CMSC 473/673
 Natural Language Processing

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

Learning Objectives

Code a LM using Maximum Likelihood Estimation (MLE)
Evaluate LMs with perplexity
Create a LM using smoothed counts

Defining the Model

Review: Goal of Language Modeling

$\mathrm{p}_{\theta}($ l...text..] $)$

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to make text more likely

Review: What Part of Language Do We Estimate?

$$
\left.\mathrm{p}_{\theta}(\text { l...text. }]\right)
$$

Is [...text..] a

- Full document?
- Sequence of sentences?
- Sequence of words?

> A: It's taskdependent!

- Sequence of characters?

Review: Probability Chain Rule

$$
\begin{gathered}
p\left(x_{1}, x_{2}, \ldots, x_{S}\right)= \\
p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \cdots p\left(x_{S} \mid x_{1}, \ldots, x_{S-1}\right)= \\
\prod_{i} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \\
\substack{\text { Language modeling is about how to } \\
\text { estimate each of these factors in } \\
\text { \{great, good, sufficient, ...\} ways }}
\end{gathered}
$$

Language Models \& Smoothing

Maximum likelihood (MLE): simple counting

Other count-based models

- Laplace smoothing, add- λ \qquad
- Interpolation models
- Discounted backoff
- Interpolated (modified) Kneser-Ney
- Good-Turing
- Witten-Bell

Maxent n-gram models
Neural n-gram models

Easy to
implement

Advanced/
out of scope

Featureful LMs
Feedforward LMs

Review: Trigram Chaining

$p($ Colorless green ideas sleep furiously $)=$ p (Colorless | <BOS> <BOS>) * p(green | <BOS> Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p (furiously | ideas sleep) * p (<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols Fully proper distribution: Pad the right with a single <EOS> symbol

Review: N-Gram Probability

$$
\begin{gathered}
p\left(w_{1}, w_{2}, w_{3}, \cdots, w_{S}\right)= \\
\prod_{i=1}^{S} p\left(w_{i} \mid w_{i-N+1}, \cdots, w_{i-1}\right)
\end{gathered}
$$

Review: Count-Based N-Grams (Unigrams)

Review: Count-Based N-Grams (Trigrams)

$$
p(\mathrm{z} \mid \mathrm{x}, \mathrm{y})=\frac{\operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\sum_{v} \operatorname{count}(\mathrm{x}, \mathrm{y}, \mathrm{v})}
$$

Knowledge Check: Make a Trigram LM

Review: Evaluating Language Models

What is "correct?"
What is working "well?"

Extrinsic: Evaluate LM in downstream task
Test an MT, ASR, etc. system and see which LM does better Issue: Propagate \& conflate errors

Intrinsic: Treat LM as its own downstream task
Use perplexity (from information theory)

Review: Perplexity

Lower is better : lower perplexity $\boldsymbol{\rightarrow}$ less surprised
perplexity $=\exp ($ avg crossentropy $)$
perplexity $=\exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)$

Example perplexity for trigram model

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0
Perplexity	$? ? ?$

"The film , a hit !"

$$
\begin{aligned}
& \text { perplexity }= \\
& \exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)
\end{aligned}
$$

Example perplexity for trigram model

Trigrams	MLE p(trigram)
<BOS> <BOS> The	1
<BOS> The film	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <EOS>	0
Perplexity	Infinity

"The film , a hit !"

$$
\begin{aligned}
& \text { perplexity }= \\
& \exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)
\end{aligned}
$$

Example perplexity for trigram model

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<BOS> <BOS> The	1	$2 / 17$
<BOS> The film	1	$2 / 17$
The film ,	0	$1 / 17$
film, a	0	$1 / 16$
, a hit	0	$1 / 16$
a hit !	0	$1 / 17$
hit $!$ <EOS>	0	$1 / 16$
Perplexity	Infinity	$? ? ?$

"The film , a hit !"
perplexity $=$
$\exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)$

Example perplexity for trigram model

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<BOS> <BOS> The	1	$2 / 17$
<BOS> The film	1	$2 / 17$
The film ,	0	$1 / 17$
film, a	0	$1 / 16$
, a hit	0	$1 / 16$
a hit !	0	$1 / 17$
hit $!$ <EOS>	0	$1 / 16$
Perplexity	Infinity	13.59

"The film , a hit !"
perplexity $=$
$\exp \left(\frac{-1}{M} \sum_{i=1}^{M} \log p\left(w_{i} \mid h_{i}\right)\right)$

Os Are Not Your (Language Model's)

 Friend```
p(item)\cong\operatorname{count}(\mathrm{ item) = 0 }->
p(item) = 0
0 probability \(\rightarrow\) item is impossible
Os annihilate: \(\mathrm{x}^{*} \mathrm{y}^{*} \mathrm{z}^{*} 0=0\)
Language is creative:
new words keep appearing
existing words could appear in known contexts
How much do you trust your data?
```


## Language Models \& Smoothing

## Maximum likelihood (MLE): simple counting

Other count-based models

- Laplace smoothing, add- $\boldsymbol{\lambda}$
- Interpolation models
- Discounted backoff
- Interpolated (modified) Kneser-Ney
- Good-Turing
- Witten-Bell

Maxent n-gram models
Neural n-gram models

Easy to
implement
Advanced/ out of scope

## Add- $\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word $\lambda$ more times than we did

$$
p(\mathrm{z}) \cong \operatorname{count}(\mathrm{z})+\lambda
$$

Add $\lambda$ to all the counts

## Add- $\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing


Add $\lambda$ to all the counts

## Add- $\lambda$ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word $\lambda$ more times than we did

$$
\begin{gathered}
p(\mathrm{z}) \cong \operatorname{count}(\mathrm{z})+\lambda \\
=\frac{\operatorname{count}(\mathrm{z})+\lambda}{W+V \lambda}
\end{gathered}
$$

Add $\lambda$ to all the counts

## Add- $\lambda \mathrm{N}$-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

| Word (Type) | Raw Count | Norm | Prob. | Add- $\lambda$ Count | Add- $\lambda$ Norm. | Add- $\lambda$ Prob. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The | 1 | 16 | 1/16 |  |  |  |
| film | 2 |  | 1/8 |  |  |  |
| got | 1 |  | 1/16 |  |  |  |
| a | 2 |  | 1/8 |  |  |  |
| great | 1 |  | 1/16 |  |  |  |
| opening | 1 |  | 1/16 |  |  |  |
| and | 1 |  | 1/16 |  |  |  |
| the | 1 |  | 1/16 |  |  |  |
| went | 1 |  | 1/16 |  |  |  |
| on | 1 |  | 1/16 |  |  |  |
| to | 1 |  | 1/16 |  |  |  |
| become | 1 |  | 1/16 |  |  |  |
| hit | 1 |  | 1/16 |  |  |  |
|  | 1 |  | 1/16 |  |  |  |

## Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

| Word (Type) | Raw Count | Norm | Prob. | Add-1 Count | Add-1 Norm. | Add-1 Prob. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The | 1 | 16 | 1/16 | 2 |  |  |
| film | 2 |  | 1/8 | 3 |  |  |
| got | 1 |  | 1/16 | 2 |  |  |
| a | 2 |  | 1/8 | 3 |  |  |
| great | 1 |  | 1/16 | 2 |  |  |
| opening | 1 |  | 1/16 | 2 |  |  |
| and | 1 |  | 1/16 | 2 |  |  |
| the | 1 |  | 1/16 | 2 |  |  |
| went | 1 |  | 1/16 | 2 |  |  |
| on | 1 |  | 1/16 | 2 |  |  |
| to | 1 |  | 1/16 | 2 |  |  |
| become | 1 |  | 1/16 | 2 |  |  |
| hit | 1 |  | 1/16 | 2 |  |  |
| . | 1 |  | 1/16 | 2 |  |  |

## Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

| Word (Type) | Raw Count | Norm | Prob. | Add-1 Count | Add-1 Norm. | Add-1 Prob. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The | 1 | 16 | 1/16 | 2 | $\begin{gathered} 16+14 * 1= \\ 30 \end{gathered}$ |  |
| film | 2 |  | 1/8 | 3 |  |  |
| got | 1 |  | 1/16 | 2 |  |  |
| a | 2 |  | 1/8 | 3 |  |  |
| great | 1 |  | 1/16 | 2 |  |  |
| opening | 1 |  | 1/16 | 2 |  |  |
| and | 1 |  | 1/16 | 2 |  |  |
| the | 1 |  | 1/16 | 2 |  |  |
| went | 1 |  | 1/16 | 2 |  |  |
| on | 1 |  | 1/16 | 2 |  |  |
| to | 1 |  | 1/16 | 2 |  |  |
| become | 1 |  | 1/16 | 2 |  |  |
| hit | 1 |  | 1/16 | 2 |  |  |
| . | 1 |  | 1/16 | 2 |  |  |

## Add-1 N-Grams (Unigrams)

The film got a great opening and the film went on to become a hit .

| Word (Type) | Raw Count | Norm | Prob. | Add-1 Count | Add-1 Norm. | Add-1 Prob. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The | 1 | 16 | 1/16 | 2 | $\begin{gathered} 16+14 * 1= \\ 30 \end{gathered}$ | $=1 / 15$ |
| film | 2 |  | 1/8 | 3 |  | $=1 / 10$ |
| got | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| a | 2 |  | 1/8 | 3 |  | =1/10 |
| great | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| opening | 1 |  | 1/16 | 2 |  | =1/15 |
| and | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| the | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| went | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| on | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| to | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| become | 1 |  | 1/16 | 2 |  | =1/15 |
| hit | 1 |  | 1/16 | 2 |  | $=1 / 15$ |
| . | 1 |  | 1/16 | 2 |  | $=1 / 15$ |

## An Extended Trigram Example

The film got a great opening and the film went on to become a hit .
Q: With OOV, EOS, and BOS,
how many types (for
normalization)?

| Context: $\mathbf{x} \mathbf{y}$ | Word (Type): $\mathbf{z}$ | Raw Count | Add-1 count | Norm. | Probability p(z \| x y) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The film | The | 0 |  |  |  |
| The film | film | 0 |  |  |  |
| The film | got | 1 |  |  |  |
| The film | went | 0 |  |  |  |
| The film | OOV | 0 |  |  |  |
| The film | EOS | 0 |  |  |  |
|  |  |  |  |  |  |
| a great | great | 0 |  |  |  |
| a great | opening | 1 |  |  |  |
| a great | and | 0 |  |  |  |
| a great | the | 0 |  |  |  |

## An Extended Trigram Example

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS,
how many types (for
normalization)?

A: 16
(why don't we count BOS?)

| Context: $\mathbf{x} \mathbf{y}$ | Word (Type): $\mathbf{z}$ | Raw Count | Add-1 count | Norm. | Probability p(z \| x y) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The film | The | 0 |  |  |  |
| The film | film | 0 |  |  |  |
| The film | got | 1 |  |  |  |
| The film | went | 0 |  |  |  |
| The film | OOV | 0 |  |  |  |
| The film | EOS | 0 |  |  |  |

## An Extended Trigram Example

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS,
how many types (for
normalization)?

A: 16
(why don't we count BOS?)

| Context: x y | Word (Type): z | Raw Count | Add-1 count | Norm. | Probability p(z \\| y ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The film | The | 0 | 1 | $\begin{gathered} 17 \\ (=1+16 * 1) \end{gathered}$ | 1/17 |
| The film | film | 0 | 1 |  | 1/17 |
| The film | got | 1 | 2 |  | 2/17 |
| The film | went | 0 | 1 |  | 1/17 |
| ... |  |  |  |  | ... |
| The film | OOV | 0 | 1 |  | 1/17 |
| The film | EOS | 0 | 1 |  | 1/17 |
| ... |  |  |  |  |  |
| a great | great | 0 | 1 | 17 | 1/17 |
| a great | opening | 1 | 2 |  | 2/17 |
| a great | and | 0 | 1 |  | 1/17 |
| a great | the | 0 | 1 |  | 1/17 |

## An Extended Trigram Example

The film got a great opening and the film went on to become a hit .

| Context: x y | Word (Type): z | Raw Count | Add-1 count | Norm. | Probability p(z \| x y $)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| The film | The | 0 | 1 | $\begin{gathered} 17 \\ (=1+16 * 1) \end{gathered}$ | 1/17 |
| The film | film | 0 | 1 |  | 1/17 |
| The film | got | 1 | 2 |  | 2/17 |
| The film | went | 0 | 1 |  | 1/17 |
| ... |  |  |  |  | ... |
| The film | OOV | 0 | 1 |  | 1/17 |
| The film | EOS | 0 | 1 |  | 1/17 |
| ... |  |  |  |  |  |
| a great | great | 0 | 1 | 17 | 1/17 |
| a great | opening | 1 | 2 |  | 2/17 |
| a great | and | 0 | 1 |  | 1/17 |
| a great | the | 0 | 1 |  | 1/17 |
| ... |  |  |  |  |  |

## What are the tri-grams for "The film, a hit!"

| Trigrams | MLE p(trigram) |
| :---: | :---: |
| <BOS> <BOS $>$ The | 1 |
| <BOS> The film | 1 |
| The film , | 0 |
| film , a | 0 |
| , a hit | 0 |
| a hit ! | 0 |
| hit ! <EOS> | 0 |

## What are the tri-grams for "The film, a hit !"

| Trigrams | MLE p(trigram) | UNK-ed trigrams |
| :---: | :---: | :---: |
| <BOS> <BOS> The | 1 | <BOS> <BOS> The |
| <BOS> The film | 1 | <BOS> The film |
| The film , | 0 | The film <UNK> |
| film , a | 0 | film <UNK> a |
| , a hit | 0 | <UNK> a hit |
| a hit ! | 0 | a hit <UNK> |
| hit ! <EOS> | 0 | hit <UNK> <EOS> |

## What are the tri-grams for "The film, a hit !"

| Trigrams | MLE p(trigram) | UNK-ed trigrams | Smoothed <br> p(trigram) |
| :---: | :---: | :---: | :---: |
| <BOS> <BOS> The | 1 | <BOS> <BOS> The | $2 / 17$ |
| <BOS> The film | 1 | <BOS> The film | $2 / 17$ |
| The film , | 0 | The film <UNK> | $1 / 17$ |
| film , a | 0 | film <UNK> a | $1 / 16$ |
| , a hit | 0 | <UNK> a hit | $1 / 16$ |
| a hit ! | 0 | a hit <UNK> | $1 / 17$ |
| hit ! <EOS> | 0 | hit <UNK> <EOS> | $1 / 16$ |

## Setting Hyperparameters

Use a development corpus

## Training Data

## Dev

Data
Test
Data

Choose $\lambda s$ to maximize the probability of dev data:

- Fix the N -gram probabilities (on the training data)
- Then search for $\lambda$ s that give largest probability to held-out set:


## Language Models \& Smoothing

## Maximum likelihood (MLE): simple counting



## Maxent Models as Featureful n-gram Language Models

p(Colorless green ideas sleep furiously | Label) = p(Colorless | Label, <BOS>) * ... * p(<EOS> | Label , furiously)

$$
\begin{gathered}
p\left(x_{i} \mid y, x_{i-N+1: i-1}\right)= \\
\operatorname{maxent}\left(y, x_{i-N+1: i-1}, x_{i}\right)
\end{gathered}
$$

## Language Model with Maxent n-grams

$$
p_{n}(\mathbb{Q} \mid y)=\prod_{i=1}^{M} \operatorname{maxent}(y, \underbrace{\text { label }}_{\substack{\text { absam }}}
$$

Iterate through all possible output vocab types $x^{\prime}$---just like in

$$
=\prod_{i=1}^{M} \frac{\exp \left(\theta_{x_{i}}^{T} f\left(y, x_{i-n+1: i-1}\right)\right)}{\sum_{x^{\prime}} \exp \left(\theta_{x^{\prime}}{ }^{T} f\left(y, x_{i-n+1: i-1}\right)\right)}
$$

## What Should These Features Do?

$$
p\left(x_{i} \mid y, x_{i-N+1: i-1}\right)=\operatorname{maxent}\left(y, x_{i-N+1: i-1}, x_{i}\right), \text { e.g. }
$$

$$
\begin{gathered}
p(\text { sleep } \mid y, \text { green, ideas })= \\
\operatorname{maxent}^{\text {g }}\left(y, x_{i-2, i-1}=(\text { green, ideas }), x_{i}=\text { sleep }\right) \\
\left.\propto \exp \left(\theta_{x_{i}=\text { sleep }^{T} f\left(y, x_{i-2, i-1}\right.}=(\text { green, ideas })\right)\right)
\end{gathered}
$$

(in-class discussion)

N-gram Language Models given some context...

## N-gram Language Models

given some context..
compute beliefs about what is likely..

predict the next word

## N-gram Language Models

given some context..
compute beliefs about what is likely...

predict the next word

## Maxent Language Models

```
given some context.
```

compute beliefs about what is likely..


## A Closer Look at Maxent $p$ ( <br> 

This is a class-based language model, but incorporate the label into the features


Define features $f$ that make use of the specific label Class

Unlike count-based models, you don't need "separate" models here

