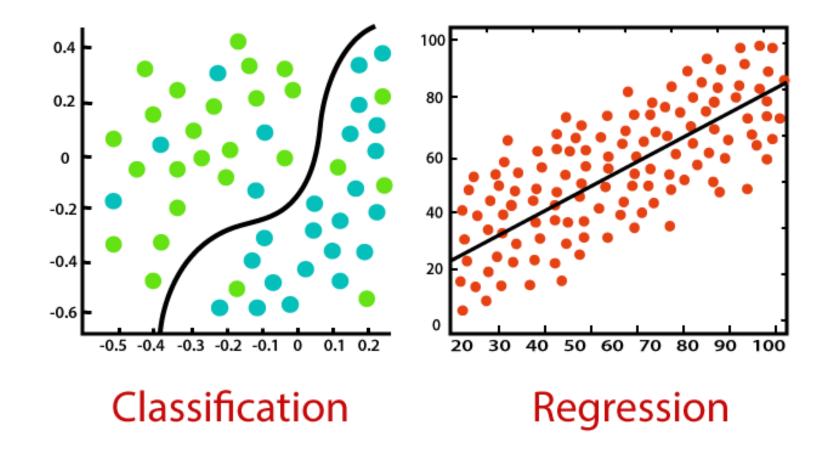
Contingency Table (out of table form)



Query:

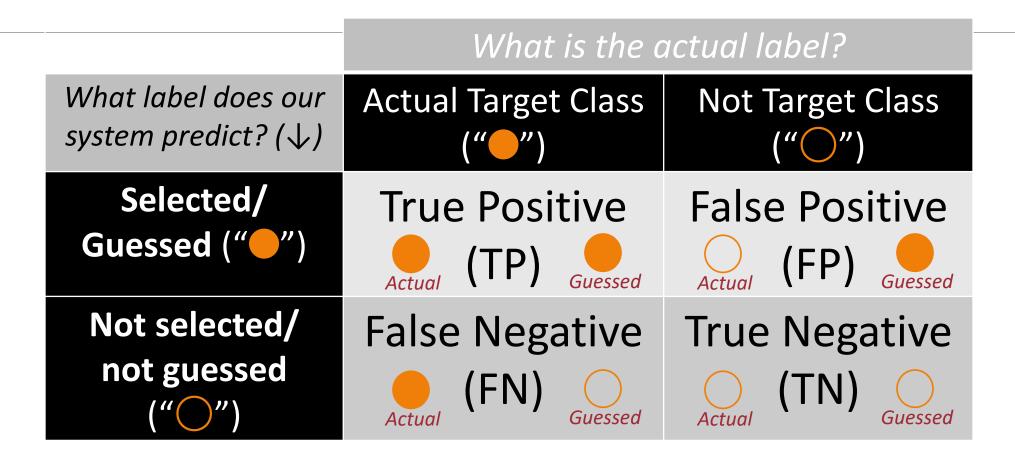


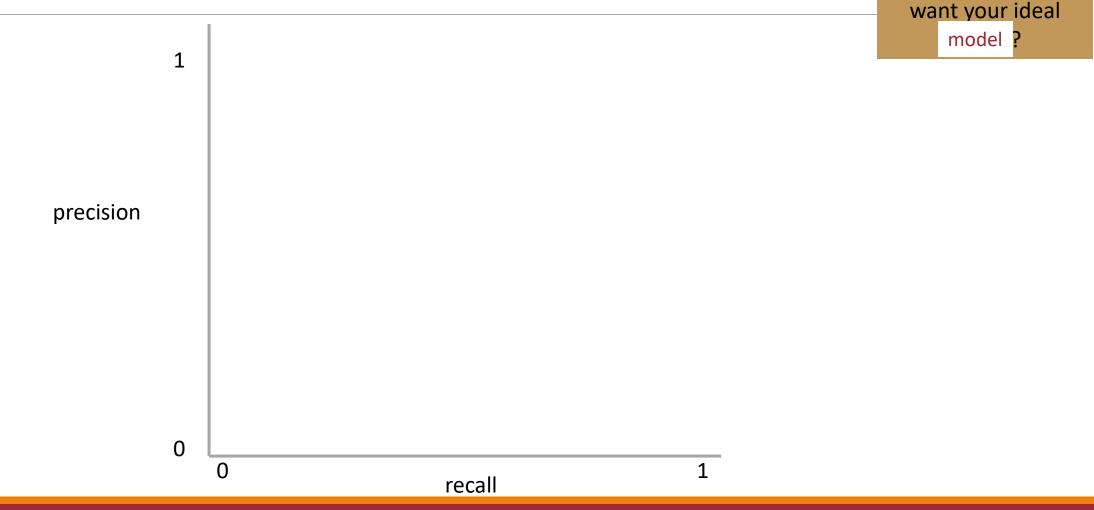
Review: Types of models



8

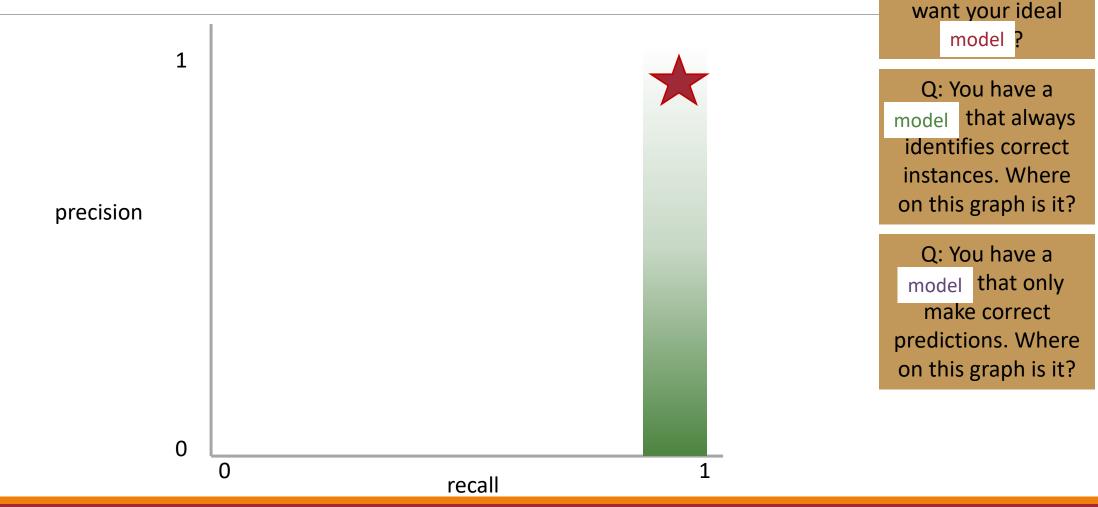
Review: Classification Evaluation: the 2-by-2 contingency table



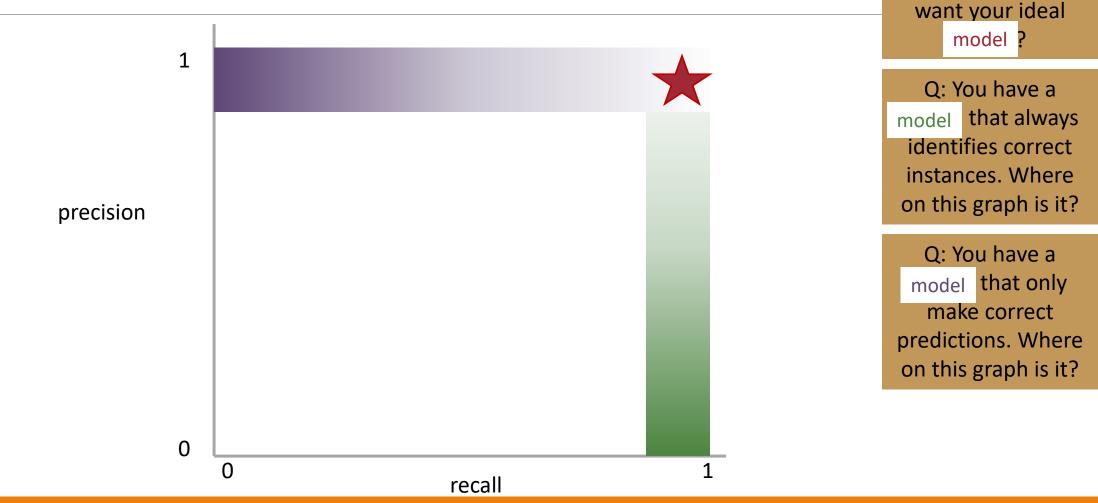


ML EVALUATION

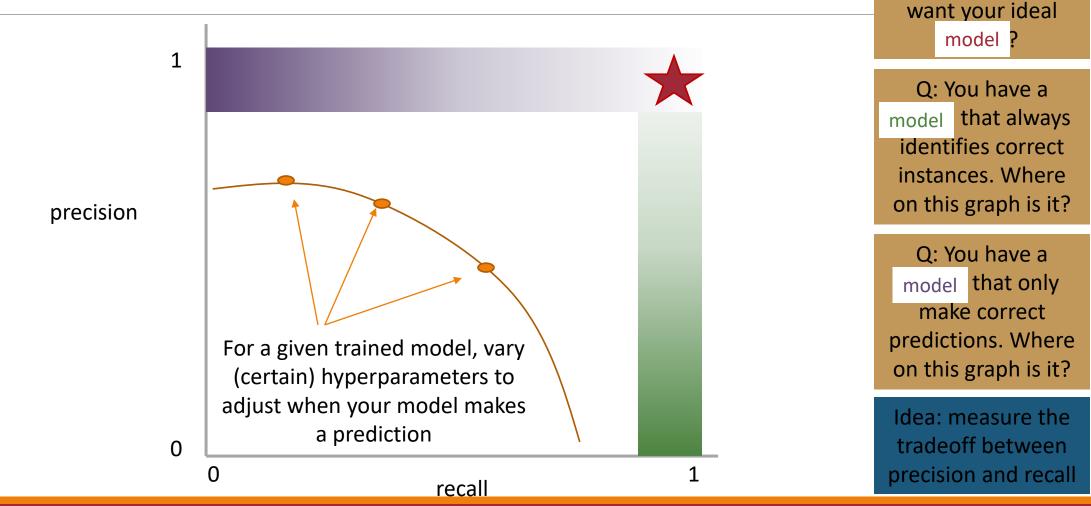
ML EVALUATION



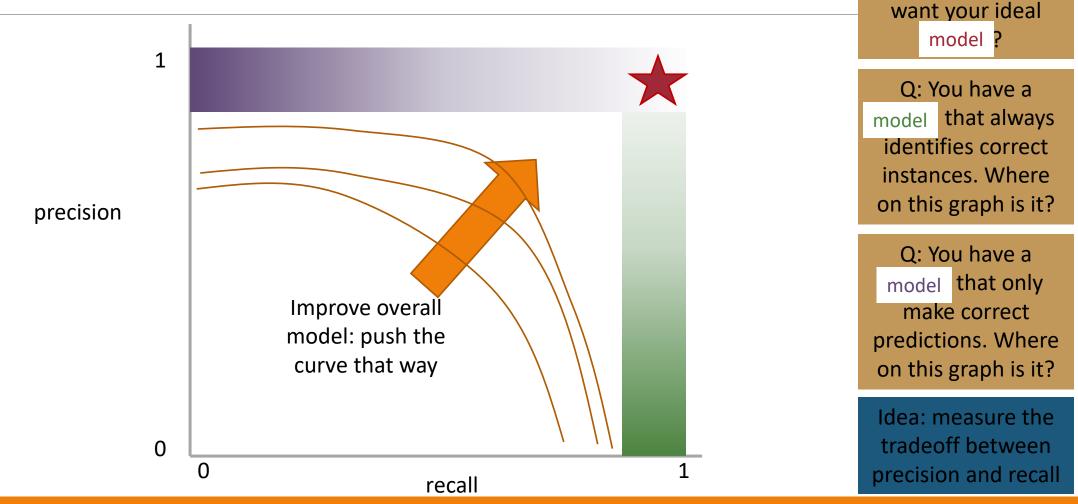
ML EVALUATION



ML EVALUATION

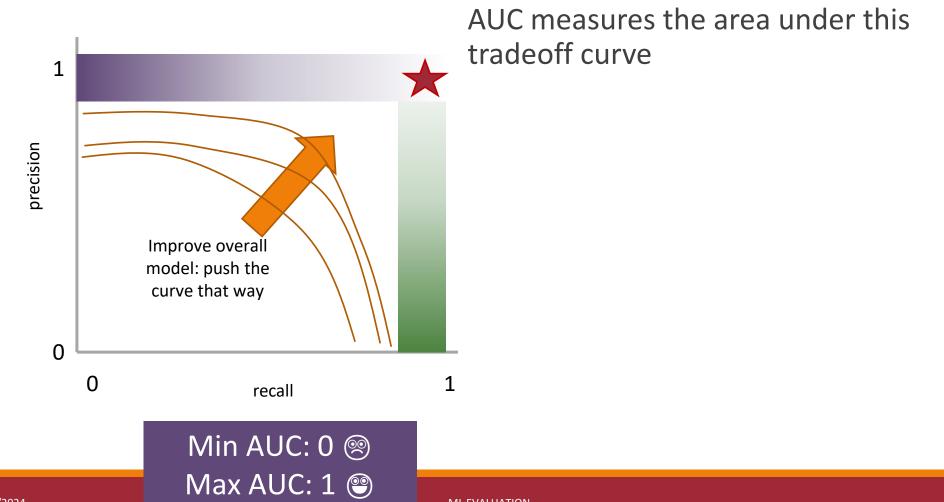


ML EVALUATION

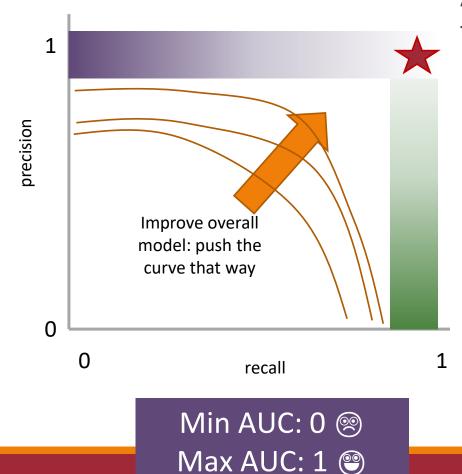


ML EVALUATION

Measure this Tradeoff: Area Under the Curve (AUC)



Measure this Tradeoff: Area Under the Curve (AUC)



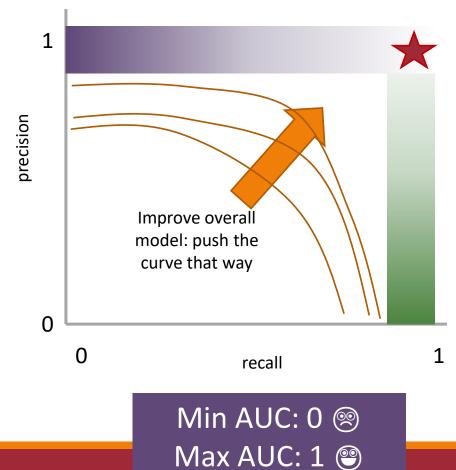
AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)



AUC measures the area under this tradeoff curve

Computing the curve
 You need true labels & predicted labels
 with some score/confidence estimate
 Threshold the scores and for each
 threshold compute precision and recall

2. Finding the area How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

A combined measure: F-score

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

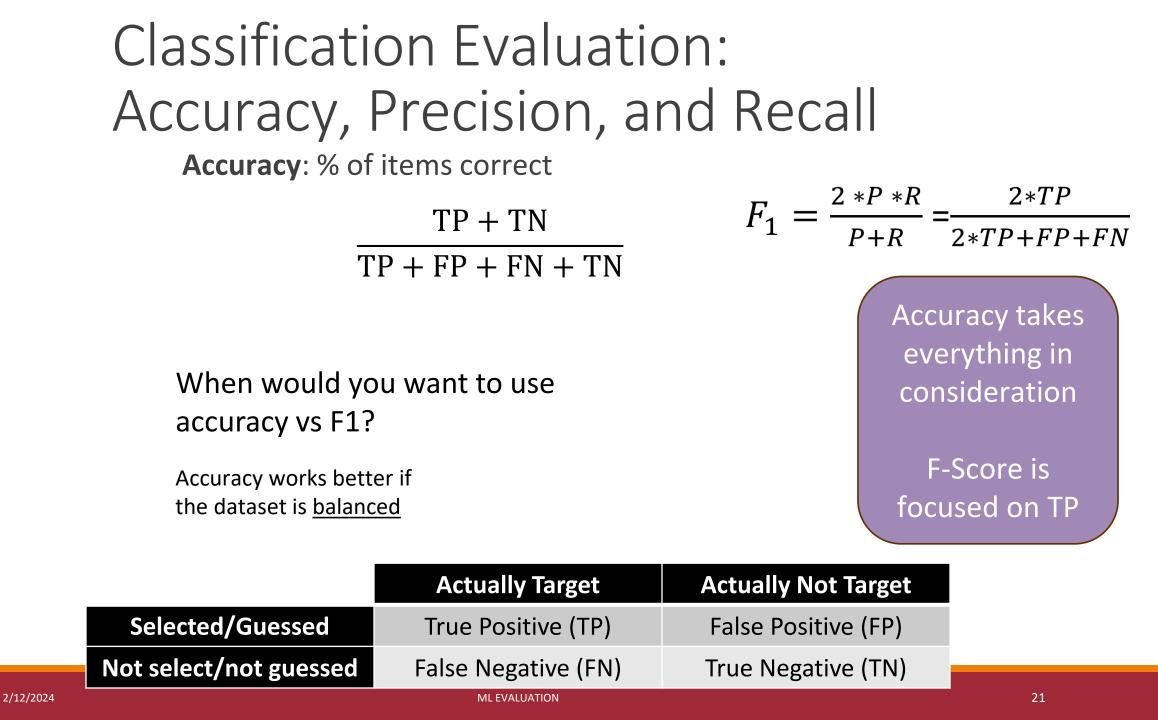
$$F_1 = \frac{2 * P * R}{P + R}$$

A combined measure: F-score

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

$$F_{1} = \frac{2 * P * R}{P + R} = \frac{2 * T P}{2 * T P + F P + F N}$$
(useful when $P = R = 0$)



Implementation: How To

- 1. scikit-learn: sklearn.metrics
 - very stable

- 2. huggingface <u>evaluate</u> module
 - community input
 - sometimes are based on sklearn

3. implement your own

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

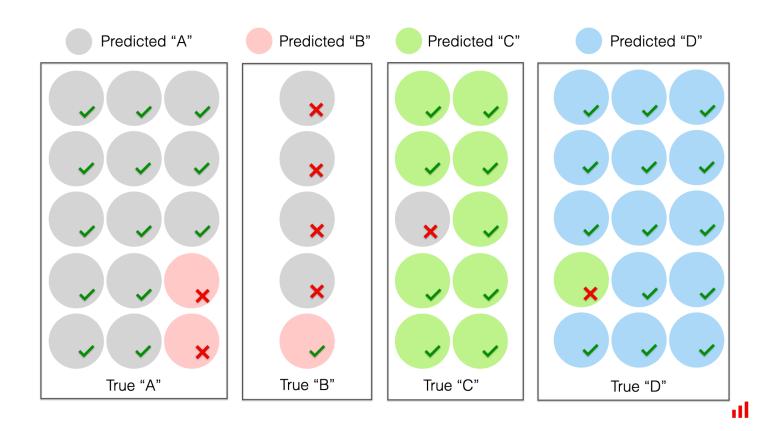
macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

macrorecall =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$
 microrecall = $\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$

Macro/Micro Example



Each class has equal weight

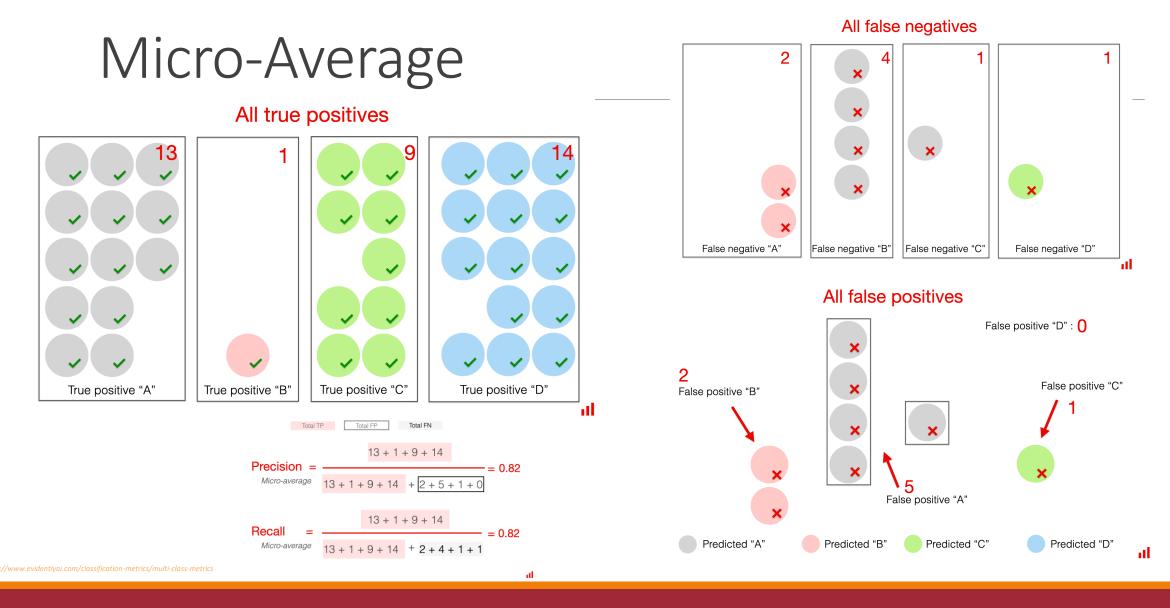
Predicted "A" Predicted "B" Predicted "C" Predicted "D"

Macro-Average

Predicted "C" Predicted "D" Predicted "A" Predicted "B" **Class** C Class D **Class A** Class B Recall: 90%. Recall: 93%. Recall: 87%. Recall: 33%. Precision: 90%. Precision: 100%. Precision: 72%. Precision: 20%. Macro-average Recall = (0.87 + 0.33 + 0.9 + 0.93)/4 = 0.76Precision = (0.72+0.2+0.9+1)/4=0.71 True "B" True "A" True "C" True "D" Ш

https://www.evidentlyai.com/classification-metrics/multi-class-metrics

Each *instance* has equal weight



So when would we want to prefer micro-averaging vs macro-averaging?

macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

macrorecall =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$$

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$
 microrecall = $\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$

But how do we compute stats for multiple classes?

Either:

- 1. Compute "one-vs-all" 2x2 tables. OR
- 2. Generalize the 2x2 tables and compute per-class TP / FP / FN based on the diagonals and off-diagonals

1. Compute "one-vs-all" 2x2 tables Predicted Actual

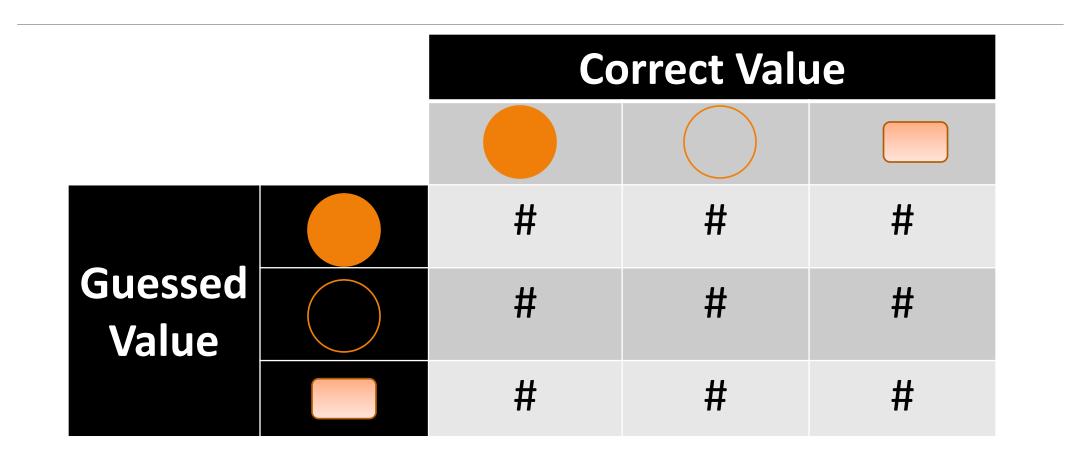
Look for	Actually Target	Actually Not Target	Look for	Actually Target	Actually Not Target
Selected/G	True	False	Selected/G	True	False
uessed	Positive (TP)	Positive (FP)	uessed	Positive (TP)	Positive (FP)
Not	False	True	Not	False	True
select/not	Negative	Negative	select/not	Negative	Negative
guessed	(FN)	(TN)	guessed	(FN)	(TN)

Look for	Actually Target	Actually Not Target
Selected/G	True	False
uessed	Positive (TP)	Positive (FP)
Not	False	True
select/not	Negative	Negative
guessed	(FN)	(TN)

Look for	Actually Target	Actually Not Target	Look for	Actually Target	Actually Not Target
Selected/G uessed	2	1	Selected/G uessed	2	1
Not select/not guessed	2	4	Not select/not guessed	1	5

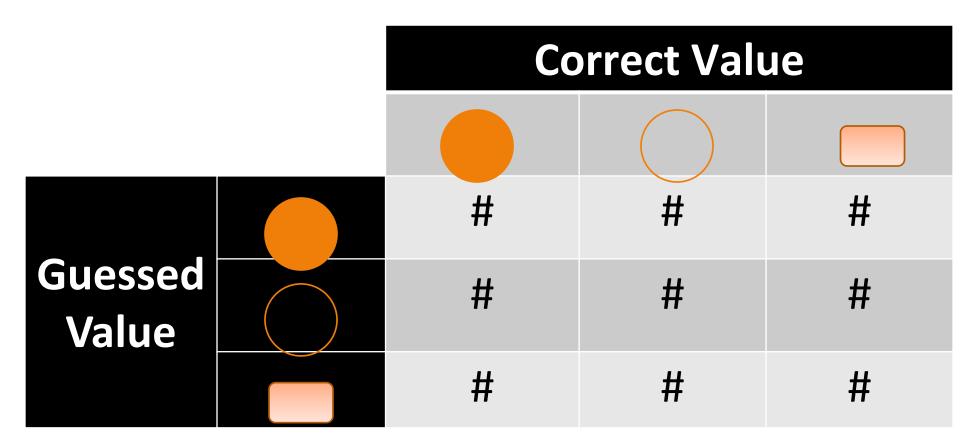
Look fo	r Actual Targe		
Selected, uessed		2	
Not select/n	1 ot	5	
guesse			

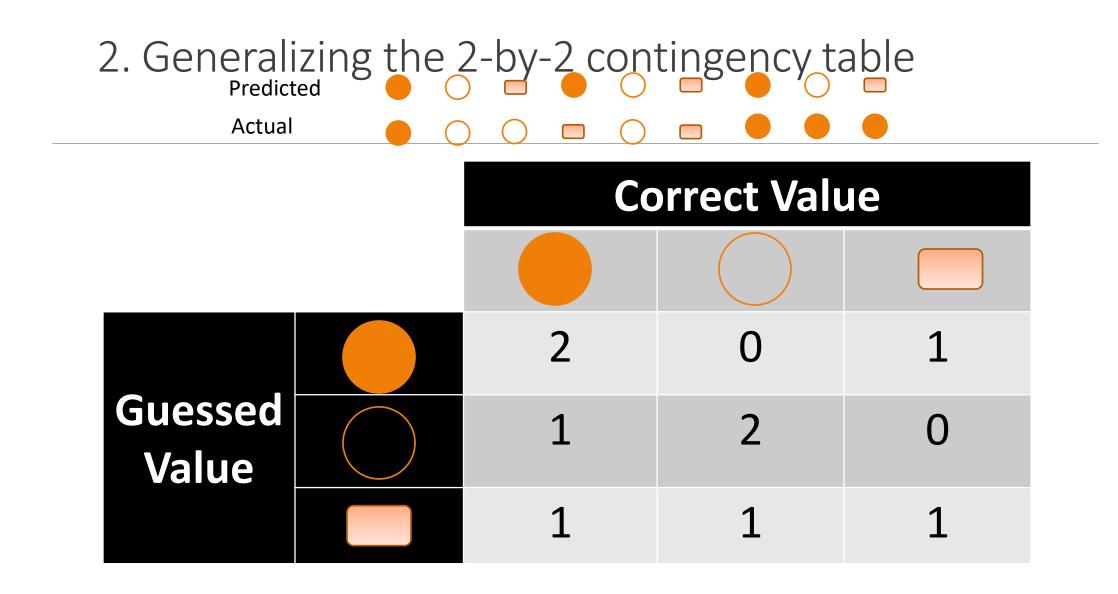
2. Generalizing the 2-by-2 contingency table

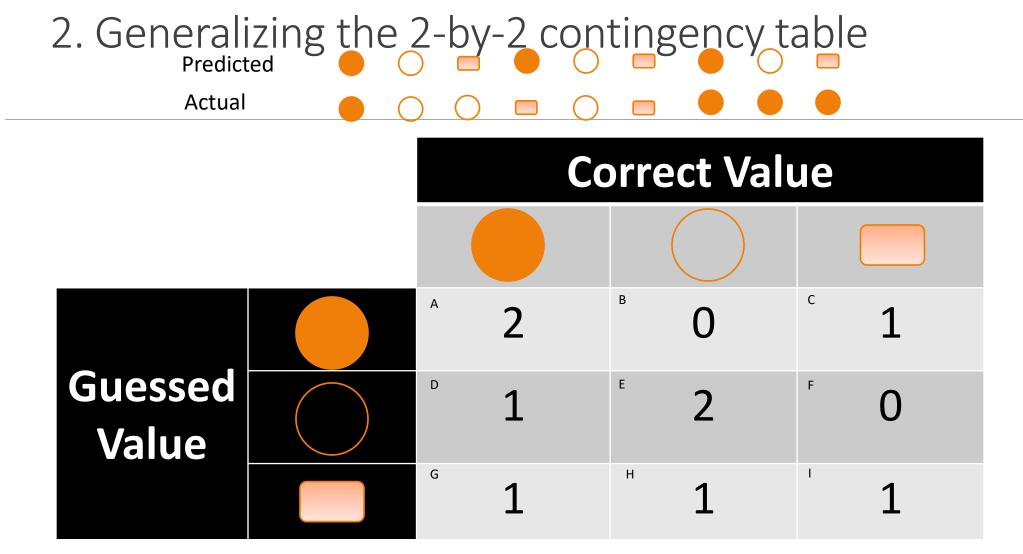


This is also called a **Confusion Matrix**

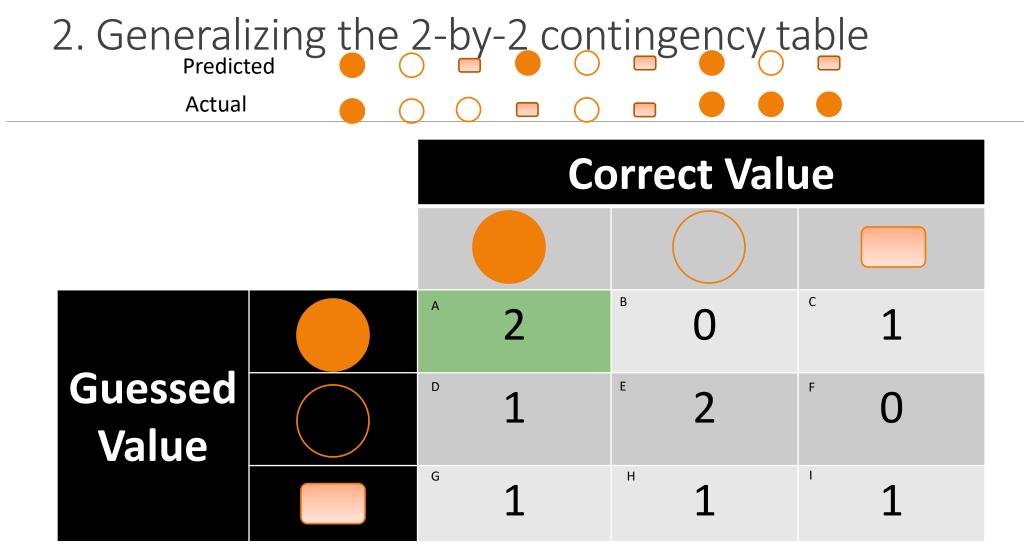
2. Generalizing the 2-by-2 contingency table Actual



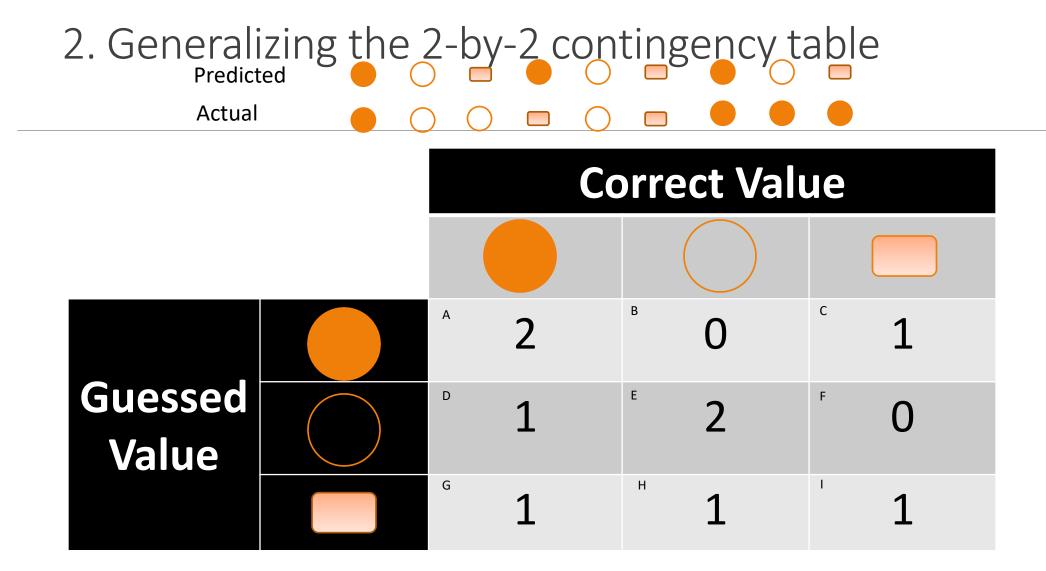




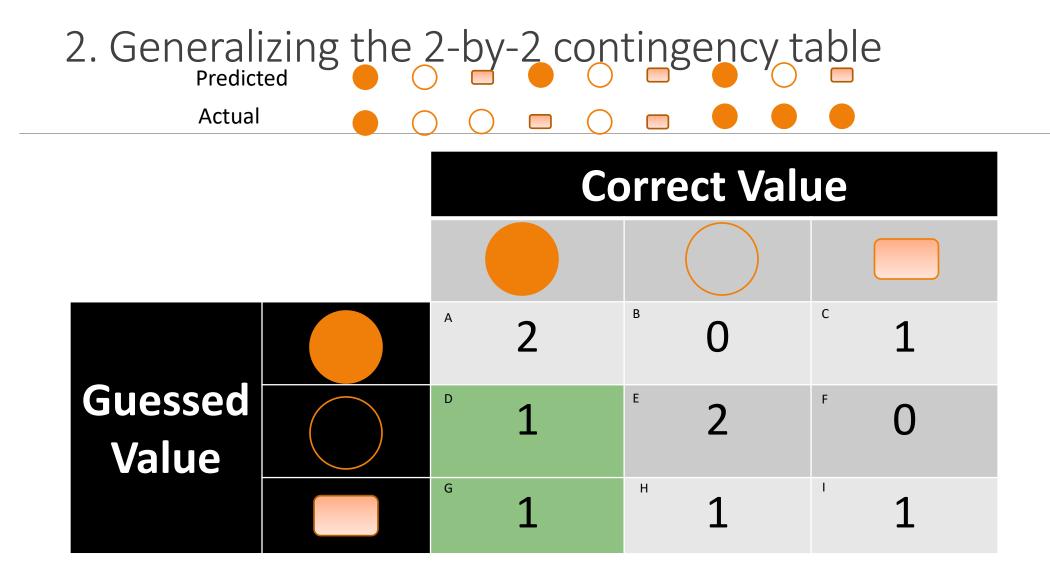
How do you compute *TP*?



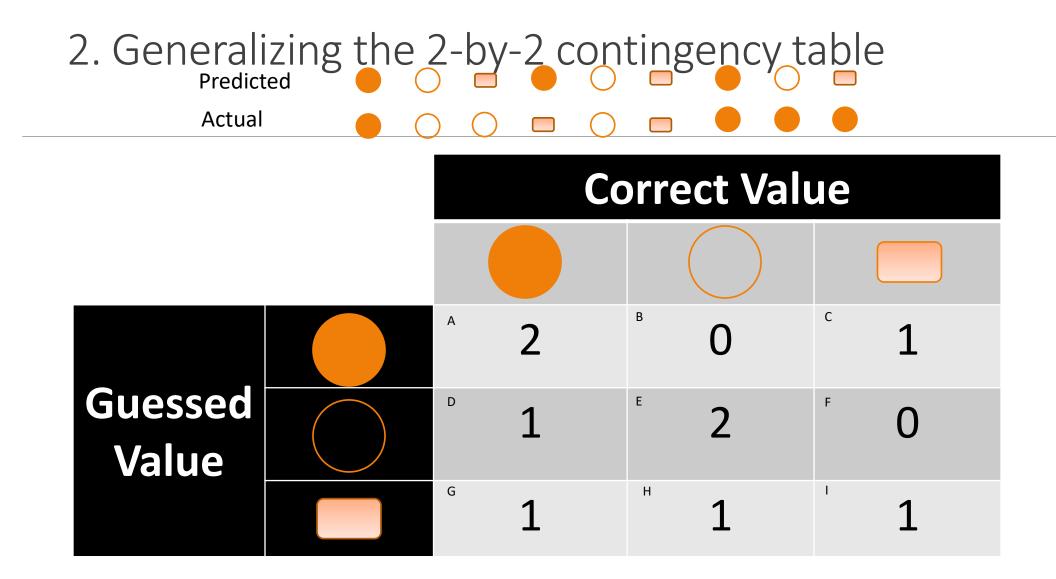
How do you compute *TP*?



How do you compute *FN*??



How do you compute *FN*??



How do you compute *FP*??



How do you compute *FP*??

Generalizing the 2-by-2 contingency table

O. Ic thic		Сс	Correct Value		
Q: Is this a good result?					
		80	9	11	
Guessed Value		7	86	7	
		2	8	9	

Generalizing the 2-by-2 contingency table

Q: Is this a good result?		Correct Value			
		30	40	30	
Guessed Value		25	30	50	
		30	35	35	

Generalizing the 2-by-2 contingency table

O. Ic thic		d Correct Value			
Q: Is this a good result?					
		7	3	90	
Guessed Value		4	8	88	
		3	7	90	