NLP Tasks (Continued)

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner

NLP TASKS

Learning Objectives

Distinguish between different text classification tasks

Formalize NLP Tasks at a high-level:

- What are the input/output for a particular task?
- What might the features be?
- What types of applications could the task be used for?

Similar to HW 1

Review

What's the difference between learning/training and inference/decoding/testing a model?

- Training: adjusting the model's weights to learn how to make good predictions; making the model
- Decoding: using a model's existing weights to make predictions; running the model when it's done

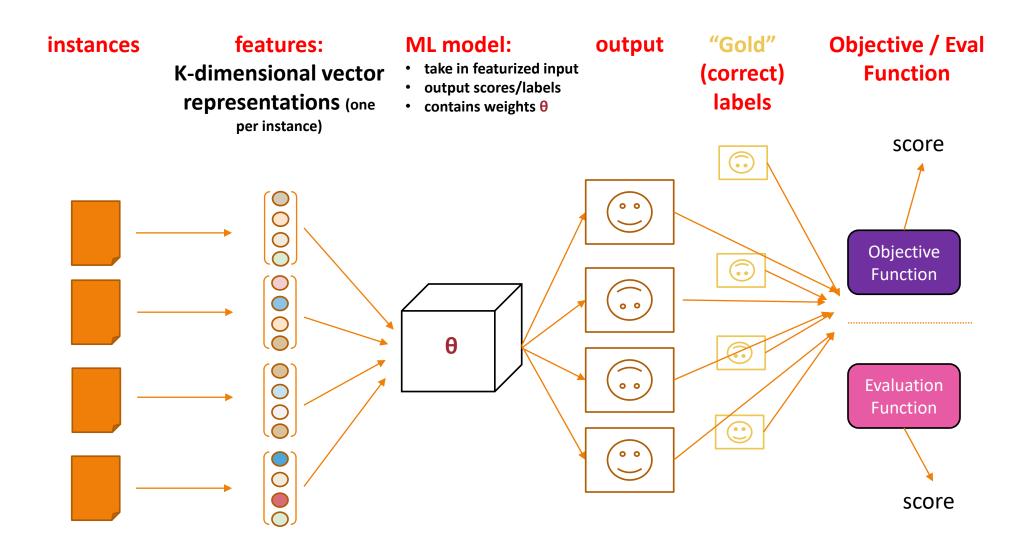
How are the objective function and evaluation function the same?

Calculation to determine how accurate the predictions are

How are they different?

- Objective function is for training \rightarrow tells the model how close it's getting to optimal weights
- Evaluation function is for testing

ML/NLP Framework for Learning & Prediction



What are the three types of features we discussed?

1. Bag-of-words (or bag-ofcharacters, bag-of-relations)

2. Linguistically-inspired features

3. Dense features via embeddings

- easy to define / extract
- sometimes still very useful
- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used
- harder to define
- harder to extract (unless there's a model to run)
- currently: freq. used

Classification Types (Terminology)

	Name	Number of Tasks	# Label Types	Example	
		(Domains) Labels are Associated with			
	(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}	
	Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}	
	Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}	
	Multi-task Classification	>1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling	
2/6/202				Task 2: sentiment	

Text Annotation Tasks ("Classification" Tasks)

1. Classify the entire document ("text categorization")

2.Classify word tokens individually

3. Classify word tokens in a sequence

4.Identify phrases ("chunking")

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation

Text Annotation Tasks ("Classification" Tasks)

1.Classify the entire document ("text categorization")

2. Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases ("chunking")

5.Syntactic annotation (parsing)

6.Semantic annotation

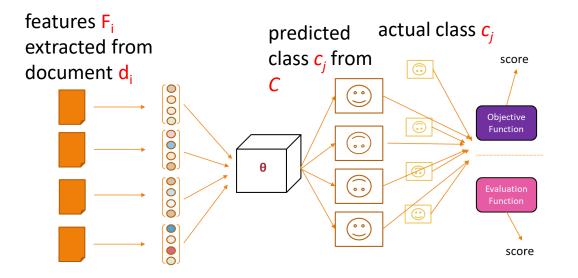
Review: Document Classification

Assigning subject categories, topics, or genres Sentiment analysis

Language Identification

Spam detection

Authorship identification



NLP TASKS

...

Text Annotation Tasks ("Classification" Tasks)

1.Classify the entire document ("text categorization")

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases ("chunking")

5.Syntactic annotation (parsing)

6.Semantic annotation

7.Text generation

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

- \Rightarrow (A) Manufacturing plant or
- \Rightarrow (B) Living plant

Training Data: Build a special classifier just for "plant" tokens

Sense	nse Context	
(1) Manufacturing	union responses to <i>plant</i> closures	
,, ,,	computer disk drive <i>plant</i> located in	
""	company manufacturing <i>plant</i> is in Orlando	
(2) Living	animal rather than <i>plant</i> tissues can be	
""	to strain microscopic <i>plant</i> life from the	
""	and Golgi apparatus of <i>plant</i> and animal cells	

Test Data:

Sense	Context	
???	vinyl chloride monomer <i>plant</i> , which is	
???	molecules found in <i>plant</i> tissue from the	

slide courtesy of D. Yarowsky (modified

WSD for Machine Translation

(English \rightarrow Spanish)

Problem:

... He wrote the last **sentence** two years later ...

 \Rightarrow sentencia (legal sentence) or

 \Rightarrow *frase* (grammatical sentence)

Training Data: Build a special classifier just for "sentence" tokens

Translation	Context
(1) sentencia	for a maximum sentence for a young offender
,, ,,	of the minimum <i>sentence</i> of seven years in jail
""	were under the sentence of death at that time
(2) frase	read the second <i>sentence</i> because it is just as
,, ,,	The next sentence is a very important
,, ,,	It is the second sentence which I think is at

Test Data:

Translation	Context
???	cannot criticize a sentence handed down by
???	listen to this sentence uttered by a former

slide courtesy of D. Yarowsky (modified

Accent Restoration in Spanish & French

Problem:

Input: ... deja travaille cote a cote ...
 ↓
 Output: ... déjà travaillé côte à côte ...

Examples:

- ... appeler l'autre cote de l'atlantique ...
 - \Rightarrow *côté* (meaning side) or
 - \Rightarrow *côte* (meaning coast)
- ... une famille des pecheurs ...
 - \Rightarrow *pêcheurs* (meaning fishermen) or
 - \Rightarrow *pécheurs* (meaning sinners)

Accent Restoration in Spanish & French

Training Data:

Pattern	Context		
(1) côté	du laisser de cote faute de temps		
,, ,,	appeler l' autre cote de l' atlantique		
** **	passe de notre cote de la frontiere		
(2) côte	vivre sur notre cote ouest toujours		
""	creer sur la cote du labrador des		
** **	travaillaient cote a cote , ils avaient		

Test Data:

Pattern	Context	
???	passe de notre cote de la frontiere	
???	creer sur la cote du labrador des	

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...

 \Rightarrow aid or

 \Rightarrow aide

Training Data:

Spelling	Context
(1) aid	and cut the foreign aid/aide budget in fiscal 1996
""	they offered federal aid/aide for flood-ravaged states
(2) aide	fired presidential aid/aide Dick Morris after
** **	and said the chief aid/aide to Sen. Baker, Mr. John

Test Data:

Spelling	Context
???	said the longtime aid/aide to the Mayor of St
???	will squander the <i>aid/aide</i> it receives from the

slide courtesy of D. Yarowsky (modified

What features? Example: "word to [the] left [of correction]"

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n-gram language model ($n \ge 2$) would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

slide courtesy of D. Yarowsky (modified

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...

 $\Rightarrow l\epsilon d$ (as in *lead mine*) or

 \Rightarrow *li*:*d* (as in *lead role*)

Training Data:

Pronunciation	Context	
(1) l∈d	it monitors the <i>lead</i> levels in drinking	
"""	conference on <i>lead</i> poisoning in	
"""	strontium and <i>lead</i> isotope zonation	
(2) li:d	maintained their <i>lead</i> Thursday over	
"""	to Boston and <i>lead</i> singer for Purple	
,, ,,	Bush a 17-point <i>lead</i> in Texas , only 3	

Test Data:

Pronunciation	Context	
???	median blood <i>lead</i> concentration was	
???	his double-digit lead nationwide . The	

slide courtesy of D. Yarowsky (modified)

An assortment of possible cues ...

Γ		Position	Collocation		l∈d	li:d		
1	N-grams	+1 L	lead <i>level/N</i>		219	0		
		-1 W	narrow lead		0	70		
((word,	+1 W	lead in		207	898		
1	lemma,	-1w,+1w	of lead in		162	0		
1	part-of-speech)	-1w,+1w	the lead in		0	301		
		+1p,+2p	lead, <nou< th=""><th>N></th><th>234</th><th>7</th><th></th><th></th></nou<>	N>	234	7		
	Wide-context	±k w	<i>zinc</i> (in $\pm k$ w	vords)	235	0		
	collocations	$\pm k W$	copper (in \pm	k words)	130	0		
	Verb-object	-V L	follow/V + le	ad	0	527		
1	relationships	-V L	take/V + lead	1	1	665		
				Frequenc	y as	Frequ	iency as]
generates a whole bunch of potential			Word to left	Aid		Aide		
cues – use data to find out which		ch 🗍	foreign	718			1	1
ones work best		t	federal	297			0	
			western		146		0	
25]	provide		88		0	

2/6/2025

slide courtesy of D. Yarowsky (modified

An assortment of possible cues ...

		Position	Collocation	led	li:d	This feature is	
	N-grams	+1 L	lead level/N	219	0	relatively weak,	
		-1 W	narrow lead	0	70	but weak	
	(word,	+1 w	lead in	207	898	features are still	
	lemma,	-1w,+1w	of lead in	162	0	useful, especially	
	part-of-speech)	-1w,+1w	the lead in	0	301	since	
		+1P,+2P	lead, <noun></noun>	234	7	very few features	
	Wide-context	±k w	<i>zinc</i> (in $\pm k$ words)	235	0	will fire in a giver	
	collocations	$\pm k W$	<i>copper</i> (in $\pm k$ words)	130	0	context.	
	Verb-object	-V L	follow/V + lead	0	527		
	relationships	- Y L	take/V + lead	1	665		
·				•			
~	orgod ranking		11.40 follow/V + lead		\Rightarrow	li:d	
	erged ranking of all cues		11.20 <i>zinc</i> (in $\pm k$ wor	ds)	\Rightarrow	l∈d	
of	all these types		11.10 lead level/N		l∈d		
01	an these types		10.66 of lead in		\Rightarrow	led slide courte	
			10.59 <i>the</i> lead <i>in</i>		\Rightarrow li:d		
			10.51 lead role		\Rightarrow	li:d	

slide courtesy of D. Yarowsky (modified)

Final decision list for *lead* (abbreviated)

What are the input/output? What are the features? What types of applications?

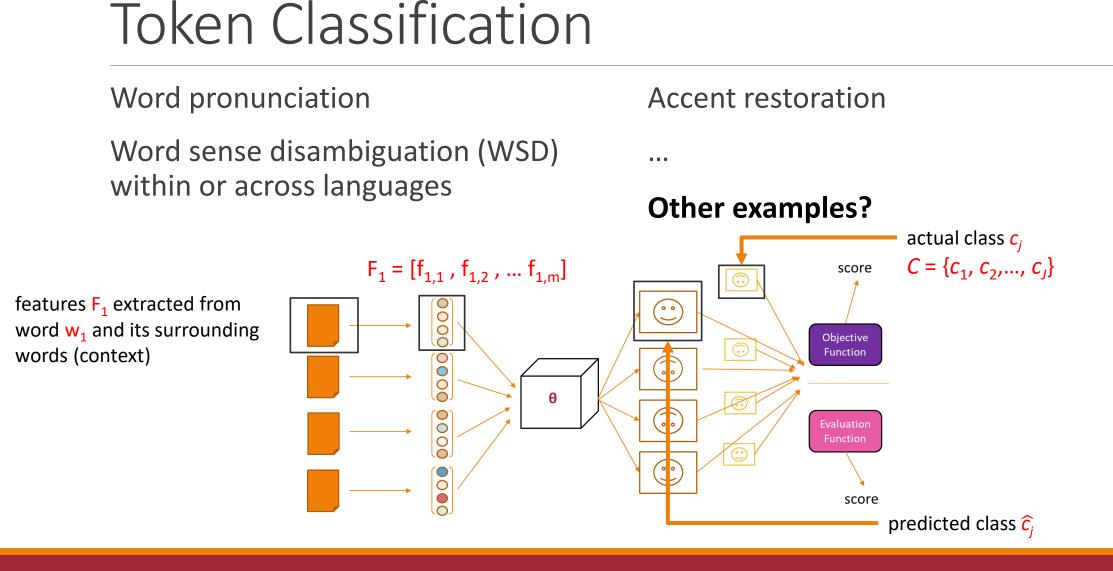
> List of all features, ranked by their weight.

(These weights are for a simple "decision list" model where the single highest-weighted feature that fires gets to make the decision all by itself.

However, a log-linear model, which adds up the weights of all features that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	follow/V + lead	\Rightarrow li:d
11.20	<i>zinc</i> (in $\pm k$ words)	$\Rightarrow l\epsilon d$
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	\Rightarrow li:d
10.51	lead role	\Rightarrow li:d
10.35	<i>copper</i> (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	\Rightarrow li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	\Rightarrow li:d
	000	

slide courtesy of D. Yarowsky (modified



Text Annotation Tasks ("Classification" Tasks)

1.Classify the entire document ("text categorization")

2. Classify word tokens individually

3. Classify word tokens in a sequence (i.e., order matters)

4.Identify phrases ("chunking")

5.Syntactic annotation (parsing)

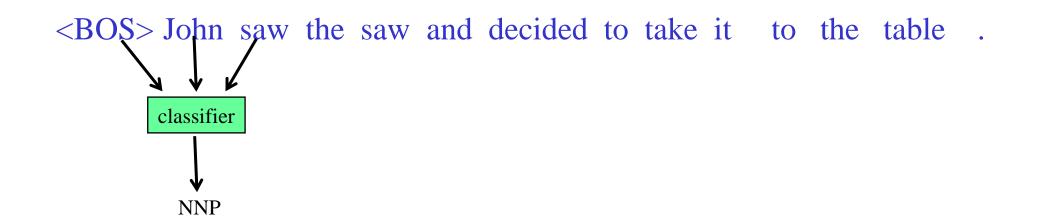
6.Semantic annotation

7.Text generation

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

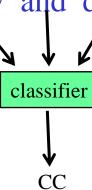


Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

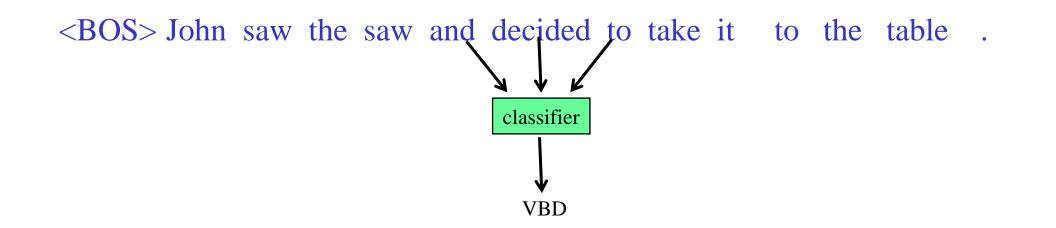
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

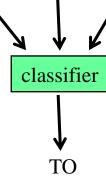
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



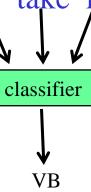
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



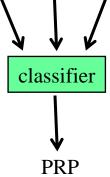
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

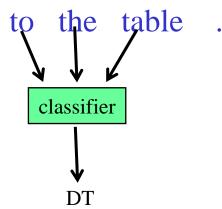
<BOS> John saw the saw and decided to take it to the table .

 classifier

IN

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to



Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to the table

What are the input/output?

classifier

NN

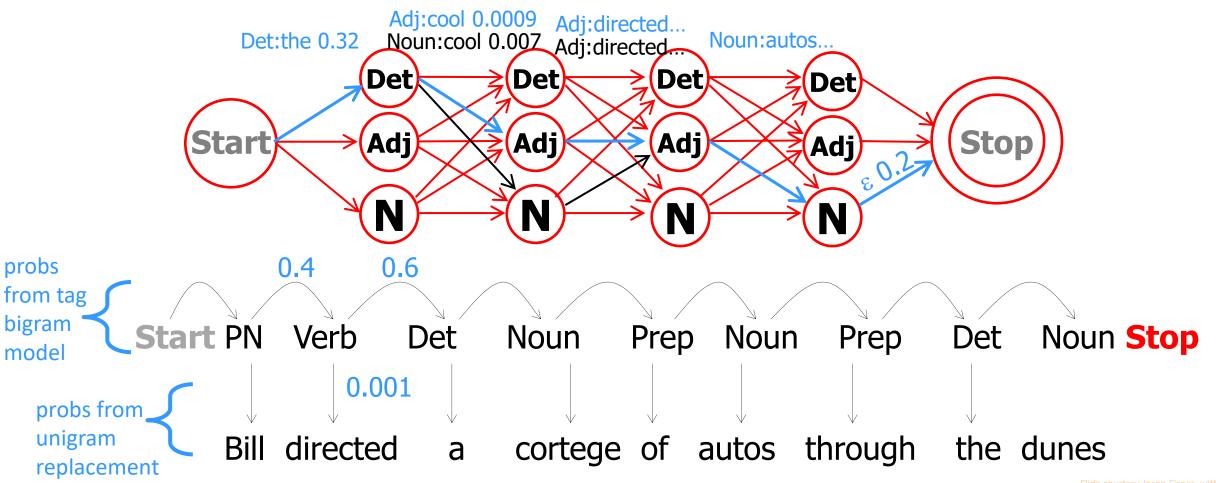
We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Or we could use an HMM:

• The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Or we could use an HMM:



We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

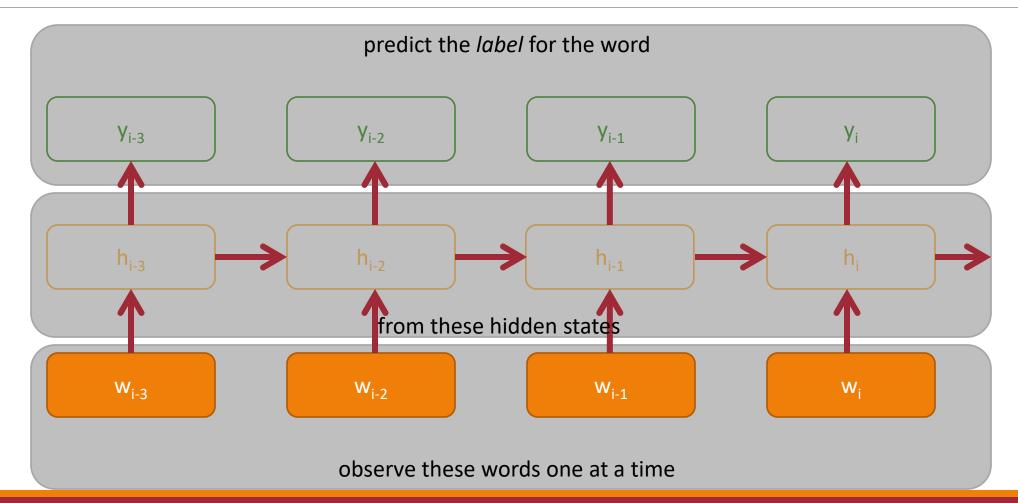
Or we could use an HMM:

• The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Combine these two ideas??

- We'd like rich features (e.g., in a log-linear model), but we'd also like our feature functions to depend on adjacent tags.
- So, the problem is to predict **all** tags together.

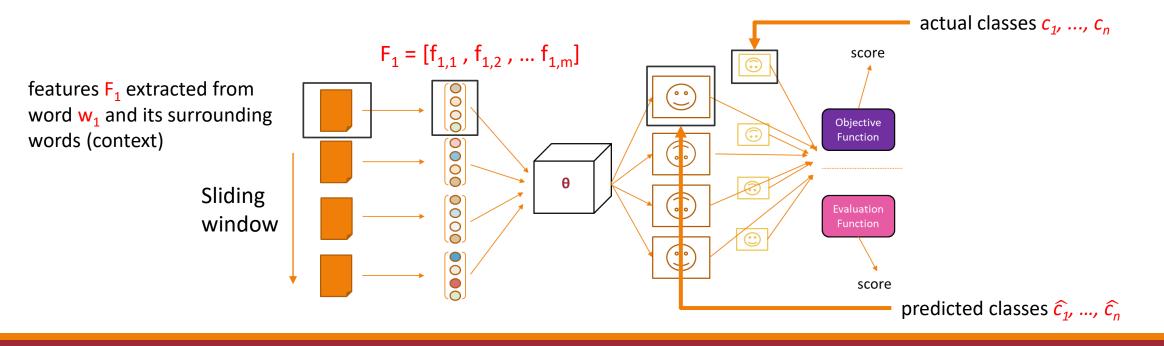
Can We Use Neural, Recurrent Methods for PoS Tagging?



Token Classification in a Sequence

Part of speech tagging

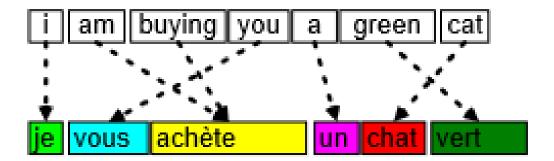
Word alignment



NLP TASKS

Machine Translation: Word Alignment

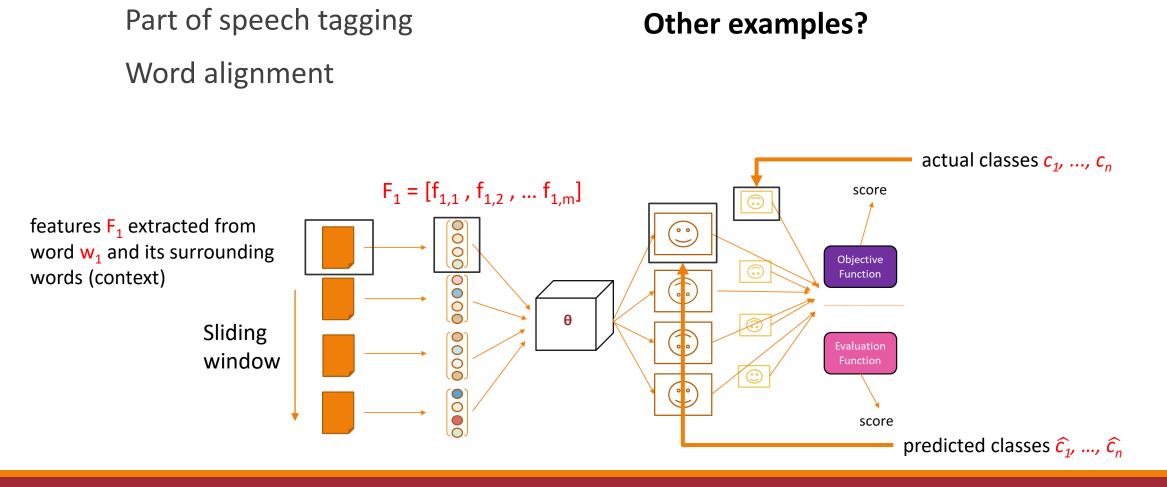
What are the input/output?



What kinds of features might we want to consider here?

https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f

Token Classification in a Sequence



NLP TASKS

Text Annotation Tasks ("Classification" Tasks)

- **1**.Classify the entire document ("text categorization")
- 2.Classify word tokens individually
- 3.Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5.Syntactic annotation (parsing)
- 6.Semantic annotation

7.Text generation

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of interest

NE Types

TYPE	DESCRIPTION
PERSON	People, including fictional
NORP	Nationalities or religious or political groups
FACILITY	Buildings, airports, highways, bridges, etc
ORG	Companies, agencies, institutions, etc
GPE	Countries, cities, states
LOC	Non-GPE locations, mountain ranges, bodies of water
PRODUCT	Objects, vehicles, foods, etc (Not services)
EVENT	Named hurricanes, battles, wars, sports events, etc
WORK_OF_ART	Titles of books, songs, etc
LAW	Named documents made into laws
LANGUAGE	Any named language
DATE	Absolute or relative dates or periods.
TIME	Times smaller than a day
PERCENT	Percentage, including "%".
MONEY	Monetary values, including unit
QUANTITY	Measurements, as of weight or distance
ORDINAL	"first", "second", etc
CARDINAL	Numerals that do not fall under another type

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.