# CMSC 473/673 <br> Natural Language Processing 

Instructor: Lara J. Martin (she/they)
TA: Duong Ta (he)

## Learning Objectives

Compare sequence-to-sequence RNNs to simple NNs \& non-neural LMs
Compare sequence-to-sequence RNNs to transformers

Review:
A Simple Recurrent Neural Network Cell


Review:
A Simple Recurrent Neural Network Cell


Review: A Multi-Layer Simple Recurrent Neural Network Cell


## Review:

## Defining A Simple RNN in Python

## http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n_hidden = 128
rnn = RNN(n_letters, n_hidden, n_tetetgories)
```



## Review: <br> Training A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html


## Sequence-to-Sequence RNNs

Up until 2017 or so, neural language models were mostly built using recurrent neural networks.

## Sequence to Sequence Learning

with Neural Networks

| Hya Sutskever | Oriol Vinyals |  |
| :---: | :---: | :---: |
| Google | Gogle <br> ilyasuegoogle.com | Quoc V.Le <br> Google |
| vinyals@gogle.com | qvi@google.com |  |

Abstract
Deep Neural Networks (DNNs) are powerful models that have achieved excel-
lent performance on difficult learning tasks. Although DNNs work well whenever lent performance on difficult learning tasks. Although DNNs work well wheneve large labeled training sets are available, they cannot be used to map sequences to earning that makes minimal assumptions on the sequence structure. Our metho ses a multiliayered Long Short-Term Memory (LSTM) to map the input sequenc o a vector of a fixed dimensionality, and then another deep LSTM to decode the
arget sequence from the vector. Our main result is that on an English to French anslation task from the WMT' 14 dataset, the translations produced by the LSTM chieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU core was penalized on out-of-vocabulary words. Additionally, the LSTM did no
ave difficulty on long sentences. For comparison, a phrase-based SMT system chieves a BLEU score of 33.3 on the same dataset. When we used the LST 0 rerank the 1000 hypotheses produced by the aforementioned SMT system, it LEU. The LSTM also learned sensible phrase and sentence representations th re sensitive to word order and are relatively invariant to the active and the pa ive voice. Finally, we found that reversing the order of the words in all sourc because doing so introduced many short term dependencies between the source

Generating Sequences With Recurrent Neural Networks

> Alex Graves
> Department of Computer Science
> University of Toronto
> graves@cs.toronto.edu

This paper shows how Long Short-term Memory recurrent neural networks can be used to generate complex sequences with long-range strucure, simply by predicting one data point at a time. The approach is demonstrated for text (where the data are discrete) and online handwriting (where the data are real-valued). It is then extended to handwriting ynthesis by allowing the network to condition its predictions on a text sequence. The resulting system is able to generate highly realistic cursive


## Sequence-to-Sequence / Encoder-Decoder Models




## Inputs to the Encoder

The encoder takes as input the embeddings corresponding to each token in the sequence.


## Outputs from the Encoder

The encoder outputs a sequence of vectors. These are called the hidden state of the encoder.



## Inputs to the Decoder

The decoder takes as input the hidden states from the encoder as well as the embeddings for the tokens seen so far in the target sequence.


## Outputs from the Decoder

The decoder outputs an embedding $\widehat{\boldsymbol{y t}}$. The goal is for this embedding to be as close as possible to the embedding of the true next token.


## Turning $\widehat{\boldsymbol{y t}}$ into a Probability Distribution

We can multiply the predicted embedding $\widehat{y t}$ by our vocabulary embedding matric to get a score for each vocabulary word. These scores are referred to as logits.

The softmax function then lets us turn the logits into probabilities.


## Review: Loss Function

$$
\mathcal{L}=-\sum_{t=1}^{T} \log P\left(Y_{t}=\underset{\downarrow}{i^{*}} \mid \mathbf{x}_{1: T}, \mathbf{y}_{1: t-1}\right)
$$

The index of the true
$t$ th word in the target
sequence.

## Review: Loss Function

$$
\mathcal{L}=-\sum_{t=1}^{T} \log P\left(Y_{t}=i^{*} \mid \mathbf{x}_{1: T}, \mathbf{y}_{1: t-1}\right)
$$

The probability the language model
assigns to the true $t$ th word in the
target sequence.

## Loss Function

$$
\begin{aligned}
& \mathcal{L}=-\sum_{t=1}^{T} \log P\left(Y_{t}=i^{*} \mid \mathbf{x}_{1: T}, \mathbf{y}_{1: t-1}\right) \\
& =-\sum_{t=1}^{T} \log \frac{\exp \left(\mathbf{E} \hat{\mathbf{y}}_{t}\left[i^{*}\right]\right)}{\sum_{j} \exp \left(\mathbf{E} \hat{\mathbf{y}}_{t}[j]\right)} \\
& P\left(Y_{t}=i \mid \mathbf{x}_{1: T}, \mathbf{y}_{1: t-1}\right)=\frac{\exp \left(\mathbf{E} \hat{\mathbf{E}}_{t i i}\right)}{\sum_{j} \exp \left(\mathbf{E} \hat{\mathbf{t}}_{t i i}\right)}
\end{aligned}
$$

## Loss Function

$$
\begin{aligned}
\mathcal{L} & =-\sum_{t=1}^{T} \log P\left(Y_{t}=i^{*} \mid \mathbf{x}_{1: T}, \mathbf{y}_{1: t-1}\right) \\
& =-\sum_{t=1}^{T} \log \frac{\exp \left(\mathbf{E y}_{t}\left[i^{*}\right]\right)}{\sum_{j} \exp \left(\mathbf{E} \hat{\mathbf{y}}_{t}[j]\right)} \\
& =-\sum_{t=1}^{T} \mathbf{E} \hat{\mathbf{y}}_{t}\left[i^{*}\right]
\end{aligned}
$$

## Generating Text

Also sometimes called decoding
To generate text, we need an algorithm that selects tokens given the predicted probability distributions.

Examples:
Argmax
Random sampling
Beam search


## RNNs - Single Layer Decoder



The current hidden state is computed as a function of the previous hidden state and the embedding of the current word in the target sequence.
$\mathbf{h}_{t}=\operatorname{RNN}\left(\mathbf{W}_{i h} \mathbf{y}_{t}+\mathbf{W}_{h h} \mathbf{h}_{t-1}+\mathbf{b}_{h}\right)$
The current hidden state is used to predict an embedding for the next word in the target sequence.
$\hat{\mathbf{e}}_{t}=\mathbf{b}_{e}+\mathbf{W}_{h e} \mathbf{h}_{t}$
This predicted embedding is used in the loss function:

$$
\Delta=\operatorname{softmax}\left(\stackrel{{ }^{\mathbf{E}}}{\square}\right.
$$

## What is the "RNN" unit?



## Review: LSTMs/GRUs

## LSTM: Long Short-Term Memory (Hochreiter \& Schmidhuber, 1997)

LSTMs were originally designed to keep around information for longer in the hidden state as it gets repeatedly updated.

GRU: Gated Recurrent Unit (Cho et al., 2014)


## RNN Multi-Layer Decoder Architecture

Computing the next hidden state:


For the first layer:
$\mathbf{h}_{t}^{1}=\operatorname{RNN}\left(\mathbf{W}_{i h^{1}} \mathbf{y}_{t}+\mathbf{W}_{h^{1} h^{\mathbf{1}}} \mathbf{h}_{t-1}^{1}+\mathbf{b}_{h}^{1}\right)$
For subsequent layers:
$\mathbf{h}_{t}^{l}=\operatorname{RNN}\left(\mathbf{W}_{i h^{l}} \mathbf{y}_{t}+\mathbf{W}_{h^{l-1}}{ }_{h^{l}} \mathbf{h}_{t}^{l-1}+\mathbf{W}_{h^{l} h^{l}} \mathbf{h}_{t-1}^{l}+\mathbf{b}_{h}^{l}\right)$
Predicting an embedding for the next token in the sequence:
$\widehat{\mathbf{e} t}=\mathbf{b}_{e}+\sum_{l=1}^{L} \mathbf{W}_{h^{l} e} \mathbf{h}_{t}^{l}$
Each of the b and W are learned bias and weight matrices.

## RNN Encoder-Decoder Architectures

How do we implement an encoder-decoder model?


## RNN Encoder-Decoder Architectures

Simplest approach: Use the final hidden state from the encoder to initialize the first hidden state of the decoder.


## RNN Encoder-Decoder Architectures

[The, hippopotamus, ...

> When predicting the next English word, how much weight should the model put on each French word in the source sequence?

[L', hippopotame, a, mangé, mes, devoirs]

## Attention

## Better approach: an attention mechanism


[L', hippopotame,
[The, hippopotamus, ...

a, mangé,

Compute a linear combination of the encoder hidden states.


Decoder's prediction at position $t$ is based on both the context vector and the hidden state outputted by the RNN at that position.
$\prod_{\substack{\hat{\mathbf{e}}_{t}}}=f_{\theta}(\xlongequal[\mathbf{h}_{t}^{\mathrm{dec}} \mathbf{c}_{t}]{ })$

## RNN Encoder-Decoder

## Architectures

The th context vector is computed as $\mathbf{c t}=\mathbf{H}^{\mathrm{enc}} a t$
$a t[i]=\operatorname{softmax}\left(\right.$ att $\_$score $\left.\left(\mathbf{h}_{t}^{\text {dec }}, \mathbf{h} i^{\text {enc }}\right)\right)$

Compute a linear combination of the encoder hidden states.


$\hat{\mathbf{e}}_{t}$

$$
\mathbf{H}^{\mathrm{enc}}=\| \|
$$

dot product
bilinear function

## Review: Encoder Code

| input prev_hidden |  |
| :---: | :---: |
| \} |  |
| embedding | class EncoderRNN(nn.Module): |
| $\downarrow$ | def __init__(self, input_size, hidden_size, dropout_p=0.1): |
| embedded | super(EncoderRNN, self).__init__() |
|  | self.hidden_size = hidden_size |
| gru |  |
|  | self.embedding = nn.Embedding(input_size, hidden_size) |
| output hidden | self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True) |
| self.dropout = nn. Dropout(dropout_p) |  |
| def forward(self, input): |  |
| embedded = self.dropout(self.embedding(input)) |  |
| output, hidden = self.gru(embedded) |  |
| return output, hidden |  |

## class DecoderRNN(nn.Module)

## Review: Decoder Code


def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self. out = nn.Linear(hidden_size, output_size)
def forward(self, encoder_outputs, encoder_hidden, target_tensor=None): batch_size = encoder_outputs.size(0)
decoder_input = torch.empty(batch_size, 1, dtype=torch.long,
device=device).fill_(SOS_token)
decoder_hidden = encoder_hidden
decoder_outputs = []
for $i$ in range(MAX_LENGTH):
decoder_output, decoder_hidden = self.forward_step(decoder_input, decoder_hidden) decoder_outputs.append (decoder_output)
if target_tensor is not None:
\# Teacher forcing: Feed the target as the next input
decoder_input $=$ target_tensor[:, i].unsqueeze(1) 非 Teacher forcing else:
\# Without teacher forcing: use its own predictions as the next input
_, topi = decoder_output.topk(1)
decoder_input $=$ topi.squeeze(-1).detach() \# detach from history as input
decoder_outputs = torch.cat(decoder_outputs, dim=1)
decoder_outputs = F.log_softmax (decoder_outputs, dim=-1)
return decoder_outputs, decoder_hidden, None 非 We return 'None' for consistency in the training loop
def forward_step(self, input, hidden):
output $=$ self.embedding(input)
output $=$ F.relu(output)
output, hidden = self.gru(output, hidden)
output = self.out(output)
return output, hidden

## Attention Decoder



## Think-Pair-Share

What are some of the strengths of seq2seq models (compared to some of the earlier LMs we talked about)?

What are some of its weaknesses?

## Transformers

## Since 2018, the field has rapidly standardized on the Transformer architecture

Attention Is All You Need

| Ashish Vaswani* <br> Google Brain | Noam Shazeer** <br> Google Brain | Niki Parmar* <br> Google Research | Jakob Uszkoreit* <br> Google Research |
| :---: | :---: | :---: | :---: |
| vaswani@google.com | noam@google.com | nikip@google.com | usz@google.com |

Aidan N. Gomez* University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser Google Brain
lukaszkaiser@google.com

## Illia Polosukhin*

illia.polosukhin@gmail.com

## Abstract

## Transformers

The Transformer is a non-recurrent non-convolutional (feed-forward) neural network designed for language understanding

- introduces self-attention in addition to encoderdecoder attention



## Transformers

Encoder


## Transformers



## Transformers



## Attention Mechanism




Self-attention between a sequence of hidden states and that same sequence of hidden states.



Encoder-decoder attention, like what has been standard in recurrent seq2seq models.


## Attention Mechanism



## Scaled Dot-Product Attention

The scaled dot-product attention mechanism is almost identical to the one we looked at, but let's turn it into matrix multiplications.


The query: $\mathrm{Q} \in R^{T x d k}$
The key: $K \in R^{T \prime x d k}$
The value: $\mathrm{V} \in R^{T x d k} \quad \begin{aligned} & \text { This is the } \alpha \text { vector we } \\ & \text { learned about before. }\end{aligned}$
Attention $(\mathrm{Q}, \mathrm{K}, \mathrm{V})=\operatorname{softmax}\left(\frac{\mathrm{QK}^{T}}{\sqrt{d_{k}}}\right) \mathrm{V}$

## Scaled Dot-Product Attention

The scaled dot-product attention mechanism is almost identical to the one we looked at, but let's turn it into matrix multiplications.


The query: $\mathrm{Q} \in R^{T x d k}$
The key: $\mathrm{K} \in R^{T \prime x d k}$
This is the dot-product
The value: $\mathrm{V} \in R^{T x d k} \quad$ scoring function from
previous slides
$\operatorname{Attention}(\mathrm{Q}, \mathrm{K}, \mathrm{V})=\operatorname{softmax}\left(\frac{\mathbf{Q K}^{T}}{\sqrt{d_{k}}}\right) \mathbf{V}$
The $\sqrt{d_{k}}$ in the denominator prevents the dot product from getting too big


## Scaled Dot-Product Attention



## Scaled Dot-Product Attention

$$
\text { Attention }(\mathrm{Q}, \mathrm{~K}, \mathrm{~V})=\operatorname{softmax}\left(\frac{\mathbf{Q K}^{T}}{\sqrt{d_{k}}}\right) \mathbf{V}
$$



## For self-attention:

Keys, queries, and values all come from the outputs of the previous layer

For encoder-decoder attention:
Keys and values come from encoder's final output. Queries come from the previous decoder layer's outputs.


## Multi-Head Attention



Attention $(\mathbf{Q}, \mathrm{K}, \mathrm{V})=\operatorname{softmax}\left(\frac{\mathrm{QK}^{T}}{\sqrt{d_{k}}}\right) \mathbf{V}$
MultiHeadAtt $(\mathbf{Q}, \mathbf{K}, \mathbf{V})=$

$$
\text { Concat }\left(\text { head }_{1}, \ldots \text { head }_{h}\right) \mathbf{w}^{o}
$$

Instead of operating on $\mathbf{Q}, \mathbf{K}$, and $\mathbf{V}$ mechanism projects each input into a smaller dimension. This is done $h$ times.

The attention operation is performed on each of these "heads," and the results are concatenated.

Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions.


## Multi-Head Attention



Two different self-attention heads:



## Inputs to the Encoder

The input into the encoder looks like:

= token embeddings + position embeddings


## The Encoder

$\left.\begin{array}{c}\text { Multi-Head } \\ \text { Attention }\end{array}\right)=$ MultiHeadAtt $\left(\mathbf{H}_{i}^{e n c}, \mathbf{H}_{i}^{e n c}, \mathbf{H}_{i}^{\text {enc }}\right)$


## The Encoder



## The Encoder

| Multi-Head |
| :---: |
| Attention |$=$ MultiHeadAtt $\left(\mathbf{H}_{i}^{\text {enc }}, \mathbf{H}_{i}^{\text {enc }}, \mathbf{H}_{i}^{\text {enc }}\right)$

Add \& Norm $=\operatorname{LayerNorm}\left(\begin{array}{c}\text { Multi-Head } \\
\text { Attention }\end{array}+\mathbf{H}_{i}^{\text {enc }}\right)$

| Feed |
| :---: |
| Forward |$=\max \left(0\right.$, Add \& Norm $\left.\mathbf{W}_{1}+b_{1}\right) \mathbf{W}_{2}+b_{2}$



## The Encoder




## The Decoder

| Masked Multi- |
| :---: |
| Head Attention |$=$ MaskedMultiHeadAtt $\left(\mathbf{H}_{i}^{d e c}, \mathbf{H}_{i}^{d e c}, \mathbf{H}_{i}^{d e c}\right)$

Layer: 5 Attention: Output - Output *



NTION \& TRANSFORMERS

## The Decoder

$\begin{gathered}\text { Masked Multi- } \\ \text { Head Attention }\end{gathered}=M a s k e d M u l t i H e a d A t t\left(\mathbf{H}_{i}^{\text {dec }}, \mathbf{H}_{i}^{\text {dec }}, \mathbf{H}_{i}^{d e c}\right)$
Add \& Norm $=$ LayerNorm $\left(\begin{array}{c}\text { Multi-Head } \\ \text { Attention }\end{array}+\mathbf{H}_{i}^{d e c}\right)$


## The Decoder

```
\begin{subarray}{c}{\mathrm{ Masked Multi- }}\\{\mathrm{ Head Attention}}\end{subarray}=MMaskedMultiHeadAtt(\mp@subsup{\mathbf{H}}{i}{\mathrm{ dec }},\mp@subsup{\mathbf{H}}{i}{\mathrm{ dec }},\mp@subsup{\mathbf{H}}{i}{dec})
Add & Norm =LayerNorm(}\begin{array}{c}{\mathrm{ Multi-Head }}\\{\mathrm{ Attention }}\end{array})+\mp@subsup{\mathbf{H}}{i}{dec}
\begin{subarray}{c}{\mathrm{ Enc-Dec Multi- }}\\{\mathrm{ Head Attention}}\end{subarray}=MultiHeadAtt( (Hi
```



## The Decoder



## The Decoder



## Strengths of the Transformer Architecture

Training is easily parallelizable

- Larger models can be trained efficiently.

Does not "forget" information from earlier in the sequence.

- Any position can attend to any position.

What are some of its weaknesses?

## Knowledge Check

Draw a map comparing \& contrasting the following LMs that we talked about:

Count-based LMs
Maxent/Logistic Regression LMs
Simple NNs
Simple RNNs
Seq2Seq RNNs
Transformers

