
CMSC 473/673
Natural Language Processing
Instructor: Lara J.  Martin (she/they)

TA: Duong Ta (he)
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Slides modified from Dr. Frank Ferraro



Learning Objectives
Understand the use & creation of dense vector embeddings

Calculate the distance between vector embeddings

Recognize popular vector embeddings

Prepare your projects by finding appropriate related literature
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Review: Baselines

3/11/2024 VECTOR EMBEDDINGS 3

Our
Model

Output
Evaluation 
Function

Baseline
Model

Input

Output
Evaluation 
Function

52.6%

3.6%



Review: Evaluation Metric vs Goal
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Output
Evaluation 
Function

52.6%Input

Classification 
Accuracy

Translation
Model

What are you evaluating?
How good is the model at translating from 
Mandarin to Twi?

Evaluation
Metric

Evaluation Goal/ 
Hypothesis



Defining the Model

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score
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Review: Modeling
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𝑃(𝑦 | 𝑥)Classification

𝑃 𝑤𝑡 𝑤𝑡−1, 𝑤𝑡−2 … )Language 
Model (LM)

Can a language 
model do 

classification?

A language model is used to generate the next word(s) 
given a history of words. More about LMs 

after spring 
break

Is a language model 
made for doing 
classification?

Yes!

No!



Representing Inputs/Outputs

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score

3/11/2024 VECTOR EMBEDDINGS 7



Review: One-Hot Encoding Example
Let our vocab be {a, cat, saw, mouse, happy}

V = # types = 5

Assign:

a 4

cat 2

saw 3

mouse 0

happy 1

𝑒cat =

0
0
1
0
0

How do we 
represent “cat?”

𝑒happy =

0
1
0
0
0

How do we 
represent 
“happy?”
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A Dense Representation (E=2)
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Review: Distributional Representations
A dense, “low”-dimensional vector representation

An E-dimensional 
vector, often (but not 
always) real-valued

Up till ~2013: E could be 
any size

2013-present: E << vocab
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These are also called 
• embeddings

• Continuous representations
• (word/sentence/…) vectors

• Vector-space models

Many values 
are not 0 (or at 

least less 
sparse than 

one-hot)



Review: (Some) Properties of Embeddings
1) Capture “like” (similar) words

2) Capture relationships
vector(‘king’) – 
vector(‘man’) + 

vector(‘woman’)  ≈
 vector(‘queen’)

vector(‘Paris’) - 
vector(‘France’) + 
vector(‘Italy’) ≈ 
vector(‘Rome’)
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T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in 
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi: 
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781


Key Ideas

1. Acquire basic contextual statistics (often counts) for each word type v

2. Extract a real-valued vector ev for each word v from those statistics

3. Use the vectors to represent each word in later tasks
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For example:
[0.00315225, 0.00315225, 0.00547597, 0.00741556, 0.00912817, 0.01068435, 0.01212381, 0.01347162, 0.01474487, 0.0159558 ] 

Vector from https://www.tensorflow.org/text/tutorials/word2vec



Common Evaluation: Correlation 
between similarity ratings
Input: list of N word pairs { 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁)}
◦ Each word pair (𝑥𝑖 , 𝑦𝑖) has a human-provided similarity score ℎ𝑖

Use your embeddings to compute an embedding similarity score 𝑠𝑖 =
sim(𝑥𝑖 , 𝑦𝑖)

Compute the correlation between human and computed similarities 
𝜌 = Corr( ℎ1, … , ℎ𝑁 , 𝑠1, … , 𝑠𝑁 )

Wordsim353: 353 noun pairs rated 0-10
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Cosine: Measuring Similarity
Given 2 target words v and w how similar are their vectors?

Dot product or inner product from linear algebra

◦ High when two vectors have large values in same dimensions, low for orthogonal vectors with 
zeros in complementary distribution

Correct for high magnitude vectors
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Cosine Similarity
Divide the dot product by the length of 
the two vectors

This is the cosine of the angle between 
them
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https://upload.wikimedia.org/wikipedia/commons/2/23/CosineSimilarity.png



Example: Word Similarity

cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos 𝑥, 𝑦 =
σ𝑖 𝑥𝑖𝑦𝑖

σ𝑖 𝑥𝑖
2 σ𝑖 𝑦𝑖

2

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

2 + 0 + 0

4 + 0 + 0 1 + 36 + 1
= 0.1622

0 + 6 + 2

0 + 1 + 4 1 + 36 + 1
= 0.5804

0 + 0 + 0

4 + 0 + 0 0 + 1 + 4
= 0.0
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Cosine Similarity Range
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https://www.learndatasci.com/glossary/cosine-similarity/



Other Similarity Measures
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Adding Morphology, Syntax, and 
Semantics to Embeddings
• Lin (1998): “Automatic Retrieval and Clustering of Similar Words”

• Padó and Lapata (2007): “Dependency-based Construction of Semantic Space 
Models”

• Levy and Goldberg (2014): “Dependency-Based Word Embeddings”

• Cotterell and Schütze (2015): “Morphological Word Embeddings”

• Ferraro et al. (2017): “Frame-Based Continuous Lexical Semantics through 
Exponential Family Tensor Factorization and Semantic Proto-Roles”

• and many more…
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Common Continuous 
Representations
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Shared Intuition
Model the meaning of a word by “embedding” in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic 
applications by a vocabulary index (“word number 545”) or the string itself
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)

Co-occurrence matrices can be used in their own 
right, but they’re most often used as inputs 

(directly or indirectly) to the matrix factorization 
or neural approaches
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Co-occurrence Matrix

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s
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Acquire basic contextual statistics 
(often counts) for each word type v via 
correlate



Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v via 
correlate: 

For example:

documents
◦ Record how often a word occurs in each 

document

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

# correlates =
# documents
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Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v via 
correlate:

For example:

documents

surrounding context words
◦ Record how often v occurs with other 

word types u

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

# correlates =
# word types
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Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v via 
correlate:

For example:

documents

surrounding context words

linguistic annotations (POS tags, 
syntax)

…

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

Assumption: Two words 
are similar if their 
vectors are similar
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“Acquire basic contextual statistics (often 
counts) for each word type v”
Two basic, initial counting approaches
◦ Record which words appear in which documents

◦ Record which words appear together

These are good first attempts, but with some large downsides
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

basic bag-of-
words 

counting
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two documents are similar if their vectors are similar
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar???
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

a cloud   computer stores digital data on  a remote computer

Context: those other words within a small “window” of a target word
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

The size of windows depends on your goals
The shorter the windows , the more syntactic the representation

± 1-3 more “syntax-y”
The longer the windows, the more semantic the representation

± 4-10 more “semantic-y”
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

Context: those other words within a small “window” of a target word
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Pointwise Mutual Information (PMI): 
Dealing with Problems of Raw Counts

3/11/2024 VECTOR EMBEDDINGS 37

Raw word frequency is not a great 
measure of association between 
words

It’s very skewed: “the” and “of” are 
very frequent, but maybe not the 
most discriminative

We’d rather have a measure that asks 
whether a context word is particularly 
informative about the target word.

(Positive) Pointwise Mutual 
Information ((P)PMI)

Pointwise mutual information: 
Do events x and y co-occur more than if they 
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

probability words x and y occur together 
(in the same context/window)

probability that 
word x occurs

probability that 
word y occurs



Advanced: 
Equivalent PMI Computations

Intuition: Do words x and y co-occur more than if they were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)
= log

𝑝 𝑦 𝑥)

𝑝(𝑦)
= log

𝑝 𝑥 𝑦)

𝑝(𝑥)
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“Noun Classification from Predicate-
Argument Structure,” Hindle (1990)

Object of “drink” Count PMI

it 3 1.3

anything 3 5.2

wine 2 9.3

tea 2 11.8

liquid 2 10.5

“drink it” is more common than “drink wine”

“wine” is a better “drinkable” thing than “it”
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)

Learn more in:
• Your project
• Paper (673)

• Other classes (478/678)
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Word2Vec
Mikolov et al. (2013; NeurIPS): “Distributed Representations of Words and 
Phrases and their Compositionality”

Revisits the context-word approach

Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
◦ ℎ𝑐 ∈ ℝ𝐸: vector embeddings for each context word

◦ 𝑣𝑤 ∈ ℝ𝐸: vector embeddings for each target word
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𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)



Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣



𝑐,𝑤 pairs

count 𝑐, 𝑤 log 𝑝 𝑐 𝑤)
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Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣



𝑐,𝑤 pairs

count 𝑐, 𝑤 ℎ𝑐
𝑇𝑣𝑤 − log(

𝑢

exp(ℎ𝑢
𝑇𝑣𝑤)))
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Example 
(Tensorflow)
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https://www.tensorflow.org/text/tutorials/word2vec



Word2Vec has Inspired a Lot of Work
Off-the-shelf embeddings
◦ https://code.google.com/archive/p/word2vec/

Off-the-shelf implementations
◦ https://radimrehurek.com/gensim/models/word2vec.html

Follow-on work
◦ J. Pennington, R. Socher, and C. D. Manning, “GLoVe: Global Vectors for Word 

Representation,” in Conference on Empirical Methods in Natural Language Processing 
(EMNLP), Doha, Qatar, 2014, pp. 1532–1543. doi: 10.3115/v1/D14-1162.
◦ https://nlp.stanford.edu/projects/glove/

◦ Many others

◦ 15000+ citations
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https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
https://doi.org/10.3115/v1/D14-1162
https://nlp.stanford.edu/projects/glove/


FastText
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with 
Subword Information,” Transactions of the Association for Computational 
Linguistics, vol. 5, pp. 135–146, 2017, doi: 10.1162/tacl_a_00051.

Main idea: learn character n-gram embeddings for the target word (not context) 
and modify the word2vec model to use these

Pre-trained models in 150+ languages
◦ https://fasttext.cc
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https://doi.org/10.1162/tacl_a_00051


FastText Details
Main idea: learn character n-gram embeddings and for the target word (not the 
context) modify the word2vec model to use these

Original word2vec: 

𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)

FastText:

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 σn−gram 𝑔 in 𝑤 𝑧𝑔
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FastText Details
Main idea: learn character n-gram embeddings and for the target word (not the 
context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 σn−gram 𝑔 in 𝑤 𝑧𝑔
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fluffy → fl flu luf uff ffy fy
decompose

Sub-word units like 
this have become an 

important part of 
today’s NLP work!



FastText Details
Main idea: learn character n-gram embeddings and for the target 
word (not the context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 

n−gram 𝑔 in 𝑤

𝑧𝑔

fluffy → fl flu luf uff ffy fy
decompose

Learn n-gram 
embeddings

To deterministically 
compute word embeddings
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Contextual Word Embeddings
Word2vec-based models are not context-dependent

Single word type → single word embedding

If a single word type can have different meanings…
bank, bass, plant,…

… why should we only have one embedding?

Entire task devoted to classifying these meanings:

Word Sense Disambiguation

3/11/2024 VECTOR EMBEDDINGS 52



Contextual Word Embeddings
Growing interest in this

Off-the-shelf is a bit more difficult
◦ Download and run a model

◦ Can’t just download a file of embeddings

Two to know about (with code):
◦ ELMo: “Deep contextualized word representations” Peters et al. (2018; 

NAACL)

◦ https://allennlp.org/elmo

◦ BERT: “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding” Devlin et al. (2019; NAACL)
◦ https://github.com/google-research/bert
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https://github.com/google-research/bert
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