CMSC 473/673
 Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

Learning Objectives

Define an objective for LR modeling
Visualize the learning process for maxent models

Defining the Model

Review: Terminology (with variables)

Posterior probability:

Conditional probabilities:

$$
\mathrm{p}\left(\mathrm{Y}=\text { label }_{1} \mid \mathrm{X}\right) \text { vs. } \mathrm{p}\left(\mathrm{Y}=\text { label }_{0} \mid \mathrm{X}\right)
$$

$$
\begin{gathered}
\mathrm{p}\left(\mathrm{Y}=\text { label }_{1} \mid \mathrm{X}\right)+\mathrm{p}\left(\mathrm{Y}=\text { label }_{0} \mid \mathrm{X}\right)=1 \\
\mathrm{p}\left(\mathrm{Y}=\operatorname{label}_{1} \mid \mathrm{X}\right) \geq 0 \\
\mathrm{p}\left(\mathrm{Y}=\operatorname{label}_{0} \mid \mathrm{X}\right) \geq 0
\end{gathered}
$$

Posterior probability: probability of event Y with knowledge that X has occurred

NLP pg. 450
probability:
probability of event Y ,
assuming event X
happens too
NLP pg. 449

Q Key Take-away \&

We will learn this $\boldsymbol{p}(\boldsymbol{Y} \mid X)$

Review: Turning Scores into Probabilities

KEY IDEA

Review: Turning Scores into Probabilities (More Generally)

$\operatorname{score}\left(x, y_{1}\right)>\operatorname{score}\left(x, y_{2}\right)$
 $p\left(y_{1} \mid x\right)>p\left(y_{2} \mid x\right)$

KEY IDEA

Review: Maxent Modeling

$$
\begin{array}{ccc}
\left.\begin{array}{c}
\text { Dot_product of Entailed weight_vec feature_vec(閴) }
\end{array}\right) \\
\begin{array}{ccc}
\text { K different } \\
\text { weights... }
\end{array} & \begin{array}{c}
\text { for K different } \\
\text { features }
\end{array} & \begin{array}{c}
\text { multiplied and } \\
\text { then summed }
\end{array}
\end{array}
$$

Review: Maxent Modeling

Review: Different Notation, Same Meaning

$$
p(Y=y \mid x)=\frac{\exp \left(\theta_{y}^{T} f(x)\right)}{\sum_{y,} \exp \left(\theta_{y}^{T} f(x)\right)}
$$

$$
p(Y=y \mid x) \propto \exp \left(\theta_{y}^{T} f(x)\right)
$$

$$
p(Y \mid x)=\operatorname{softmax}(\theta f(x))
$$

Review: Representing a Linguistic "Blob"

Userdefined

Integer
representation/on e-hot encoding

Assign each word to some index i , where $0 \leq i<V$

Represent each word w with a Vdimensional binary vector e_{w}, where $e_{w, i}=1$ and 0 otherwise

Modelproduced

Dense embedding Let E be some embedding size (often $100,200,300$, etc.)

Represent each word w with an Edimensional real-valued vector e_{w}

Review: Bag-of-words as a Function

Based on some tokenization, turn an input document into an array (or dictionary or set) of its unique vocab items

Think of getting a BOW rep. as a function f
input: Document
output: Container of size E, indexable by each vocab type v

Some Bag-of-words Functions

Kind	Type of \boldsymbol{f}_{v}	Interpretation
Binary	0,1	Did v appear in the document?
Count-based	Natural number (int >=0)	How often did v occur in the document?
Averaged	Real number (>=0, <= 1)	How often did v occur in the document, normalized by doc length?
TF-IDF (term frequency, inverse document frequency)	Real number (>= 0)	How frequent is a word, tempered by how prevalent it is across the corpus (to be covered later!)

Useful Terminology: n-gram

Within a larger string (e.g., sentence), a contiguous sequence of n items (e.g., words)

Colorless green ideas sleep furiously

\mathbf{n}	Commonly called	History Size (Markov order)	Example \mathbf{n}-gram ending in "furiously"
1	unigram	0	furiously
2	bigram	1	sleep furiously
3	trigram $(3$-gram $)$	2	ideas sleep furiously
4	4-gram	3	green ideas sleep furiously
n	n-gram	$n-1$	$w_{i-n+1} \ldots w_{i-1} w_{i}$

Templated Features

Define a feature f _clue((䍙) for each clue you want to consider

Not a regular term
The feature $f_{-} c l u e$ fires if the clue applies to/can be found in
$f _c l u e ~ i s ~ o f t e n ~ a ~ t a r g e t ~ p h r a s e ~(a n ~ n-g r a m) ~$

Maxent Modeling： Templated Binary Feature Functions

s：Michael Jordan，coach Phil Jackson and the star cast，including Scottie Pippen，took the Chicago Bulls to six National Basketball Association championships．
h：The Bulls basketball team is based in Chicago．
）
weight $_{1}$ ，Entailed $*$ applies $_{1}$（拦）
weight $_{1, \text { Entailed }} *$ applies $_{2}$（嘖）
weight $_{1, \text { Entailed }} *$ applies $_{3}$（周）

．．．
applies $_{\text {target }}($ 䍚）$)=$
$\left\{\begin{array}{c}1, \text { target matches } \\ 0, \quad \text { otherwise }\end{array}\right.$
binary

Example of a Templated Binary Feature Functions

TPS: Example of a Templated Binary Feature Functions

applies $_{\text {target }}($ (䍚) $)=$
$\left\{\begin{array}{c}1, \text { target } \text { matches } \\ 0, \quad \text { otherwise }\end{array}\right.$

$\operatorname{applies}_{\text {ball }}\left(\begin{array}{l}\text { 目) }\end{array}=\right.$
1, ball in both s and h of
0, otherwise

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?
2. How many features are defined if bigram targets are used (w/ each label)?
3. How many features are defined if unigram and bigram targets are used (w/ each label)?

Example of a Templated Binary Feature Functions

（1，ball in both s and h of 屋

Q：If there are V vocab types and L label types：
1．How many features are defined if unigram targets are used（w／each label）？

VL

2．How many features are defined if bigram targets are used（w／each label）？
$\operatorname{applies}_{\text {ball }}\left(\begin{array}{l}\text { 風）}\end{array}=\right.$

0，otherwise

3．How many features are defined if unigram and bigram targets are used （w／each label）？

Example of a Templated Binary Feature Functions

$\operatorname{applies}_{\text {ball }}($ 管 $)=$ $\{1$, ball in both s and h of 园

0 otherwise

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

VL

2. How many features are defined if bigram targets are used (w/ each label)?
$V^{2} L$
3. How many features are defined if unigram and bigram targets are used
(w/ each label)?

Functions
 $$
\text { applies }_{\text {target }}(\text { 䍚 })=
$$
 $$
\left\{\begin{array}{c} 1, \text { target matches } \\ 0, \quad \text { otherwise } \end{array}\right.
$$

Example of a Templated Binary Feature

Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

VL

2. How many features are defined if bigram targets are used (w/ each label)?

$$
V^{2} L
$$

3. How many features are defined if unigram and bigram targets are used (w/ each label)?

$$
\left(V+V^{2}\right) L
$$

Defining the Objective

$p_{\theta}(y \mid x)$,
 $F(\theta ; x, y)$ oweme

Defining the Objective

Primary Objective: Likelihood

Goal: maximize the score your model gives to the training data it observes

This is called the likelihood of your data

In classification, this is p (label| |
For language modeling, this is p (word | history of words)

Objective = Full Likelihood? (Classification)

Logarithms

$(0,1] \rightarrow(-\infty, 0]$

Products \rightarrow Sums

$$
\begin{aligned}
& \log (a b)=\log (a)+\log (b) \\
& \log (a / b)=\log (a)-\log (b)
\end{aligned}
$$

Inverse of exp

$$
\log (\exp (x))=x
$$

Think-Pair-Share

How might you find the log of this?

$$
\prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

Log-Likelihood (Classification)

Wide range of (negative) numbers

$$
\log \prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right)=\sum_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

Products $\boldsymbol{\rightarrow}$ Sums

$$
\log (a b)=\log (a)+\log (b)
$$

$$
\log (a / b)=\log (a)-\log (b)
$$

Maximize Log-Likelihood (Classification)

Original maxent equation

$$
\log \prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right)=\sum_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right)
$$

Differentiating this
becomes nicer (even though Z depends on θ)

$$
\begin{aligned}
& \text { Inverse of exp } \\
& \qquad \log (\exp (x))=x
\end{aligned}
$$

$$
=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

Maximize Log-Likelihood (Classification)

$$
\begin{aligned}
\log \prod_{i} p_{\theta}\left(y_{i} \mid x_{i}\right) & =\sum_{i} \log p_{\theta}\left(y_{i} \mid x_{i}\right) \\
& =\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right) \\
& =F(\theta)
\end{aligned}
$$

Equivalent Version 2: Minimize Cross Entropy Loss

Cross entropy:

How much \hat{y} differs from the true y

> objective is convex (when $f(x)$ is not learned)

Classification Log-likelihood (max) \cong Cross Entropy Loss (min)

CROSSENTROPYLOSS

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100,
reduce $=$ None, reduction='mean') [SOURCE]

This criterion combines LogSoftmax and NLLLoss in one single class.
It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

$$
F(\theta)=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

The input is expected to contain raw, unnormalized scores for each class

input has to be a Tensor of size either (minibatch, C) or ($\operatorname{minibatch}, C, d_{1}, d_{2}, \ldots, d_{K}$) with $K \geq 1$ for the K-dimensional case (described later).

This criterion expects a class index in the range $[0, C-1]$ as the target for each value of a 1D tensor of size minibatch; if ignore_index is specified, this criterion also accepts this class index (this index may not necessarily be in the class range).

The loss can be described as:

$$
\operatorname{loss}(x, \text { class })=-\log \left(\frac{\exp (x[\text { class }])}{\sum_{j} \exp (x[j])}\right)=-x[\text { class }]+\log \left(\sum_{j} \exp (x[j])\right)
$$

Preventing Extreme Values

Likelihood on its own can lead to overfitting and/or extreme values in the probability computation

$$
F(\theta)=\sum_{\substack{i \\ \text { Learn the parameters based on } \\ \text { some (fixed) data/examples }}} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

Regularization: Preventing Extreme Values

$$
F(\theta)=\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)
$$

With fixed/predefined features, the values
of θ determine how "good" or "bad" our
objective learning is

Regularization: Preventing Extreme Values

$$
F(\theta)=\left(\sum_{i} \theta_{y_{i}}^{T} f\left(x_{i}\right)-\log Z\left(x_{i}\right)\right)-R(\theta)
$$

With fixed/predefined features, the values of θ determine how "good" or "bad" our objective learning is

- Augment the objective with a regularizer
- This regularizer places an inductive bias
(or, prior) on the general "shape" and values of θ

(Squared) L2 Regularization

$$
R(\theta)=\|\theta\|_{2}^{2}=\sum_{k} \theta_{k}^{2}
$$

Cross-entropy loss

Optimizing the objective

GRADIENT OPTIMIZATION

How do we learn?

How do we evaluate (or use)?
 Change the eval function.

How will we optimize $F(\theta)$?

Calculus

Example (Best case, solve for roots of the derivative)

$$
\begin{aligned}
F(x) & =-(x-2)^{2} \\
& \downarrow \text { differentiate } \\
F^{\prime}(x) & =-2 x+4 \\
& \downarrow \text { solve } F^{\prime}(x)=0 \\
& x=2
\end{aligned}
$$

What if you can't find the roots? Follow the derivative

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $\mathrm{t}+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $\mathrm{t}+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $\mathrm{t}+=1$

What if you can't find the roots? Follow the derivative

Set $\mathrm{t}=0$
Pick a starting value $\theta_{\text {t }}$ Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get derivative $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $\mathrm{t}+=1$

Gradient = Multi-variable derivative

Gradient Ascent

What if you can't find the roots? Follow the gradient

Set $\mathrm{t}=0$
Pick a starting value θ_{t} Until converged:

1. Get value $z_{t}=F\left(\theta_{t}\right)$
2. Get gradient $g_{t}=F^{\prime}\left(\theta_{t}\right)$
3. Get scaling factor ρ_{t}
4. Set $\theta_{t+1}=\theta_{t}+\rho_{t}{ }^{*} g_{t}$
5. Set $\mathrm{t}+=1$

