CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

Slides modified from Dr. Frank Ferraro

Learning Objectives

Code a LM using Maximum Likelihood Estimation (MLE)

Evaluate LMs with perplexity

Create a LM using smoothed counts

Defining the Model

Review: Goal of Language Modeling

D_A [...text..]

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to make text more likely

Review: What Part of Language Do We Estimate?

D_A [...text..]

Is [...text..] a

- Full document?
- Sequence of sentences?
- Sequence of words?
- Sequence of characters?

A: It's taskdependent!

Review: Probability Chain Rule

$$p(x_1, x_2, \dots, x_S) =$$

$$p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_S | x_1, \dots, x_{S-1}) =$$

$$\prod_{i}^{S} p(x_i | x_1, \dots, x_{i-1})$$
Language modeling is about how to estimate each of these factors in {great, good, sufficient, ...} ways

Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Review: Trigram Chaining

p(Colorless green ideas sleep furiously) =
 p(Colorless | <BOS> <BOS>) *
 p(green | <BOS> Colorless) *
 p(ideas | Colorless green) *
 p(sleep | green ideas) *
 p(furiously | ideas sleep) *
 p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols *Fully proper distribution*: Pad the right with a single <EOS> symbol

Review: N-Gram Probability

$$p(w_1, w_2, w_3, \cdots, w_S) =$$

$$\prod_{i=1}^{S} p(w_i | w_{i-N+1}, \cdots, w_{i-1})$$

Review: Count-Based N-Grams (Unigrams)

Review: Count-Based N-Grams (Trigrams)

count(x,y,z) $p(\mathbf{z}|\mathbf{x},\mathbf{y}) =$ $\sum_{n} count(x, y, v)$

Knowledge Check: Make a Trigram LM

count(x, y, z) $p(\mathbf{z}|\mathbf{x},\mathbf{y}) = \frac{1}{\sum_{v} count(\mathbf{x},\mathbf{y},\mathbf{v})}$

Review: Evaluating Language Models

What is "correct?"

What is working "well?"

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)

Review: Perplexity

Lower is better : lower perplexity \rightarrow less surprised

perplexity = exp(avg crossentropy)

perplexity =
$$\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$$

Trigrams	MLE p(trigram)		
<bos> <bos> The</bos></bos>	1		
<bos> The film</bos>	1		
The film ,	0		
film , a	0		
, a hit	0		
a hit !	0		
hit ! <eos></eos>	0		
Perplexity	???		

perplexity =

$$\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$$

Trigrams	MLE p(trigram)		
<bos> <bos> The</bos></bos>	1		
<bos> The film</bos>	1		
The film ,	0		
film , a	0		
, a hit	0		
a hit !	0		
hit ! <eos></eos>	0		
Perplexity	Infinity		

perplexity =

$$\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$$

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	???

perplexity = $\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	13.59

perplexity = $\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$

Os Are Not Your (Language Model's) Friend

$p(\text{item}) \cong count(\text{item}) = 0 \rightarrow p(\text{item}) = 0$

0 probability \rightarrow item is *impossible*

Os annihilate: x*y*z*0 = 0

Language is creative:

new words keep appearing

existing words could appear in known contexts

How much do you trust your data?

Language Models & Smoothing

-Maximum likelihood (MLE): simple counting

Other count-based models

Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$$p(z) \cong count(z) + \lambda$$

Add λ to all the counts

Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$$p(z) \cong count(z) + \lambda$$
$$= \frac{count(z) + \lambda}{\sum_{v} (count(v) + \lambda)}$$

Add λ to all the counts

Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

Add λ to all the counts

$$p(z) \cong count(z) + \lambda$$
$$\underline{count(z) + \lambda}$$

 $W + V\lambda$

types

$\begin{array}{l} Add - \lambda \ N-Grams \ (Unigrams) \\ \text{The film got a great opening and the film went on to become a hit} . \end{array}$

Word (Type)	Raw Count	Norm	Prob.	Add-λ Count	Add-λ Norm.	Add-λ Prob.	
The	1		1/16				
film	2		1/8				
got	1		1/16				
а	2		1/8				
great	1		1/16				
opening	1		1/16				
and	1	10	1/16				
the	1	10	1/16				
went	1		1/16				
on	1		1/16				
to	1		1/16				
become	1		1/16				
hit	1		1/16				
	1		1/16				

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.	
The	1		1/16	2			
film	2		1/8	3			
got	1		1/16	2			
а	2		1/8	3			
great	1		1/16	2			
opening	1		1/16	2			
and	1	16	1/16	2			
the	1	10	1/16	2			
went	1		1/16	2			
on	1		1/16	2			
to	1		1/16	2			
become	1		1/16	2			
hit	1		1/16	2			
	1		1/16	2			

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		
film	2		1/8	3		
got	1		1/16	2		
а	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1	16	1/16	2	16 + 14*1 =	
the	1	10	1/16	2	30	
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
	1		1/16	2		

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.	
The	1		1/16	2		=1/15	
film	2		1/8	3		=1/10	
got	1		1/16	2		=1/15	
а	2		1/8	3		=1/10	
great	1		1/16	2		=1/15	
opening	1		1/16	2		=1/15	
and	1	16	1/16	2	16 + 14*1 =	=1/15	
the	1	10	1/16	2	30	=1/15	
went	1		1/16	2		=1/15	
on	1		1/16	2		=1/15	
to	1		1/16	2		=1/15	
become	1		1/16	2		=1/15	
hit	1		1/16	2		=1/15	
	1		1/16	2		=1/15	

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

• • •

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

• • •

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				(/	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1	17	1/17
a great	the	0	1		1/17

...

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				· · · /	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1	17	1/17
a great	the	0	1		1/17

Q: What is the perplexity for the sentence "The film , a hit !"

What are the tri-grams for "The film, a hit!"

Trigrams	MLE p(trigram)	
<bos> <bos> The</bos></bos>	1	
<bos> The film</bos>	1	
The film ,	0	
film , a	0	
, a hit	0	
a hit !	0	
hit ! <eos></eos>	0	

What are the tri-grams for "The film, a hit!"

Trigrams	MLE p(trigram)	UNK-ed trigrams	
<bos> <bos> The</bos></bos>	1 <bos> <bos> The</bos></bos>		
<bos> The film</bos>	1	<bos> The film</bos>	
The film ,	0	The film <unk></unk>	
film <i>,</i> a	0	film <unk> a</unk>	
, a hit	0	<unk> a hit</unk>	
a hit !	0	a hit <unk></unk>	
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	

What are the tri-grams for "The film, a hit!"

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	<bos> <bos> The</bos></bos>	2/17
<bos> The film</bos>	1	<bos> The film</bos>	2/17
The film ,	0	The film <unk></unk>	1/17
film , a	0	film <unk> a</unk>	1/16
, a hit	0	<unk> a hit</unk>	1/16
a hit !	0	a hit <unk></unk>	1/17
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	1/16

Setting Hyperparameters

Use a **development** corpus

Choose λs to maximize the probability of dev data: Fix the N-gram probabilities (on the training data) Then search for λs that give largest probability to held-out set:

Language Models & Smoothing

-Maximum likelihood (MLE): simple counting

Maxent Models as Featureful n-gram Language Models

p(Colorless green ideas sleep furiously | Label) = p(Colorless | Label, <BOS>) * ... * p(<EOS> | Label, furiously) Model each n-gram term with a maxent model $p(x_i | y, x_{i-N+1:i-1}) =$ $maxent(y, x_{i-N+1:i-1}, x_i)$ generatively trained: learn to model (class-specific) language

3/27/2024

What Should These Features Do?

 $p(x_i | y, x_{i-N+1:i-1}) = maxent(y, x_{i-N+1:i-1}, x_i), e.g.,$

$$p(\text{sleep} | y, \text{green, ideas}) = \\ \max(y, x_{i-2,i-1} = (\text{green, ideas}), x_i = \text{sleep}) \\ \propto \exp(\theta_{x_i = \text{sleep}}^T f(y, x_{i-2,i-1} = (\text{green, ideas})))$$

(in-class discussion)

N-gram Language Models

predict the next word

w_i

N-gram Language Models

N-gram Language Models

Maxent Language Models

This is a *class-based* language model, but incorporate the label into the features

Define features f that make use of the specific label Class

Unlike count-based models, you don't need "separate" models here