
CMSC 473/673
Natural Language Processing
Instructor: Lara J.  Martin (she/they)

TA: Duong Ta (he)
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Slides modified from Dr. Frank Ferraro & Dr. Daphne Ippolito



Learning Objectives
Differentiate between encoding/decoding and encoder-decoder networks

Consider when to use various sampling algorithms

Discuss the uses of finetuning
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Tri-gram 
Feedforward 
Neural 
Network
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Recurrent 
Neural 
Network



Another way of illustrating it
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https://towardsdatascience.com/introducing-recurrent-neural-networks-f359653d7020



Sequence-to-Sequence / Encoder-Decoder Models
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https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be 
LSTM

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Review: RNN Encoder-Decoder 
Architectures
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Review: Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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Review: Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of 
the encoder.
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Review: Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.
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Review: Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as 
close as possible to the embedding of the true next token.
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Review: Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.

Examples:

Argmax

Beam search

Random sampling
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Also sometimes called decoding



Review: Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]
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Review: Attention Decoder
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Limitations of Recurrent 
architecture
Slow to train.
◦ Can’t be easily parallelized.

◦ The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
◦ If two tokens are K positions apart, there are K opportunities for knowledge of the first token 

to be erased from the hidden state before a prediction is made at the position of the second 
token.
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Review: Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.

Examples:

Argmax

Beam search

Random sampling
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Also sometimes called decoding



Greedy Search (Argmax)
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https://huggingface.co/blog/how-to-generate



Beam Search
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https://huggingface.co/blog/how-to-generate

Number of 
beams = 2



Random Sampling
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https://huggingface.co/blog/how-to-generate



Top-K Sampling
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https://huggingface.co/blog/how-to-generate

A. Holtzman, J. Buys, M. Forbes, and Y. Choi, “The Curious Case of Neural Text Degeneration,” in International Conference on Learning Representations (ICLR), 2020, p. 16. 
https://openreview.net/forum?id=rygGQyrFvH

https://openreview.net/forum?id=rygGQyrFvH


Top-P Sampling
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https://huggingface.co/blog/how-to-generate



Think-Pair-Share
When might you want to use one sampling algorithm over the other?
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Greedy Beam 
Search

Random 
Sampling Top-K/P



Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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Transformers
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Encoder
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Transformers
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Decoder
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Transformers
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Fine-tuning
Start with pre-trained 
model

Freeze the model 
(don’t touch it) 
except for the last 
layer
◦ Start with generalized 

“foundational” model

◦ Train on a new, small 
dataset for your 
specific task
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GPT-2



Pre-trained models
Most LLMs people use today are pre-trained foundational models
◦ Has a grasp on human language but not trained on a specific task

Trained on “the Internet” → Impossible to know all of what it’s train on
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What types of things can go wrong with 
finetuning?
Underfitting – finetuning data is too different from what the foundational model 
was train on

Overfitting – overwrites what the model learned originally
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