
CMSC 473/673
Natural Language Processing
Instructor: Lara J.  Martin (she/they)

TA: Duong Ta (he)
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Slides modified from Dr. Frank Ferraro



Learning Objectives
Formalize what a language model is using the Markov assumption

Create a LM using Maximum Likelihood Estimation (MLE)

Evaluate LMs with perplexity
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Review: (Some) Properties of Embeddings
1) Capture “like” (similar) words

2) Capture relationships
vector(‘king’) – 
vector(‘man’) + 

vector(‘woman’)  ≈
 vector(‘queen’)

vector(‘Paris’) - 
vector(‘France’) + 
vector(‘Italy’) ≈ 
vector(‘Rome’)
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T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in 
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi: 
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781


Review: Cosine Similarity
Divide the dot product by the length of 
the two vectors

This is the cosine of the angle between 
them
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https://upload.wikimedia.org/wikipedia/commons/2/23/CosineSimilarity.png



Review: Cosine Similarity Range
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https://www.learndatasci.com/glossary/cosine-similarity/



Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v  via 
correlate:

For example:

documents

surrounding context words

linguistic annotations (POS tags, 
syntax)

…

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

Assumption: Two words 
are similar if their 
vectors are similar
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Review: “You shall know a word by the 
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

basic bag-of-
words 

counting
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Review: “You shall know a word by the 
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two documents are similar if their vectors are similar
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Review: “You shall know a word by the 
company it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!
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Review: Pointwise Mutual Information 
(PMI)
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Raw word frequency is not a great 
measure of association between 
words

It’s very skewed: “the” and “of” are 
very frequent, but maybe not the 
most discriminative

We’d rather have a measure that asks 
whether a context word is particularly 
informative about the target word.

(Positive) Pointwise Mutual 
Information ((P)PMI)

Pointwise mutual information: 
Do events x and y co-occur more than if they 
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

probability words x and y occur together 
(in the same context/window)

probability that 
word x occurs

probability that 
word y occurs



Review: Word2Vec
Mikolov et al. (2013; NeurIPS): “Distributed Representations of Words and 
Phrases and their Compositionality”

Revisits the context-word approach

Learn a model p(c | w) to predict a context word from a target word

Learn two types of vector representations
◦ ℎ𝑐 ∈ ℝ𝐸: vector embeddings for each context word

◦ 𝑣𝑤 ∈ ℝ𝐸: vector embeddings for each target word
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𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in 
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi: 
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781


Review: Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣



𝑐,𝑤 pairs

count 𝑐, 𝑤 log 𝑝 𝑐 𝑤)
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T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” in 
International Conference on Learning Representations (ICLR), Scottsdale, Arizona, May 2013. doi: 
10.48550/arXiv.1301.3781.

https://doi.org/10.48550/arXiv.1301.3781


Review: FastText
Main idea: learn character n-gram embeddings and for the target 
word (not the context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 

n−gram 𝑔 in 𝑤

𝑧𝑔

fluffy → fl flu luf uff ffy fy
decompose

Learn n-gram 
embeddings

To deterministically 
compute word embeddings
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Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. 
Transactions of the Association for Computational Linguistics, 5, 135-146.



Defining the Model

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

“Gold” 
(correct) 

labels

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score
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[…text..]pθ( )

Goal of Language Modeling

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to 
make text more likely
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Two Perspectives: Prediction vs. 
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier 
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1)

Generation
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Two Perspectives: Prediction vs. 
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier 
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1), e.g.,
𝑝 𝑤𝑁 = meowed The, fluffy, cat)

Generation
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Two Perspectives: Prediction vs. 
Generation

Prediction

Given observed word tokens 𝑤1 … 𝑤𝑁−1, create a classifier 
𝑝 to predict the next word 𝑤𝑁

𝑝 𝑤𝑁 = 𝑣 𝑤1 … 𝑤𝑁−1), e.g., 
𝑝 𝑤𝑁 = meowed The, fluffy, cat)

Generation

Develop a probabilistic model 𝑝 to explain/score the word 
sequence 𝑤1 … 𝑤𝑁

𝑝(𝑤1 … 𝑤𝑁), e.g.,
𝑝(The, fluffy, cat, meowed)
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[…text..]pθ( )

Design Question 1: What Part of 
Language Do We Estimate?

Is […text..] a
• Full document?
• Sequence of sentences?
• Sequence of words?
• Sequence of characters?

A: It’s task-
dependent!
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[…typo-text..]pθ( )

Design Question 2: How do we estimate 
robustly?

What if […text..] has a typo?

3/25/2024 N-GRAM LANGUAGE MODELS 20



[…synonymous-text..]pθ( )

Design Question 3: How do we 
generalize?

What if […text..] has a word (or character 
or…) we’ve never seen before?
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Key Idea: Probability Chain Rule

𝑝 𝑥1, 𝑥2, … , 𝑥𝑆 =

𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2) ⋯ 𝑝 𝑥𝑆 𝑥1, … , 𝑥𝑆−1
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Key Idea: Probability Chain Rule

𝑝 𝑥1, 𝑥2, … , 𝑥𝑆 =
𝑝 𝑥1 𝑝 𝑥2 𝑥1)𝑝 𝑥3 𝑥1, 𝑥2) ⋯ 𝑝 𝑥𝑆 𝑥1, … , 𝑥𝑆−1 =

ෑ

𝑖

𝑆

𝑝 𝑥𝑖 𝑥1, … , 𝑥𝑖−1)

Language modeling is about how to 
estimate each of these factors in 
{great, good, sufficient, …} ways
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Example: Develop a Probabilistic Email 
Classifier

Input: an email (all text)

Output (Gmail categories):

Primary, Social, Forums, Spam

argmaxy 𝑝 label 𝑌 = 𝑦 email 𝑋)

Approach #1: Discriminatively trained

Approach #2: Using Bayes rule
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Classify Using Bayes Rule

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)
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Classify Using Bayes Rule

Q: Why is p(Y | X) what 
we want to model?

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)
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Classify Using Bayes Rule

Won’t you 
please 

donate?
𝑝  ) ∝ 𝑝  )𝑝( )Primary Primary Primary

Won’t you 
please 

donate?

𝑝 label 𝑌 email 𝑋) ∝ 𝑝 𝑋 𝑌) ∗ 𝑝(𝑌)
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A Closer Look at 𝑝( )
This is the prior probability of each class

Answers the question: without knowing anything specific about a document, 
how likely is each class?

Primary

3/25/2024 N-GRAM LANGUAGE MODELS 28



A Closer Look at 𝑝( )
This is the prior probability of each class

Answers the question: without knowing anything specific about a document, 
how likely is each class?

Primary

Q: What’s an easy way to 
estimate it?
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A Closer Look at 𝑝 )
This is a class specific language model

Primary

Won’t you 
please 

donate?
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A Closer Look at 𝑝 )
This is a class specific language model

𝑝 ) is different from 

𝑝 ) is different from 

𝑝 ) …

Primary

Won’t you 
please 

donate?

Social

Won’t you 
please 

donate?

Forums

Won’t you 
please 

donate?
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Primary

Won’t you 
please 

donate?



A Closer Look at 𝑝 )
This is a class specific language model

To learn 𝑝 ):

For each class Class:
Get a bunch of Class documents 𝐷Class

Learn a new language model 𝑝Class on just 𝐷Class

Class

Won’t you 
please 

donate?
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Primary

Won’t you 
please 

donate?



Language Models & Smoothing
Maximum likelihood (MLE): simple counting

Other count-based models
◦ Laplace smoothing, add- λ

◦ Interpolation models

◦ Discounted backoff

◦ Interpolated (modified) Kneser-Ney

◦ Good-Turing

◦ Witten-Bell

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Advanced/
out of 
scope

Easy to 
implement

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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Language Models & Smoothing
Maximum likelihood (MLE): simple counting

Other count-based models
◦ Laplace smoothing, add- λ

◦ Interpolation models

◦ Discounted backoff

◦ Interpolated (modified) Kneser-Ney

◦ Good-Turing

◦ Witten-Bell

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Advanced/
out of 
scope

Easy to 
implement

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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“Colorless green ideas sleep furiously”

Chomsky, Noam. Syntactic structures. Mouton & Co., 1957.



N-Grams
Maintaining an entire inventory over sentences could be too much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously)
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N-Grams
Maintaining an entire joint inventory over sentences could be too 

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *
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N-Grams
Maintaining an entire joint inventory over sentences could be too 

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *

3/25/2024 N-GRAM LANGUAGE MODELS 38



N-Grams
Maintaining an entire joint inventory over sentences could be too 

much to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”
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N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info
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N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈

p(furiously | Colorless green ideas sleep)
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N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈

p(furiously | ideas sleep)

3/25/2024 N-GRAM LANGUAGE MODELS 43



N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol
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N-Gram Terminology

n
Commonly 

called
History Size 

(Markov order)
Example

1 unigram 0 p(furiously)
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N-Gram Terminology

n
Commonly 

called
History Size 

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)
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N-Gram Terminology

n
Commonly 

called
History Size 

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3
trigram

(3-gram)
2 p(furiously | ideas sleep)
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N-Gram Terminology

n
Commonly 

called
History Size 

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3
trigram

(3-gram)
2 p(furiously | ideas sleep)

4 4-gram 3 p(furiously | green ideas sleep)

n n-gram n-1 p(wi | wi-n+1 … wi-1)
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N-Gram Probability

𝑝 𝑤1, 𝑤2, 𝑤3, ⋯ , 𝑤𝑆 =

ෑ

𝑖=1

𝑆

𝑝 𝑤𝑖 𝑤𝑖−𝑁+1, ⋯ , 𝑤𝑖−1)
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Count-Based N-Grams (Unigrams)

𝑝 item ∝ 𝑐𝑜𝑢𝑛𝑡(item)
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Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡(z)
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Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(v)

word type word type

word type
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Count-Based N-Grams (Unigrams)

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z

=
𝑐𝑜𝑢𝑛𝑡 z

𝑊

word type word type

number of tokens observed
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Count-Based N-Grams (Unigrams)
The film got a great 
opening and the film 
went on to become a 
hit .
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Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1



Count-Based N-Grams (Unigrams)
The film got a great 
opening and the film 
went on to become a 
hit .
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Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

film 2

got 1

a 2

great 1

opening 1

and 1

the 1

went 1

on 1

to 1

become 1

hit 1

. 1
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Count-Based N-Grams (Unigrams)
The film got a great 
opening and the film 
went on to become a 
hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

1/16

film 2 1/8

got 1 1/16

a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

. 1 1/163/25/2024



Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in 
conditioning

order matters in 
count

Count of the 
sequence of items

“x y z”
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Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in 
conditioning

order matters in 
count

count(x, y, z) ≠ count(x, z, y) ≠ count(y, x, z) ≠ …
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Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡 x, y, z

=
𝑐𝑜𝑢𝑛𝑡 x, y, z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(x, y, v)
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Context: x y Word (Type): z Raw Count Normalization Probability p(z | x y)

The film The 0

1

0/1

The film film 0 0/1

The film got 1 1/1

The film went 0 0/1

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

Count-Based N-Grams (Trigrams)
The film got a great opening and the film went on to become a hit .
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Context: x y Word (Type): z Raw Count Normalization Probability: p(z | x y)

the film the 0

2

0/2

the film film 0 0/2

the film got 1 1/2

the film went 1 1/2

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

the film got a great opening and the film went on to become a hit .
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Implementation: EOS Padding
Create an end of sentence (“chunk”) token <EOS>

Don’t estimate p(<BOS> | <EOS>)

Training & Evaluation:
1. Identify “chunks” that are relevant (sentences, paragraphs, documents)

2. Append the <EOS> token to the end of the chunk

3. Train or evaluate LM as normal
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Implementation: Memory Issues
Let V = vocab size, W = number of observed n-grams

Often, 𝑊 ≪ 𝑉

Dense count representation: 𝑂(𝑉𝑛), but many entries will be zero

Sparse count representation: 𝑂(𝑊)

Sometimes selective precomputation is helpful (e.g., normalizers)
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Implementation: Unknown words
Create an unknown word token <UNK>

Training:
1. Create a fixed lexicon L of size V

2. Change any word not in L to  <UNK>

3. Train LM as normal

Evaluation:
Use UNK probabilities for any word not in training
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A Closer Look at Count-based 𝑝 )
This is a class specific language model

To learn 𝑝 ):

For each class Class:
Get a bunch of Class documents 𝐷Class

Learn a new language model 𝑝Class on just 𝐷Class

Primary

Won’t you 
please 

donate?

Class

Won’t you 
please 

donate?
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Two Ways to Learn Class-specific Count-
based Language Models 

1. Create different count table(s) 
𝑐Class(… ) for each Class

e.g., record separate trigram counts for 
Primary vs. Social vs. Forums vs. Spam
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Two Ways to Learn Class-specific Count-
based Language Models 

1. Create different count table(s) 𝑐Class(… ) for 
each Class

e.g., record separate trigram counts for Primary vs. 
Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables 
𝑐(Class, … )

e.g., record how often each trigram occurs within 
Primary vs. Social vs. Forums vs. Spam documents
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Evaluating Language Models
What is “correct?”

What is working “well?”

Training Data
Dev
Data

Test 
Data

learn model parameters:
• acquire primary statistics
• learn feature weights

fine-tune any secondary 
(hyper)parameters

perform final 
evaluation

DO NOT TUNE ON THE TEST DATA
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Evaluating Language Models
What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors
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Evaluating Language Models
What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)
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Perplexity: Average “Surprisal”

Lower is better : lower perplexity ➔ less surprised

Less certain ➔
More surprised ➔
Higher perplexity

More certain ➔
Less surprised ➔
Lower perplexity

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)
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Perplexity
Lower is better : lower perplexity ➔ less surprised
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
log 𝑝(𝑤1, … , 𝑤𝑀) )
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

3/25/2024 N-GRAM LANGUAGE MODELS 82



Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

≥ 0, ≤ 1: higher

≤ 0: higher

≤ 0, higher

≥ 0, lower is better

≥ 0, lower

base must be 
the same
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))

                   =
𝑀

ς𝑖=1
1

𝑝 𝑤𝑖 ℎ𝑖)

weighted 
geometric 

average
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How to Compute Average Perplexity
If you have a list of the probabilities for each observed n-gram “token:”

numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))

If you have a list of observed n-gram “types” t and counts c, and log-prob. function lp:

numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))

If you’re computing a cross-entropy loss function (e.g., in Pytorch):

loss_fn = torch.nn.CrossEntropyLoss(reduction=‘mean’)

torch.exp(loss_fn(…))
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