
CMSC 473/673
Natural Language Processing
Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

3/25/2024 N-GRAM LANGUAGE MODELS 1

Slides modified from Dr. Frank Ferraro

Learning Objectives
Formalize what a language model is using the Markov assumption

Create a LM using Maximum Likelihood Estimation (MLE)

Evaluate LMs with perplexity

3/25/2024 N-GRAM LANGUAGE MODELS 2

Review: (Some) Properties of Embeddings
1) Capture “like” (similar) words

2) Capture relationships
vector(‘king’) –
vector(‘man’) +

vector(‘woman’) ≈
 vector(‘queen’)

vector(‘Paris’) -
vector(‘France’) +
vector(‘Italy’) ≈
vector(‘Rome’)

3/25/2024 3
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: Cosine Similarity
Divide the dot product by the length of
the two vectors

This is the cosine of the angle between
them

3/25/2024 N-GRAM LANGUAGE MODELS 4

https://upload.wikimedia.org/wikipedia/commons/2/23/CosineSimilarity.png

Review: Cosine Similarity Range

3/25/2024 N-GRAM LANGUAGE MODELS 5

https://www.learndatasci.com/glossary/cosine-similarity/

Co-occurrence Matrix
Acquire basic contextual statistics
(often counts) for each word type v via
correlate:

For example:

documents

surrounding context words

linguistic annotations (POS tags,
syntax)

…

Per-correlated
word statistics

j

i

words

co
rr

el
a

te
s

Assumption: Two words
are similar if their
vectors are similar

3/25/2024 N-GRAM LANGUAGE MODELS 6

Review: “You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

basic bag-of-
words

counting

3/25/2024 N-GRAM LANGUAGE MODELS 7

Review: “You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two documents are similar if their vectors are similar

3/25/2024 N-GRAM LANGUAGE MODELS 8

Review: “You shall know a word by the
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

3/25/2024 N-GRAM LANGUAGE MODELS 9

Review: Pointwise Mutual Information
(PMI)

3/25/2024 N-GRAM LANGUAGE MODELS 10

Raw word frequency is not a great
measure of association between
words

It’s very skewed: “the” and “of” are
very frequent, but maybe not the
most discriminative

We’d rather have a measure that asks
whether a context word is particularly
informative about the target word.

(Positive) Pointwise Mutual
Information ((P)PMI)

Pointwise mutual information:
Do events x and y co-occur more than if they
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

probability words x and y occur together
(in the same context/window)

probability that
word x occurs

probability that
word y occurs

Review: Word2Vec
Mikolov et al. (2013; NeurIPS): “Distributed Representations of Words and
Phrases and their Compositionality”

Revisits the context-word approach

Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
◦ ℎ𝑐 ∈ ℝ𝐸: vector embeddings for each context word

◦ 𝑣𝑤 ∈ ℝ𝐸: vector embeddings for each target word

3/25/2024 11

𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣

𝑐,𝑤 pairs

count 𝑐, 𝑤 log 𝑝 𝑐 𝑤)

3/25/2024 12
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi:
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781

Review: FastText
Main idea: learn character n-gram embeddings and for the target
word (not the context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇

n−gram 𝑔 in 𝑤

𝑧𝑔

fluffy → fl flu luf uff ffy fy
decompose

Learn n-gram
embeddings

To deterministically
compute word embeddings

3/25/2024 13
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics, 5, 135-146.

Defining the Model

instances
features:

K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold”
(correct)

labels

Evaluation
Function

score

Objective / Eval
Function

Objective
Function

score

3/25/2024 N-GRAM LANGUAGE MODELS 14

[…text..]pθ()

Goal of Language Modeling

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to
make text more likely

3/25/2024 N-GRAM LANGUAGE MODELS 15

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1)

Generation

3/25/2024 N-GRAM LANGUAGE MODELS 16

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1), e.g.,
𝑝 𝑤𝑁 = meowed The, fluffy, cat)

Generation

3/25/2024 N-GRAM LANGUAGE MODELS 17

Two Perspectives: Prediction vs.
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1), e.g.,
𝑝 𝑤𝑁 = meowed The, fluffy, cat)

Generation

Develop a probabilistic model 𝑝 to explain/score the word
sequence 𝑤1 … 𝑤𝑁

𝑝(𝑤1 … 𝑤𝑁), e.g.,
𝑝(The, fluffy, cat, meowed)

3/25/2024 N-GRAM LANGUAGE MODELS 18

[…text..]pθ()

Design Question 1: What Part of
Language Do We Estimate?

Is […text..] a
• Full document?
• Sequence of sentences?
• Sequence of words?
• Sequence of characters?

A: It’s task-
dependent!

3/25/2024 N-GRAM LANGUAGE MODELS 19

[…typo-text..]pθ()

Design Question 2: How do we estimate
robustly?

What if […text..] has a typo?

3/25/2024 N-GRAM LANGUAGE MODELS 20

[…synonymous-text..]pθ()

Design Question 3: How do we
generalize?

What if […text..] has a word (or character
or…) we’ve never seen before?

3/25/2024 N-GRAM LANGUAGE MODELS 21

Key Idea: Probability Chain Rule

𝑝 𝑥1, 𝑥2, … , 𝑥𝑆 =

𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2) ⋯ 𝑝 𝑥𝑆 𝑥1, … , 𝑥𝑆−1

3/25/2024 N-GRAM LANGUAGE MODELS 22

Key Idea: Probability Chain Rule

𝑝 𝑥1, 𝑥2, … , 𝑥𝑆 =
𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2) ⋯ 𝑝 𝑥𝑆 𝑥1, … , 𝑥𝑆−1 =

ෑ

𝑖

𝑆

𝑝 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)

Language modeling is about how to
estimate each of these factors in
{great, good, sufficient, …} ways

3/25/2024 N-GRAM LANGUAGE MODELS 23

Example: Develop a Probabilistic Email
Classifier

Input: an email (all text)

Output (Gmail categories):

Primary, Social, Forums, Spam

argmaxy 𝑝 label 𝑌 = 𝑦 email 𝑋)

Approach #1: Discriminatively trained

Approach #2: Using Bayes rule

3/25/2024 N-GRAM LANGUAGE MODELS 24

Classify Using Bayes Rule

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)

3/25/2024 N-GRAM LANGUAGE MODELS 25

Classify Using Bayes Rule

Q: Why is p(Y | X) what
we want to model?

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)

3/25/2024 N-GRAM LANGUAGE MODELS 26

Classify Using Bayes Rule

Won’t you
please

donate?
𝑝) ∝ 𝑝)𝑝()Primary Primary Primary

Won’t you
please

donate?

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)

3/25/2024 N-GRAM LANGUAGE MODELS 27

A Closer Look at 𝑝()
This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?

Primary

3/25/2024 N-GRAM LANGUAGE MODELS 28

A Closer Look at 𝑝()
This is the prior probability of each class

Answers the question: without knowing anything specific about a document,
how likely is each class?

Primary

Q: What’s an easy way to
estimate it?

3/25/2024 N-GRAM LANGUAGE MODELS 29

A Closer Look at 𝑝)
This is a class specific language model

Primary

Won’t you
please

donate?

3/25/2024 N-GRAM LANGUAGE MODELS 30

A Closer Look at 𝑝)
This is a class specific language model

𝑝) is different from

𝑝) is different from

𝑝) …

Primary

Won’t you
please

donate?

Social

Won’t you
please

donate?

Forums

Won’t you
please

donate?

3/25/2024 N-GRAM LANGUAGE MODELS 31

Primary

Won’t you
please

donate?

A Closer Look at 𝑝)
This is a class specific language model

To learn 𝑝):

For each class Class:
Get a bunch of Class documents 𝐷Class

Learn a new language model 𝑝Class on just 𝐷Class

Class

Won’t you
please

donate?

3/25/2024 N-GRAM LANGUAGE MODELS 32

Primary

Won’t you
please

donate?

Language Models & Smoothing
Maximum likelihood (MLE): simple counting

Other count-based models
◦ Laplace smoothing, add- λ

◦ Interpolation models

◦ Discounted backoff

◦ Interpolated (modified) Kneser-Ney

◦ Good-Turing

◦ Witten-Bell

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Precursor to
modern LMs

3/25/2024 N-GRAM LANGUAGE MODELS 33

Language Models & Smoothing
Maximum likelihood (MLE): simple counting

Other count-based models
◦ Laplace smoothing, add- λ

◦ Interpolation models

◦ Discounted backoff

◦ Interpolated (modified) Kneser-Ney

◦ Good-Turing

◦ Witten-Bell

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Advanced/
out of
scope

Easy to
implement

Featureful LMs

Feedforward LMs

Precursor to
modern LMs

3/25/2024 N-GRAM LANGUAGE MODELS 34

3/25/2024 N-GRAM LANGUAGE MODELS 35

“Colorless green ideas sleep furiously”

Chomsky, Noam. Syntactic structures. Mouton & Co., 1957.

N-Grams
Maintaining an entire inventory over sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously)

3/25/2024 N-GRAM LANGUAGE MODELS 36

N-Grams
Maintaining an entire joint inventory over sentences could be too

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

3/25/2024 N-GRAM LANGUAGE MODELS 37

N-Grams
Maintaining an entire joint inventory over sentences could be too

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *

3/25/2024 N-GRAM LANGUAGE MODELS 38

N-Grams
Maintaining an entire joint inventory over sentences could be too

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 39

N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

3/25/2024 N-GRAM LANGUAGE MODELS 40

N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

3/25/2024 N-GRAM LANGUAGE MODELS 41

N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈

p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 42

N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈

p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 43

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 44

N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 45

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 46

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 47

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

3/25/2024 N-GRAM LANGUAGE MODELS 48

Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol

3/25/2024 N-GRAM LANGUAGE MODELS 49

N-Gram Terminology

n
Commonly

called
History Size

(Markov order)
Example

1 unigram 0 p(furiously)

3/25/2024 N-GRAM LANGUAGE MODELS 50

N-Gram Terminology

n
Commonly

called
History Size

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 51

N-Gram Terminology

n
Commonly

called
History Size

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3
trigram

(3-gram)
2 p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 52

N-Gram Terminology

n
Commonly

called
History Size

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3
trigram

(3-gram)
2 p(furiously | ideas sleep)

4 4-gram 3 p(furiously | green ideas sleep)

n n-gram n-1 p(wi | wi-n+1 … wi-1)

3/25/2024 N-GRAM LANGUAGE MODELS 53

N-Gram Probability

𝑝 𝑤1, 𝑤2, 𝑤3, ⋯ , 𝑤𝑆 =

ෑ

𝑖=1

𝑆

𝑝 𝑤𝑖 𝑤𝑖−𝑁+1, ⋯ , 𝑤𝑖−1)

3/25/2024 N-GRAM LANGUAGE MODELS 54

Count-Based N-Grams (Unigrams)

𝑝 item ∝ 𝑐𝑜𝑢𝑛𝑡(item)

3/25/2024 N-GRAM LANGUAGE MODELS 55

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡(z)

3/25/2024 N-GRAM LANGUAGE MODELS 56

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(v)

word type word type

word type

3/25/2024 N-GRAM LANGUAGE MODELS 57

Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

𝑊

word type word type

number of tokens observed

3/25/2024 N-GRAM LANGUAGE MODELS 58

Count-Based N-Grams (Unigrams)
The film got a great
opening and the film
went on to become a
hit .

3/25/2024 N-GRAM LANGUAGE MODELS 59

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1

Count-Based N-Grams (Unigrams)
The film got a great
opening and the film
went on to become a
hit .

3/25/2024 N-GRAM LANGUAGE MODELS 60

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1

61N-GRAM LANGUAGE MODELS

Count-Based N-Grams (Unigrams)
The film got a great
opening and the film
went on to become a
hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

1/16

film 2 1/8

got 1 1/16

a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

. 1 1/163/25/2024

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in
conditioning

order matters in
count

Count of the
sequence of items

“x y z”

3/25/2024 N-GRAM LANGUAGE MODELS 62

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in
conditioning

order matters in
count

count(x, y, z) ≠ count(x, z, y) ≠ count(y, x, z) ≠ …

3/25/2024 N-GRAM LANGUAGE MODELS 63

Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡 x, y, z

=
𝑐𝑜𝑢𝑛𝑡 x, y, z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(x, y, v)

3/25/2024 N-GRAM LANGUAGE MODELS 64

Context: x y Word (Type): z Raw Count Normalization Probability p(z | x y)

The film The 0

1

0/1

The film film 0 0/1

The film got 1 1/1

The film went 0 0/1

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

Count-Based N-Grams (Trigrams)
The film got a great opening and the film went on to become a hit .

3/25/2024 N-GRAM LANGUAGE MODELS 65

Context: x y Word (Type): z Raw Count Normalization Probability: p(z | x y)

the film the 0

2

0/2

the film film 0 0/2

the film got 1 1/2

the film went 1 1/2

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

the film got a great opening and the film went on to become a hit .

3/25/2024 N-GRAM LANGUAGE MODELS 66

Count-Based N-Grams (Lowercased Trigrams)

Implementation: EOS Padding
Create an end of sentence (“chunk”) token <EOS>

Don’t estimate p(<BOS> | <EOS>)

Training & Evaluation:
1. Identify “chunks” that are relevant (sentences, paragraphs, documents)

2. Append the <EOS> token to the end of the chunk

3. Train or evaluate LM as normal

3/25/2024 N-GRAM LANGUAGE MODELS 67

Implementation: Memory Issues
Let V = vocab size, W = number of observed n-grams

Often, 𝑊 ≪ 𝑉

Dense count representation: 𝑂(𝑉𝑛), but many entries will be zero

Sparse count representation: 𝑂(𝑊)

Sometimes selective precomputation is helpful (e.g., normalizers)

3/25/2024 N-GRAM LANGUAGE MODELS 68

Implementation: Unknown words
Create an unknown word token <UNK>

Training:
1. Create a fixed lexicon L of size V

2. Change any word not in L to <UNK>

3. Train LM as normal

Evaluation:
Use UNK probabilities for any word not in training

3/25/2024 N-GRAM LANGUAGE MODELS 69

A Closer Look at Count-based 𝑝)
This is a class specific language model

To learn 𝑝):

For each class Class:
Get a bunch of Class documents 𝐷Class

Learn a new language model 𝑝Class on just 𝐷Class

Primary

Won’t you
please

donate?

Class

Won’t you
please

donate?

3/25/2024 N-GRAM LANGUAGE MODELS 70

Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s)
𝑐Class(…) for each Class

e.g., record separate trigram counts for
Primary vs. Social vs. Forums vs. Spam

3/25/2024 N-GRAM LANGUAGE MODELS 71

Two Ways to Learn Class-specific Count-
based Language Models

1. Create different count table(s) 𝑐Class(…) for
each Class

e.g., record separate trigram counts for Primary vs.
Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables
𝑐(Class, …)

e.g., record how often each trigram occurs within
Primary vs. Social vs. Forums vs. Spam documents

3/25/2024 N-GRAM LANGUAGE MODELS 72

Evaluating Language Models
What is “correct?”

What is working “well?”

Training Data
Dev
Data

Test
Data

learn model parameters:
• acquire primary statistics
• learn feature weights

fine-tune any secondary
(hyper)parameters

perform final
evaluation

DO NOT TUNE ON THE TEST DATA
3/25/2024 N-GRAM LANGUAGE MODELS 73

Evaluating Language Models
What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

3/25/2024 N-GRAM LANGUAGE MODELS 74

Evaluating Language Models
What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)

3/25/2024 N-GRAM LANGUAGE MODELS 75

Perplexity: Average “Surprisal”

Lower is better : lower perplexity ➔ less surprised

Less certain ➔
More surprised ➔
Higher perplexity

More certain ➔
Less surprised ➔
Lower perplexity

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

3/25/2024 N-GRAM LANGUAGE MODELS 76

Perplexity
Lower is better : lower perplexity ➔ less surprised

3/25/2024 N-GRAM LANGUAGE MODELS 77

perplexity = exp(avg crossentropy)

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
log 𝑝(𝑤1, … , 𝑤𝑀))

3/25/2024 N-GRAM LANGUAGE MODELS 78

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

3/25/2024 N-GRAM LANGUAGE MODELS 79

e.g., n-gram history
(n-1 items)

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

3/25/2024 N-GRAM LANGUAGE MODELS 80

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

3/25/2024 N-GRAM LANGUAGE MODELS 81

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

3/25/2024 N-GRAM LANGUAGE MODELS 82

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

3/25/2024 N-GRAM LANGUAGE MODELS 83

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower
3/25/2024 N-GRAM LANGUAGE MODELS 84

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower

base must be
the same

3/25/2024 N-GRAM LANGUAGE MODELS 85

Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

 =
𝑀

ς𝑖=1
1

𝑝 𝑤𝑖 ℎ𝑖)

weighted
geometric

average

3/25/2024 N-GRAM LANGUAGE MODELS 86

How to Compute Average Perplexity
If you have a list of the probabilities for each observed n-gram “token:”

numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))

If you have a list of observed n-gram “types” t and counts c, and log-prob. function lp:

numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))

If you’re computing a cross-entropy loss function (e.g., in Pytorch):

loss_fn = torch.nn.CrossEntropyLoss(reduction=‘mean’)

torch.exp(loss_fn(…))

3/25/2024 N-GRAM LANGUAGE MODELS 87

	Slide 1: CMSC 473/673 Natural Language Processing
	Slide 2: Learning Objectives
	Slide 3: Review: (Some) Properties of Embeddings
	Slide 4: Review: Cosine Similarity
	Slide 5: Review: Cosine Similarity Range
	Slide 6: Co-occurrence Matrix
	Slide 7: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 8: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 9: Review: “You shall know a word by the company it keeps!” Firth (1957)
	Slide 10: Review: Pointwise Mutual Information (PMI)
	Slide 11: Review: Word2Vec
	Slide 12: Review: Word2Vec
	Slide 13: Review: FastText
	Slide 14: Defining the Model
	Slide 15: Goal of Language Modeling
	Slide 16: Two Perspectives: Prediction vs. Generation
	Slide 17: Two Perspectives: Prediction vs. Generation
	Slide 18: Two Perspectives: Prediction vs. Generation
	Slide 19: Design Question 1: What Part of Language Do We Estimate?
	Slide 20: Design Question 2: How do we estimate robustly?
	Slide 21: Design Question 3: How do we generalize?
	Slide 22: Key Idea: Probability Chain Rule
	Slide 23: Key Idea: Probability Chain Rule
	Slide 24: Example: Develop a Probabilistic Email Classifier
	Slide 25: Classify Using Bayes Rule
	Slide 26: Classify Using Bayes Rule
	Slide 27: Classify Using Bayes Rule
	Slide 28: A Closer Look at p open paren , , , , , , , , , , close paren
	Slide 29: A Closer Look at p open paren , , , , , , , , , , close paren
	Slide 30: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 31: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 32: A Closer Look at p open paren , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , close paren
	Slide 33: Language Models & Smoothing
	Slide 34: Language Models & Smoothing
	Slide 35
	Slide 36: N-Grams
	Slide 37: N-Grams
	Slide 38: N-Grams
	Slide 39: N-Grams
	Slide 40: N-Grams
	Slide 41: N-Grams
	Slide 42: N-Grams
	Slide 43: N-Grams
	Slide 44: N-Grams
	Slide 45: N-Grams
	Slide 46: Trigrams
	Slide 47: Trigrams
	Slide 48: Trigrams
	Slide 49: Trigrams
	Slide 50: N-Gram Terminology
	Slide 51: N-Gram Terminology
	Slide 52: N-Gram Terminology
	Slide 53: N-Gram Terminology
	Slide 54: N-Gram Probability
	Slide 55: Count-Based N-Grams (Unigrams)
	Slide 56: Count-Based N-Grams (Unigrams)
	Slide 57: Count-Based N-Grams (Unigrams)
	Slide 58: Count-Based N-Grams (Unigrams)
	Slide 59: Count-Based N-Grams (Unigrams)
	Slide 60: Count-Based N-Grams (Unigrams)
	Slide 61: Count-Based N-Grams (Unigrams)
	Slide 62: Count-Based N-Grams (Trigrams)
	Slide 63: Count-Based N-Grams (Trigrams)
	Slide 64: Count-Based N-Grams (Trigrams)
	Slide 65
	Slide 66
	Slide 67: Implementation: EOS Padding
	Slide 68: Implementation: Memory Issues
	Slide 69: Implementation: Unknown words
	Slide 70: A Closer Look at Count-based p open paren , , , , , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , , , , , , , , close paren
	Slide 71: Two Ways to Learn Class-specific Count-based Language Models
	Slide 72: Two Ways to Learn Class-specific Count-based Language Models
	Slide 73: Evaluating Language Models
	Slide 74: Evaluating Language Models
	Slide 75: Evaluating Language Models
	Slide 76: Perplexity: Average “Surprisal”
	Slide 77: Perplexity
	Slide 78: Perplexity
	Slide 79: Perplexity
	Slide 80: Perplexity
	Slide 81: Perplexity
	Slide 82: Perplexity
	Slide 83: Perplexity
	Slide 84: Perplexity
	Slide 85: Perplexity
	Slide 86: Perplexity
	Slide 87: How to Compute Average Perplexity

