ML Evaluation

CMSC 473/673 - NATURAL LANGUAGE PROCESSING




Learning Objectives

Distinguish between types of ML problems and models

Fill out a contingency table
Calculate accuracy, precision, and recall

Develop an intuition about precision & recall
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ML/NLP Framework for Learning & Prediction
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Review: Classification Types (Terminology)

Number of # Label Types
IFHS

(Domains)
Labels are
Associated with

Sentiment: Choose one of

(Binary) Classification 1 2 o
Multi-class Part-of-speech: Choose one
e 1 > 2
Classification of {Noun, Verb, Det, Prep, ...}
: Sentiment: Choose multiple
SIS 1 > 2 of {positive, angry, sad,

Classification )
excited, ...}

Task 1: part-of-speech

Per task: 2 of > 2 Task 2: named entity tagging

M- >1 (can apply to binary

Classification = = T R e
Task 1: document labeling
Task 2: sentiment

or multi-class)




How do we |learn models?

e
= é% —

Take past experiences Find patterns Use on new experiences
(lots of data; corpus) (the ML algorithm) (save & test the model)




Types of Learning

SUPERVISED LEARNING UNSUPERVISED LEARNING

0 Gl

o wT® @\

dog Q :
hamster f?




Types of Learning

SUPERVISED LEARNING
Data has feedback (labels)

Data consists of input-output pairs

Learn mapping from input to
output

Examples:
o Dataset classification

> How likely is it that this person will get
into a car accident?

2/18/2025

UNSUPERVISED LEARNING
No explicit feedback in data

Learn patterns directly from data

Examples:
o Clustering

> Do these people fall under multiple
groups?
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What are some other examples of these?

SUPERVISED LEARNING UNSUPERVISED LEARNING

> Machine translation oClustering
> Object segmentation (vision)
> Document classification

olLanguage modeling
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The Machine Learning Framework

y = f(x)
/]

output prediction  feature(s) of
function input

Training: given a training set of labeled examples {(x,,y,), ...,

(X\,Yn)), estimate the prediction function f by minimizing the
prediction error on the training set

Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)




How do we learn models?

cat P(hamster|[line in this position],...)

@ W P(dog|[line in this other position],...)

[position of lines]

h t dog [loops and dots]
amster [any other information
relevant to our problem]
Have data with Learn associations
features extracted between features
(and possibly labels) and labels
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Dividing up data for Training

Why would we do this?

mouse

dog , dog
hamster [position of lines]
[loops and dots]
[any other information

relevant to our problem] cat

Training Validation/Development
~80% ~10%
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DO NOT ITERATE
Steps ON THE TESTING
SET!!! Training dog
Labels duck
Training Data =
4 perro A i
. pato Word .. Learned
Training ‘{ Features }‘{Trammg}‘ { model

o ) l

[ Dev Set } ___________ ‘,‘»{ Evaluate}
Testing Data
Testing { ato } Word Learned .
J - Features = model Prediction
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Types of models

CLASSIFICATION REGRESSION
Model outputs comes from a Model outputs are continuous
finite set of values values
Discrete result Continuous result
Examples: Examples:
> What type of animal is this a picture of? o How far will | move if | drive my motors at
> Predicting the weather (sunny, cloudy, or this speed for 1 second?
rainy?) > Predicting the weather (temperature)
o Ranking: Is this result better than this o Ranking: how good is this result?

result?
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Types of models

-05 -04 03 0.2 -01 0 0.1 0.2 20 30 40 50 &0 70 80 90 100

Classification Regression

https://medium.com/unpackai/classification-regression-in-machine-learning-7cf3b13b0b09
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What are some other examples of these?

CLASSIFICATION REGRESSION

Tone tagging Quantity/scale of how much it sounds

. o like a specific author
Sentiment classification . _
Numerical sentiment value

Nam ntity recognition -
amed ent Y 5 Political “score” from document

Likelihoods

Predicted Goodreads score
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Types of Algorithms

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

dimensionality
reduction

regression
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Central Question: How Well Are We
Doing?

* Precision, ]
Recall, F1 This does

* Accuracy not have to

. (o . * Log-loss be th
Classification . ROC-AUC e the same
. .. thing as the

* (Root) Mean Square Error loss
. * Mean Absolute Error
Regression ]

function
Clustering

you
optimize

* Mutual Information
* V-score

the task: what kind of
problem are you solving?
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Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise

- surrogate loss

The loss you use might not be as informative as you’d like

Binary classification: 90 of 100 training examples are +1, 10 of 100 are -1
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Some Classification Metrics

Accuracy

Precision

Recall

AUC (Area Under Curve)

F1

Confusion Matrix

2/18/2025
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Implementation: How To

1. scikit-learn: sklearn.metrics
o very stable

2. huggingface evaluate module
o community input

o sometimes are based on sklearn

3. implement your own
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https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics
https://huggingface.co/docs/evaluate

Classification Evaluation:
the 2-by-2 contingency table

Assumption 1: There are two classes/labels

@ O

Assumption 2: ‘ is the “positive” label

Assumption 3: Given X, our classifier produces a score for each

possible label
o @0 vs o 10
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Examining Assumption 3

Given X, our classifier produces a score for each possible label

p(@D1X) vs.p(( )1X)

Normally (*but this can be adjusted!)

best label = arg max P(label|example)
label




Example of argmax

2/18/2025

Electronic alerts have
been used to assist the
authorities in moments of
chaos and potential
danger: after the Boston
bombing in 2013, when
the Boston suspects were
still at large, and last
month in Los Angeles,
during an active shooter
scare at the airport.

POLITICS
TERRORISM
SPORTS
TECH
HEALTH
FINANCE

.05
48
.0001

.39

.0001
.0002

Source: http://www.nytimes.com/2016/09/20/nyregion/cellphone-alerts-used-in-search-of-

manhattan-bombing-suspect.html
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Example of argmax
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bombing in 2013, when
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still at large, and last
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Classification Evaluation:
the 2-by-2 contingency table

ikl el 0l Actual Target Class | Not Target Class
system predict? () (“®”) (HO”)
Selected/
Guessed (“@®”)

Not selected/

not guessed

(“O”)




Classification Evaluation:
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Classification Evaluation:
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Classification Evaluation:
the 2-by-2 contingency table

leidlel JNe [ NlI[@ Actual Target Class | Not Target Class
system predict? (/) (“@®”) (uQn)
Se'ec'“w'/’ True Positive  False Positive
Guessed (“@®”)
Actual (TP) Guessed Actual (FP) Guessed

\MIEEENELT False Negative True Negative
not guessed (FN) (TN)

o V44
( O ) Actual Guessed Actual Guessed

Construct this table by counting

the number of TPs, FPs, FNs, TNs



Contingency Table Example

Predicted: Q ‘ ‘ ‘ O ‘
Actual: ‘ ‘ ‘ Q O O




Contingency Table Example

Predicted:

Actual:

ikl el 0l Actual Target Class | Not Target Class
system predict? () (“@”) (HO”)

Selected/ True Positive  False Positive
Guessed (“@®”)

(TP) (FP)
\MIEEENELT False Negative True Negative
not guessed (FN) (TN)

(“O”)




Contingency Table Example

Predicted:

Actual:

ikl el 0l Actual Target Class | Not Target Class
system predict? () (“@”) (HO”)

Selected/ True Positive  False Positive
Guessed (“@®”) (TP) = 2 (FP)

\MIEEENELT False Negative True Negative

not guessed
55
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Contingency Table Example

Predicted:

Actual:

ikl el 0l Actual Target Class | Not Target Class
system predict? () (“@”) (HO”)

Selected/ True Positive  False Positive
Guessed (“@®”) (TP) = 2 (FP) =2

\MIEEEAELT False Negative True Negative

not guessed _ _
(O)) (F,I\.l‘).‘ ) 1 (TN) =1




Contingency Table Example

Predicted:

Actual:

ikl el 0l Actual Target Class | Not Target Class
system predict? () (“@”) (HO”)

Selected/ True Positive  False Positive
Guessed (“@®”) (TP) = 2 (FP) =2

\MIEEENELT False Negative True Negative

not guessed _ _
(O)) (F,I\.l‘).‘ ) 1 (TN) =1




Knowledge Check

Fill out the contingency table for this example.
Your target class is Dog.

Actual:
Blueberry Blueberry Dog Dog Blueberry

What label does our
Predicted: system predict? (/)
Blueberry Dog Dog Blueberry Blueberry

Selected/
Guessed

Actual Target Class Not Target Class

True Positive  False Positive
(TP) (FP)
False Negative True Negative
(FN) (TN)

Not selected/
not guessed

2/18/2025
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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct
TP + TN

TP+ FP + FN + TN

Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

_ Not select/not guessed False Negative (FN) True Negative (TN) _
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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct
TP + TN

TP + FP + FN + TN
Precision: % of selected items that are correct

TP
TP + FP

Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)
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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct

TP+ TN
TP+ FP + FN + TN

Precision: % of seIecteTqIPitems that are correct

TP + FP

Recall: % of correct items that are selected
TP

TP + FN

Actually Target Actually Not Target
Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN) e
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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct

TP+ TN
TP+ FP + FN + TN

Precision: % of selected items that are correct Min: 0 &
TP Max: 1 ®

TP + FP

Recall: % of correct items that are selected
TP

TP + FN

Actually Target Actually Not Target
Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN) e
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ne Importance of “Polarity” in Binary
assification

O —

Fundamentally: what are you trying to “identify” in your classification?

Are you trying to find ‘ or Q?




ne Importance of “Polarity” in Binary

Correct Value

O —

assification

Guessed
Value

Try to find : Where do the
TP /FP /FN / FN values go?




The Importance of “Polarity” in Binary
Classification

Correct Value

TP FP
FN T'N

W,




The Importance of “Polarity” in Binary
Classification

Predicted:

Actual:

D TP o =2 FP o =2

Guessed

Value @ FN — 1 TN — 1
What are the Accuracy: 50%

accuracy, recall, and Recall: 66.67%
precision values? ¥ Precision: 50%



ne Importance of “Polarity” in Binary

Correct Value

O —

assification

Guessed
Value

Try to find : Where do the
TP /FP /FN / FN values go?




ne Importance of “Polarity” in Binary
assification

Correct Value

TN FN
FP TP

M —




The Importance of “Polarity” in Binary
Classification

Predicted:

—Actual:

Correct Value

Guessed N W, =2 N W, = 4
P

=1 TP =1

Value m F

What are the Accuracy: 50%
accuracy, recall, and Recall: 33.34%
precision values? ¥ Precision: 50%




ne Importance of “Polarity” in Binary
assification

O —

Correct Value

I'Pgy=TN, ~ FP =FN

mFN '=FP TNg =TP

_ 4




Precision and Recall Present 3

Tradeoft -

precision

recall




Precision and Recall Present 3

Tradeoft -

*

precision

recall




Precision and Recall Present 3
Tradeoft

1 *

precision

recall




Precision and Recall Present 3
Tradeoft

d *

precision

recall




Precision and Recall Present 3
Tradeoff

*

precision

For a given trained model, vary
(certain) hyperparameters to
adjust when your model makes
a prediction

Idea: measure the
tradeoff between
precision and recall

recall
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Precision and Recall Present 3
Tradeoff

d *

precision

Improve overall
model: push the
curve that way

Idea: measure the
tradeoff between
precision and recall

recall
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Measure this Tradeoft:
Area Under the Curve (AUC)

AUC measures the area under this
-

* tradeoff curve

0 recall 1

Min AUC: 0 &

Max AUC: 1 &



Measure this Tradeoft:
Area Under the Curve (AUC)

AUC measures the area under this
* tradeoff curve

S 1. Computing the curve
£ You need true labels & predicted labels
with some score/confidence estimate
Improve overall
model: push the
curve that way Threshold the scores and for each
threshold compute precision and recall
0

0 recall 1

Min AUC: 0 &

Max AUC: 1 &
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Measure this Tradeoft:
Area Under the Curve (AUC)

AUC measures the area under this

tradeoff curve
- *

1. Computing the curve

You need true labels & predicted labels with
some score/confidence estimate

Threshold the scores and for each threshold
compute precision and recall

2.  Finding the area
How to implement: trapezoidal rule (&

others)

precision

Improve overall
model: push the
curve that way

0 recall 1

Min AUC: 0 ® In practice: external library like the

Max AUC: 1 &
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A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

F_Z*P*R
1™ P+R
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A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

. 2 *P xR _ 2xTP
1™ p4+R ~2«TP+FP+FN

(useful when P = R = 0)
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P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple
performance measures into one quantity ?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute
contingency table, evaluate.
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P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

. 1 TP, 1 .
macroprecision = Ez TP, + FP, = Ez precision,
(o C

Il — 1 z TP. B 1 z I
macrorecall = C TP, + FN. =7 recall.
(o C

Microaveraging: Collect decisions for all classes, compute contingency
table, evaluate.

. . 2.c TP . 2 TP
microprecision = microrecall =

2.c TP + 2 FP 2.c TP + 2 FN,
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P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

Macroaveraging: Compute when to prefer
performance for each class, then macroaveraging?
average.

1 Z The 1 Z .
macroprecision = C TPC n FPC = C precision,.
C (o

Microaveraging: Collect decisions when to prefer
for all classes, compute microaveraging?
contingency table, evaluate.

X TP

microprecision = TP. + 2 Fp
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