CMSC 473/673
 Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

Learning Objectives

Understand the use \& creation of dense vector embeddings
Calculate the distance between vector embeddings
Recognize popular vector embeddings
Prepare your projects by finding appropriate related literature

Review: Baselines

Review: Evaluation Metric vs Goal

Defining the Model

Review: Modeling

Representing Inputs/Outputs

Review: One-Hot Encoding Example

Let our vocab be \{a, cat, saw, mouse, happy\}
$\mathrm{V}=$ \# types $=5$
Assign:

a	4
cat	2
saw	3
mouse	0
happy	1

A Dense Representation (E=2)

Review: Distributional Representations

- Continuous representations
- (word/sentence/...) vectors
- Vector-space models

Review: (Some) Properties of Embeddings

1) Capture "like" (similar) words

target:	Redmond	Havel	ninjutsu	graffiti	capitulate
	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

2) Capture relationships

$$
\begin{aligned}
& \text { vector('king') - } \\
& \text { vector('man')+ } \\
& \text { vector('woman') } \approx \\
& \text { vector('queen') } \\
& \text { vector('Paris') - } \\
& \text { vector('France') + } \\
& \text { vector('Italy') } \approx \\
& \text { vector('Rome') }
\end{aligned}
$$

Key Ideas

1. Acquire basic contextual statistics (often counts) for each word type v
2. Extract a real-valued vector e_{v} for each word v from those statistics

For example:
[$0.00315225,0.00315225,0.00547597,0.00741556,0.00912817,0.01068435,0.01212381,0.01347162,0.01474487,0.0159558]$
3. Use the vectors to represent each word in later tasks

Common Evaluation: Correlation between similarity ratings

Input: list of N word pairs $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

- Each word pair $\left(x_{i}, y_{i}\right)$ has a human-provided similarity score h_{i}

Use your embeddings to compute an embedding similarity score $s_{i}=$ $\operatorname{sim}\left(x_{i}, y_{i}\right)$

Compute the correlation between human and computed similarities

$$
\rho=\operatorname{Corr}\left(\left(h_{1}, \ldots, h_{N}\right),\left(s_{1}, \ldots, s_{N}\right)\right)
$$

Wordsim353: 353 noun pairs rated 0-10

Cosine: Measuring Similarity

Given 2 target words v and w how similar are their vectors?

Dot product or inner product from linear algebra

$$
\operatorname{dot}-\operatorname{product}(\vec{v}, \vec{w})=\vec{v} \cdot \vec{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

- High when two vectors have large values in same dimensions, low for orthogonal vectors with zeros in complementary distribution
Correct for high magnitude vectors $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Cosine Similarity

Divide the dot product by the length of the two vectors

$$
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

convertible -

Chevrolet
cargo capacity truc

This is the cosine of the angle between them

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\cos \theta
\end{aligned}
$$

Example: Word Similarity

$$
\cos (x, y)=\frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}
$$

	Dim. 1	Dim. 2	Dim. 3
apricot	2	0	0
digital	0	1	2
information	1	6	1

$$
\begin{aligned}
& \text { cosine(apricot,information) }=\frac{2+0+0}{\sqrt{4+0+0} \sqrt{1+36+1}}=0.1622 \\
& \text { cosine(digital,information) }=\frac{0+6+2}{\sqrt{0+1+4} \sqrt{1+36+1}}=0.5804
\end{aligned}
$$

$$
\text { cosine(apricot,digital) }=\quad \frac{0+0+0}{\sqrt{4+0+0} \sqrt{0+1+4}}=0.0
$$

Cosine Similarity Range

Other Similarity Measures

$$
\begin{aligned}
& \operatorname{sim}_{\operatorname{cosine}}(\vec{v}, \vec{w})=\frac{\overrightarrow{\vec{p}} \overrightarrow{\vec{w}}}{|\vec{v}| \overrightarrow{\overrightarrow{2}} \mid}=\frac{\sum_{i=1}^{N} v_{i} \times w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}} \\
& \operatorname{sim}_{\mathrm{Jaccard}}(\vec{v}, \vec{w})=\frac{\sum_{i=1}^{N} \min \left(v_{i}, w_{i}\right)}{\sum_{i=1}^{N} \max \left(v_{i}, w_{i}\right)} \\
& \operatorname{sim}_{\text {Dice }}(\vec{v}, \vec{w})=\frac{2 \times \sum_{i=1}^{N} \min \left(v_{i}, w_{i}\right)}{\sum_{i=1}^{N=}\left(v_{i}+w_{i}\right)} \\
& \operatorname{sim}_{\mathrm{JS}}(\vec{v} \mid \vec{w}) \quad=D\left(\vec{v} \left\lvert\, \frac{\vec{v}+\vec{w}}{2}\right.\right)+D\left(\vec{w} \left\lvert\, \frac{\vec{\gamma}+\vec{w}}{2}\right.\right)
\end{aligned}
$$

Adding Morphology, Syntax, and Semantics to Embeddings

- Lin (1998): "Automatic Retrieval and Clustering of Similar Words"
- Padó and Lapata (2007): "Dependency-based Construction of Semantic Space Models"
- Levy and Goldberg (2014): "Dependency-Based Word Embeddings"
- Cotterell and Schütze (2015): "Morphological Word Embeddings"
- Ferraro et al. (2017): "Frame-Based Continuous Lexical Semantics through Exponential Family Tensor Factorization and Semantic Proto-Roles"
- and many more...

Common Continuous Representations

Shared Intuition

Model the meaning of a word by "embedding" in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic applications by a vocabulary index ("word number 545") or the string itself

Three Common Kinds of Embedding Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Three Common Kinds of Embedding Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Co-occurrence matrices can be used in their own
right, but they're most often used as inputs
(directly or indirectly) to the matrix factorization
or neural approaches

Co-occurrence Matrix

Co-occurrence Matrix

Acquire basic contextual statistics (often counts) for each word type v via correlate:

For example:
documents

- Record how often a word occurs in each document

\# correlates = \# documents

Co-occurrence Matrix

Co-occurrence Matrix

Acquire basic contextual statistics (often counts) for each word type v via correlate:

For example:
documents
surrounding context words
linguistic annotations (POS tags, syntax)

Assumption: Two words are similar if their vectors are similar

"Acquire basic contextual statistics (often counts) for each word type $\mathrm{v}^{\prime \prime}$

Two basic, initial counting approaches

- Record which words appear in which documents
- Record which words appear together

These are good first attempts, but with some large downsides

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	foo	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0
basic bag-ofwords counting				

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two documents are similar if their vectors are similar

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two words are similar if their vectors are similar???

"You shall know a word by the company it keeps!" Firth (1957)

document (\downarrow)-word (\rightarrow) count matrix

	battle	soldier	fool	clown
As You Like It	1	2	37	6
Twelfth Night	1	2	58	117
Julius Caesar	8	12	1	0
Henry V	15	36	5	0

Assumption: Two words are similar if their vectors are similar
Issue: Count word vectors are very large, sparse, and skewed!

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

The size of windows depends on your goals
The shorter the windows, the more syntactic the representation $\pm 1-3$ more "syntax-y"
The longer the windows, the more semantic the representation $\pm 4-10$ more "semantic-y"

"You shall know a word by the company it keeps!" Firth (1957)

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word
Assumption: Two words are similar if their vectors are similar
Issue: Count word vectors are very large, sparse, and skewed!

Pointwise Mutual Information (PMI): Dealing with Problems of Raw Counts

Raw word frequency is not a great measure of association between words

It's very skewed: "the" and "of" are very frequent, but maybe not the most discriminative

We'd rather have a measure that asks whether a context word is particularly informative about the target word.
(Positive) Pointwise Mutual Information ((P)PMI)

Pointwise mutual information:

Do events x and y co-occur more than if they were independent?
probability words x and y occur together (in the same context/window)

$$
\operatorname{PMI}(x, y)=\log \frac{p(x, y)}{p(x) p(y)}
$$

probability that probability that
word x occurs word y occurs

Advanced: Equivalent PMI Computations

Intuition: Do words x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(x, y)=\log \frac{p(x, y)}{p(x) p(y)}=\log \frac{p(y \mid x)}{p(y)}=\log \frac{p(x \mid y)}{p(x)}
$$

"Noun Classification from PredicateArgument Structure," Hindle (1990)

"drink it" is more common than "drink wine"

"wine" is a better "drinkable" thing than "it"		
Object of "drink"	Count	PMI
it	3	1.3
anything	3	5.2
wine	2	9.3
tea	2	11.8
liquid	2	10.5

Three Common Kinds of Embedding Models

2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Three Common Kinds of Embedding Models

1. Co-occurrence matrices
2. Matrix Factorization: Singular value decomposition/Latent Semantic Analysis, Topic Models
3. Neural-network-inspired models (skip-grams, CBOW)

Word2Vec

Mikolov et al. (2013; NeurIPS): "Distributed Representations of Words and Phrases and their Compositionality"

Revisits the context-word approach
Learn a model p(c|w) to predict a context word from a target word
Learn two types of vector representations

- $h_{c} \in \mathbb{R}^{E}$: vector embeddings for each context word
- $v_{w} \in \mathbb{R}^{E}$: vector embeddings for each target word

$$
p(c \mid w) \propto \exp \left(h_{c}^{T} v_{w}\right)
$$

Word2Vec

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word max h, v

Word2Vec

context (\downarrow)-word (\rightarrow) count matrix

	apricot	pineapple	digital	information
aardvark	0	0	0	0
computer	0	0	2	1
data	0	10	1	6
pinch	1	1	0	0
result	0	0	1	4
sugar	1	1	0	0

Context: those other words within a small "window" of a target word

The wide road shimmered in the hot sun.

Example (Tensorflow)

tf.keras.preprocessing.sequence.skipgrams

build context words and labels for all vocab words \downarrow

Word	Context words										
2	3	7	6	23	2196	\Longrightarrow	1	0	0	0	0
23	12	6	94	17	1085	\Rightarrow	1	0	0	0	0
84	784	11	68	41	453	\Rightarrow	1	0	0	0	0

Word2Vec has Inspired a Lot of Work

Off-the-shelf embeddings

- https://code.google.com/archive/p/word2vec/

Off-the-shelf implementations

- https://radimrehurek.com/gensim/models/word2vec.html

Follow-on work

- J. Pennington, R. Socher, and C. D. Manning, "GLoVe: Global Vectors for Word Representation," in Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532-1543. doi: 10.3115/v1/D14-1162.
- https://nlp.stanford.edu/projects/glove/
- Many others
- 15000+ citations

FastText

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching Word Vectors with Subword Information," Transactions of the Association for Computational Linguistics, vol. 5, pp. 135-146, 2017, doi: 10.1162/tacl a 00051.

Main idea: learn character n-gram embeddings for the target word (not context) and modify the word2vec model to use these

Pre-trained models in 150+ languages

- https://fasttext.cc

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

Original word2vec:
$p(c \mid w) \propto \exp \left(h_{c}^{T} v_{w}\right)$
FastText:
$p(c \mid w) \propto \exp \left(h_{c}^{T}\left(\sum_{\mathrm{n}-\operatorname{gram} g \operatorname{in} w} z_{g}\right)\right)$

FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these
$p(c \mid w) \propto \exp \left(h_{c}^{T}\left(\sum_{\mathrm{n}-\operatorname{gram} g \text { in } w} z_{g}\right)\right)$
decompose

$$
\text { fluffy } \rightarrow \text { fl flu luf uff ffy fy }
$$

```
Sub-word units like
this have become an
    important part of
    today's NLP work!
```


FastText Details

Main idea: learn character n-gram embeddings and for the target word (not the context) modify the word2vec model to use these

Contextual Word Embeddings

Word2vec-based models are not context-dependent
Single word type \rightarrow single word embedding

If a single word type can have different meanings... bank, bass, plant,...
... why should we only have one embedding?

> Entire task devoted to classifying these meanings: Word Sense Disambiguation

Contextual Word Embeddings

Growing interest in this
Off-the-shelf is a bit more difficult

- Download and run a model
- Can't just download a file of embeddings

Two to know about (with code):

- ELMo: "Deep contextualized word representations" Peters et al. (2018; NAACL)
https://allennlp.org/elmo
BERT: "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" Devlin et al. (2019; NAACL)
- https://github.com/google-research/bert

