ML Evaluation

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro & Cynthia Matuszek

Learning Objectives

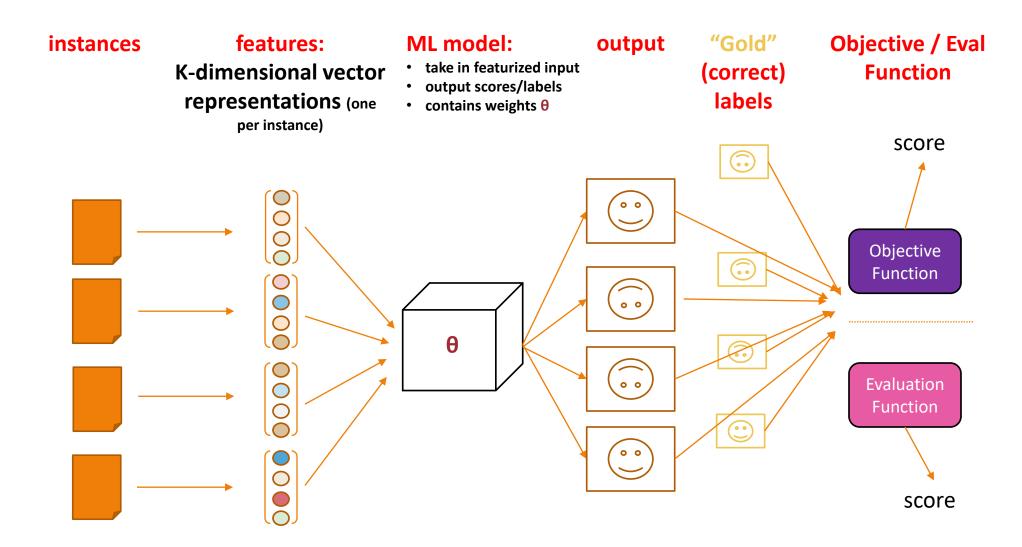
Distinguish between types of ML problems and models

Fill out a contingency table

Calculate accuracy, precision, and recall

Develop an intuition about precision & recall

ML/NLP Framework for Learning & Prediction



Review: Classification Types (Terminology)

	Name	Number of	# Label Types	Example	
		Tasks (Domains) Labels are Associated with			
	(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}	
	Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}	
	Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}	
	Multi-task Classification	> 1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling	
2/18/20	25		ML EVALUATION	Task 2: sentiment	4

How do we learn models?

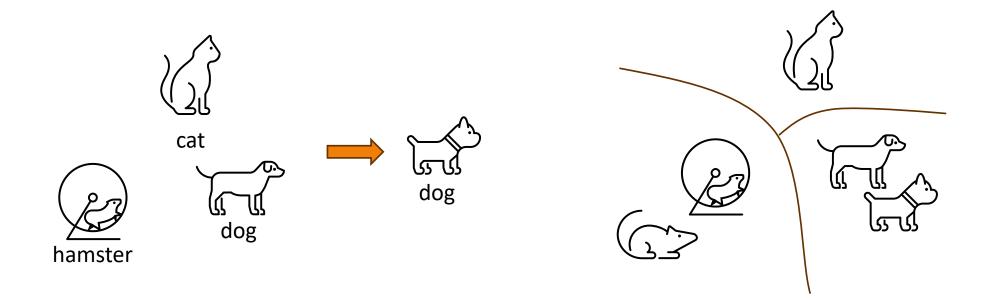
Take past experiences (lots of data; corpus) Find patterns (the ML algorithm)

Use on new experiences (save & test the model)

Types of Learning

SUPERVISED LEARNING

UNSUPERVISED LEARNING



Types of Learning

SUPERVISED LEARNING

Data has feedback (labels)

Data consists of input-output pairs

Learn mapping from input to output

Examples:

- Dataset classification
- How likely is it that this person will get into a car accident?

UNSUPERVISED LEARNING

No explicit feedback in data

Learn patterns directly from data

Examples:

- Clustering
- Do these people fall under multiple groups?

What are some other examples of these?

SUPERVISED LEARNING

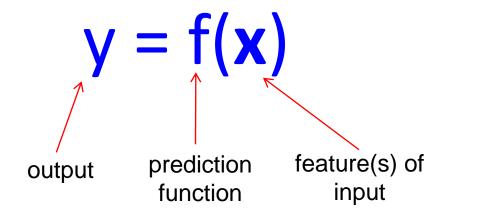
UNSUPERVISED LEARNING

- Machine translation
- Object segmentation (vision)
- Document classification

OClustering

•Language modeling

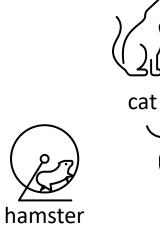
The Machine Learning Framework



Training: given a *training set* of labeled examples {(**x**₁,**y**₁), ..., (**x**_N,**y**_N)}, estimate the prediction function **f** by minimizing the prediction error on the training set

Testing: apply **f** to a never before seen *test example* **x** and output the predicted value y = f(x)

How do we learn models?



[position of lines] [loops and dots] [any other information relevant to our problem]

Have data with features extracted (and possibly labels)

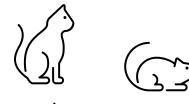
dog

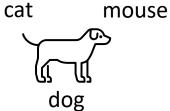
P(hamster|[line in this position],...) P(dog|[line in this other position],...)

> Learn associations between features and labels

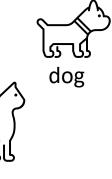
Dividing up data for Training

Why would we do this?

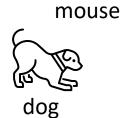




[position of lines] [loops and dots] [any other information relevant to our problem]



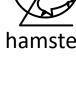
cat

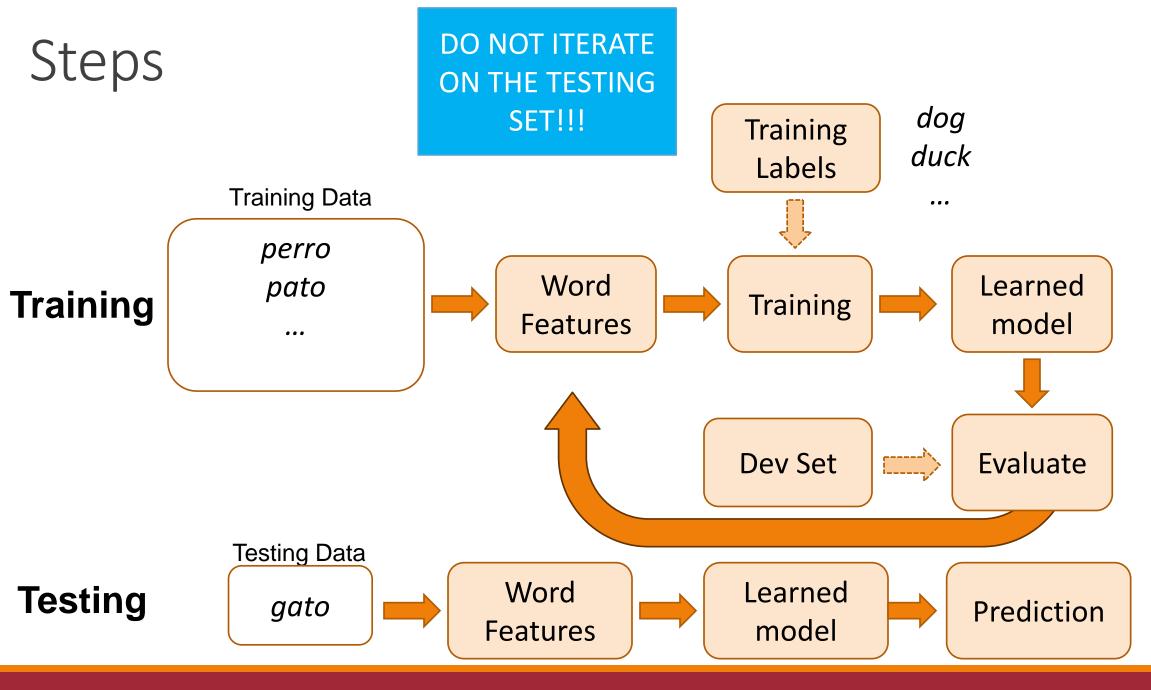


Testing ~10%

Training ~80%

Validation/Development ~10%





Types of models

CLASSIFICATION

Model outputs comes from a finite set of values

Discrete result

Examples:

- What type of animal is this a picture of?
- Predicting the weather (sunny, cloudy, or rainy?)
- Ranking: Is this result *better* than this result?

REGRESSION

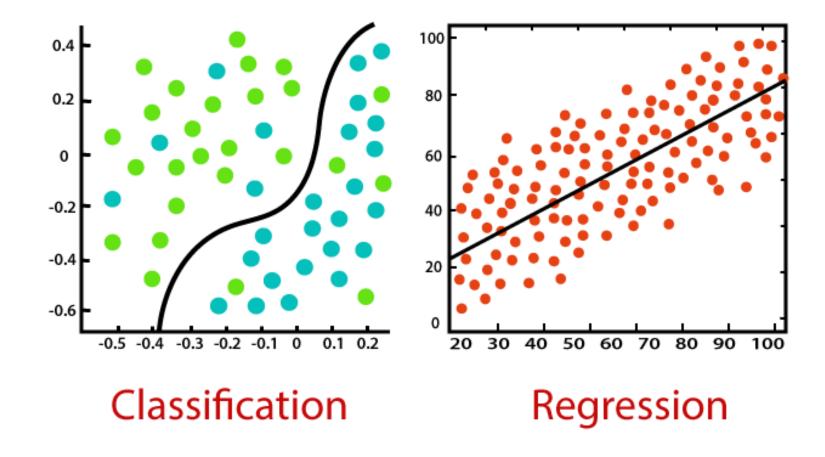
Model outputs are continuous values

Continuous result

Examples:

- How far will I move if I drive my motors at this speed for 1 second?
- Predicting the weather (temperature)
- Ranking: *how good* is this result?

Types of models



14

What are some other examples of these?

CLASSIFICATION

Tone tagging

Sentiment classification

Named entity recognition

REGRESSION

Quantity/scale of how much it sounds like a specific author

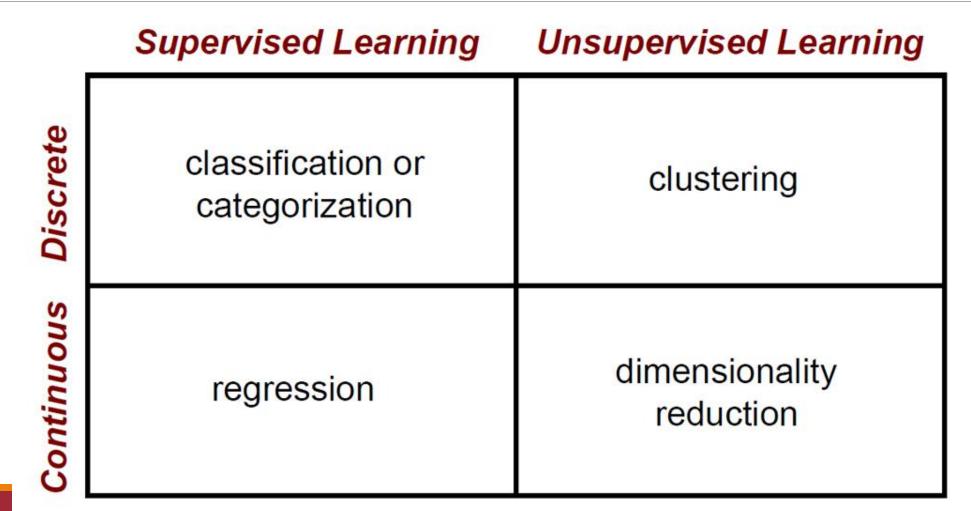
Numerical sentiment value

Political "score" from document

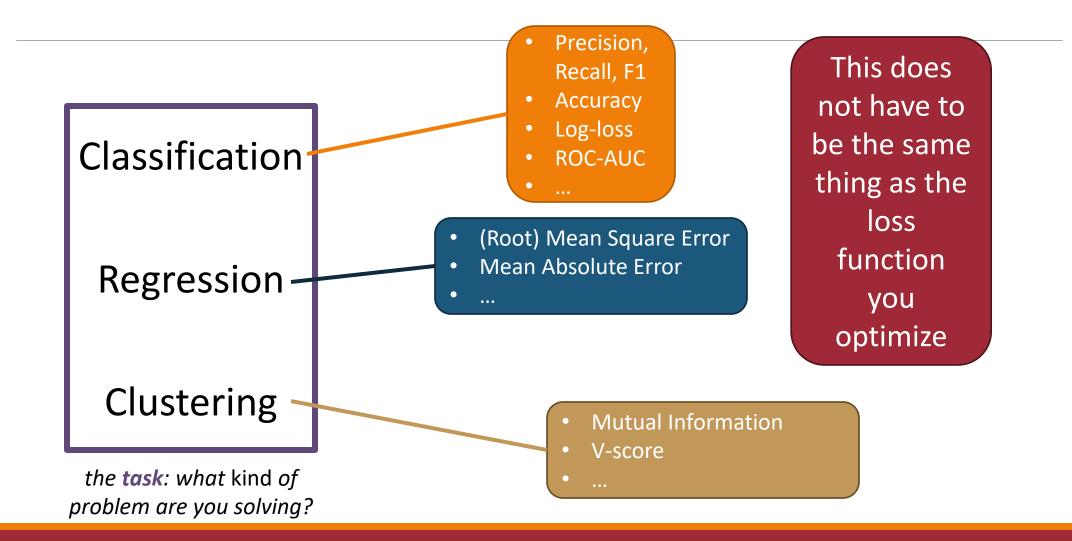
Likelihoods

Predicted Goodreads score

Types of Algorithms



Central Question: How Well Are We Doing?



Training Loss vs. Evaluation Score

In training, compute loss to update parameters

Sometimes loss is a computational compromise

- surrogate loss

The loss you use might not be as informative as you'd like

Binary classification: 90 of 100 training examples are +1, 10 of 100 are -1

Some Classification Metrics

Accuracy

Precision

Recall

AUC (Area Under Curve)

F1

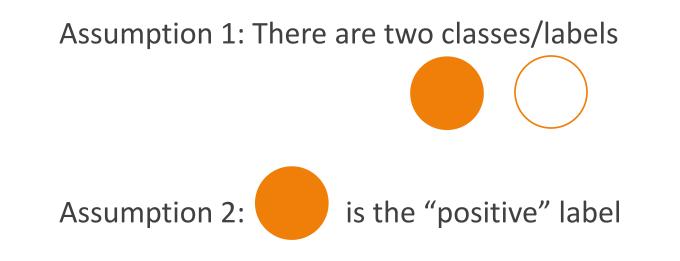
Confusion Matrix

Implementation: How To

- 1. scikit-learn: sklearn.metrics
 - very stable

- 2. huggingface <u>evaluate</u> module
 - community input
 - sometimes are based on sklearn

3. implement your own



Assumption 3: Given X, our classifier produces a score for each possible label

Examining Assumption 3

Given X, our classifier produces a score for each possible label

Normally (*but this can be adjusted!)

best label =
$$\arg \max_{\text{label}} P(\text{label}|\text{example})$$

Example of argmax

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

Politics	.05	
Terrorism	.48	
Sports	.0001	
TECH	.39	
Health	.0001	
Finance	.0002	

Source: http://www.nytimes.com/2016/09/20/nyregion/cellphone-alerts-used-in-search-ofmanhattan-bombing-suspect.html

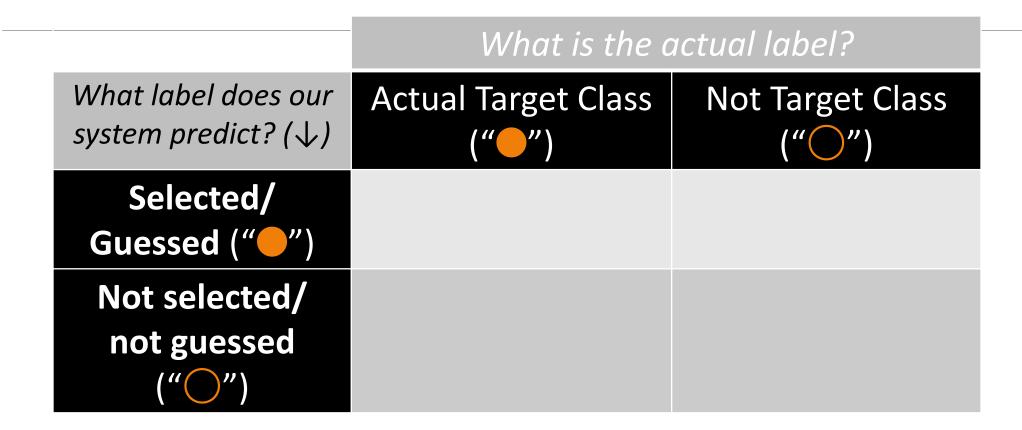
. . .

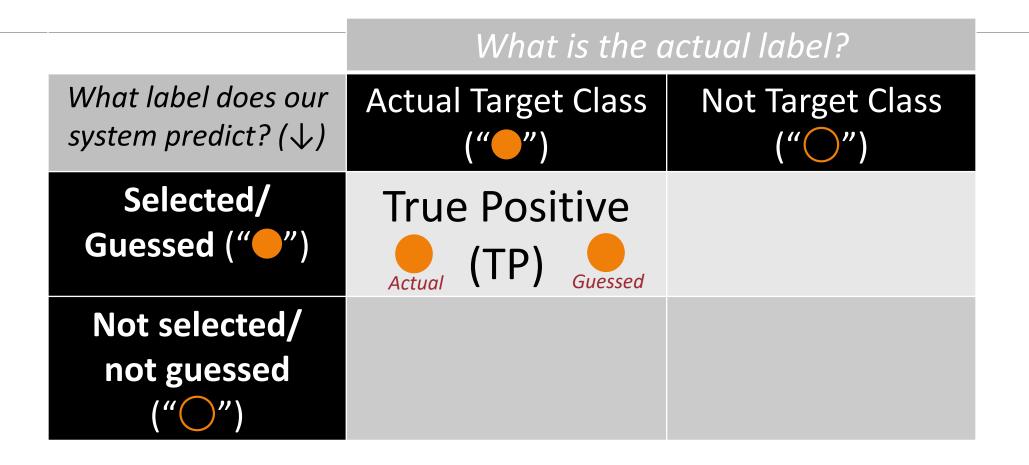
Example of argmax

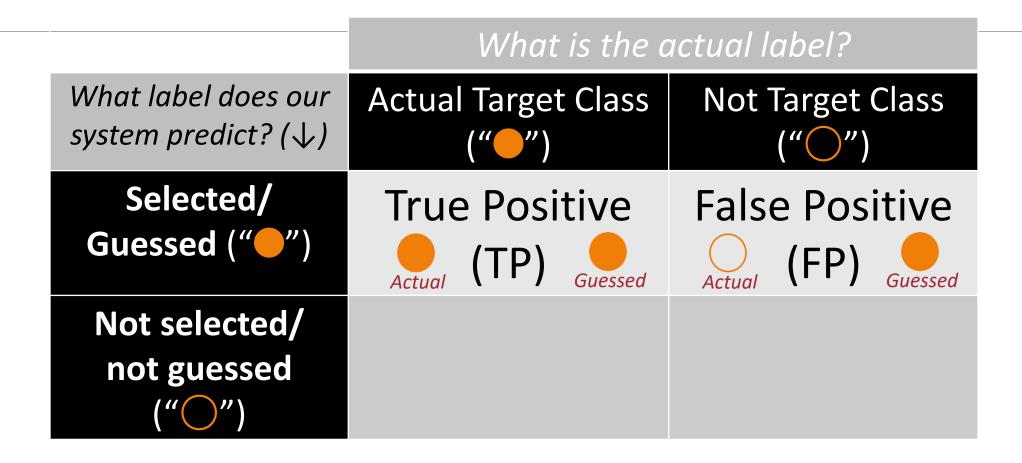
Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

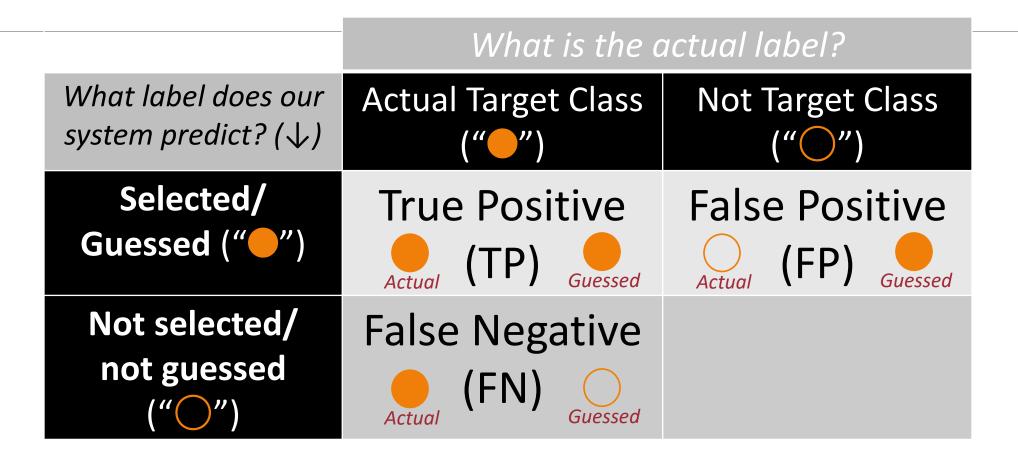
Politics	.05	
Terrorism	.48	
Sports	.0001	
TECH	.39	
Health	.0001	
FINANCE	.0002	

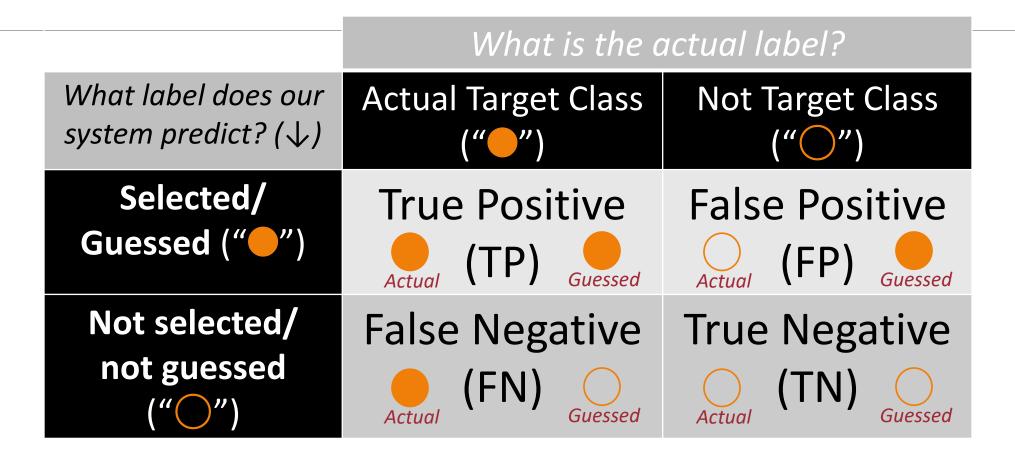
. . .

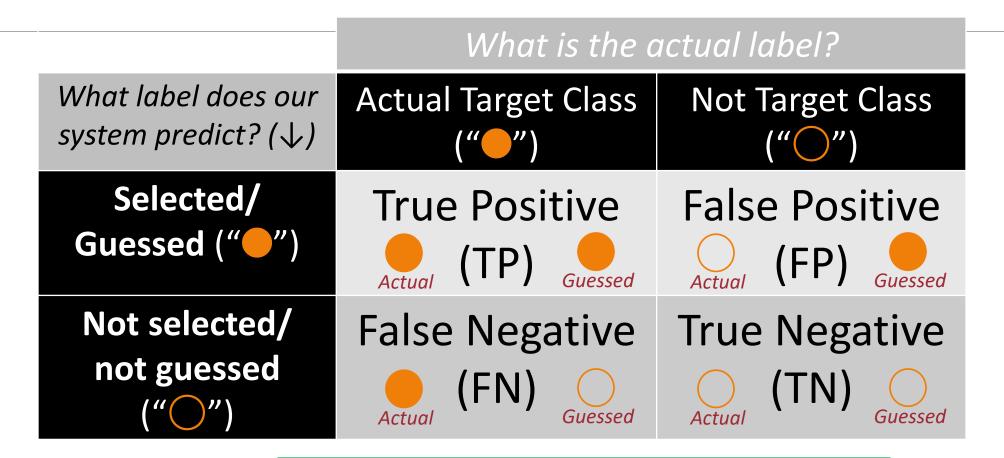












Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Contingency Table Example

Predicted: Actual:

ntingency Table Example					
	Predicted: Actual:				
		What is the actual label?			
	What label does our system predict? (\downarrow)	Actual Target Class ("•")	Not Target Class ("○")		
	Selected/ Guessed ("●")	True Positive (TP)	False Positive (FP)		
	Not selected/ not guessed ("○")	False Negative (FN)	True Negative (TN)		

Со

Contingency Table Example					
	Predicted: Actual:				
What is the actual label?					
	What label does our system predict? (\downarrow)	Actual Target Class ("•")	Not Target Class ("○")		
	Selected/ Guessed ("●")	True Positive (TP) = 2	False Positive (FP)		
2/10/2025	Not selected/ not guessed ("○")	False Negative (FN)	True Negative (TN)		

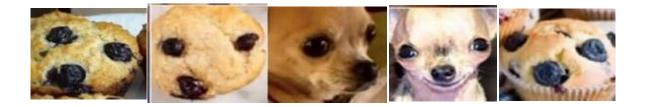
2/18/2025

Contingency Table Example							
	Predicted: Actual:				\bigcirc		
What is the actual				label?			
	What label does our system predict? (\downarrow)		arget –")	Class	Not	Target	
	Selected/ Guessed ("●")	True F (TP	Posit ?) = 2			<mark>se Po</mark> (FP) =	sitive = 2
2/40/2025	Not selected/ not guessed ("○")	False Negative (FN)		Tru	e Neg (TN	gative)	

Contingency Table Example					
	Predicted: Actual:				
		What is the	actual label?		
	What label does our system predict? (\downarrow)	Actual Target Class ("•")	Not Target Class ("○")		
	Selected/ Guessed ("●")	True Positive (TP) = 2	False Positive (FP) = 2		
	Not selected/ not guessed ("○")	False Negative (FN) = 1	True Negative (TN)		

Contingency Table Example					
	Predicted: Actual:				
		What is the a	actual label?		
	What label does our system predict? (\downarrow)	Actual Target Class ("•")	Not Target Class ("○")		
	Selected/ Guessed ("●")	True Positive (TP) = 2	False Positive (FP) = 2		
	Not selected/ not guessed ("○")	False Negative (FN) = 1	True Negative (TN) = 1		

Contingency Table Example				
	Predicted: Actual:			
		What is the a	actual label?	
	What label does our system predict? (\downarrow)	Actual Target Class ("•")	Not Target Class ("○")	
	Selected/ Guessed ("●")	True Positive (TP) = 2	False Positive (FP) = 2	
	Not selected/ not guessed ("○")	False Negative (FN) = 1	True Negative (TN) = 1	



Knowledge Check

Fill out the contingency table for this example. Your target class is Dog.

Actual: Blueberry Blueberry Dog Dog Blueberry

Predicted: Blueberry Dog Dog Blueberry Blueberry

	What is the actual label?	
What label does our system predict? (\downarrow)	Actual Target Class	Not Target Class
Selected/	True Positive	False Positive
Guessed	(TP)	(FP)
Not selected/	False Negative	True Negative
not guessed	(FN)	(TN)

https://petcentral.chewy.com/are-blueberries-safe-for-dogs-and-everything-else-you-could-possibly-want-to-know-about-dogs-and-blueberries/

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct TP + TN

2/18/2025

TP + FP + FN + TN

	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
	ML EVALUATION	

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct TP + TN

2/18/2025

TP + FP + FN + TN

Precision: % of selected items that are correct

 $\frac{TP}{TP + FP}$

		Actually Target	Actually Not Target
	Selected/Guessed	True Positive (TP)	False Positive (FP)
	Not select/not guessed	False Negative (FN)	True Negative (TN)
5		ML EVALUATION	

Classification Evaluation: Accuracy, Precision, and Recall

2/18/2025

Accuracy: % of items correct

$\frac{TP + TN}{TP + FP + FN + TN}$

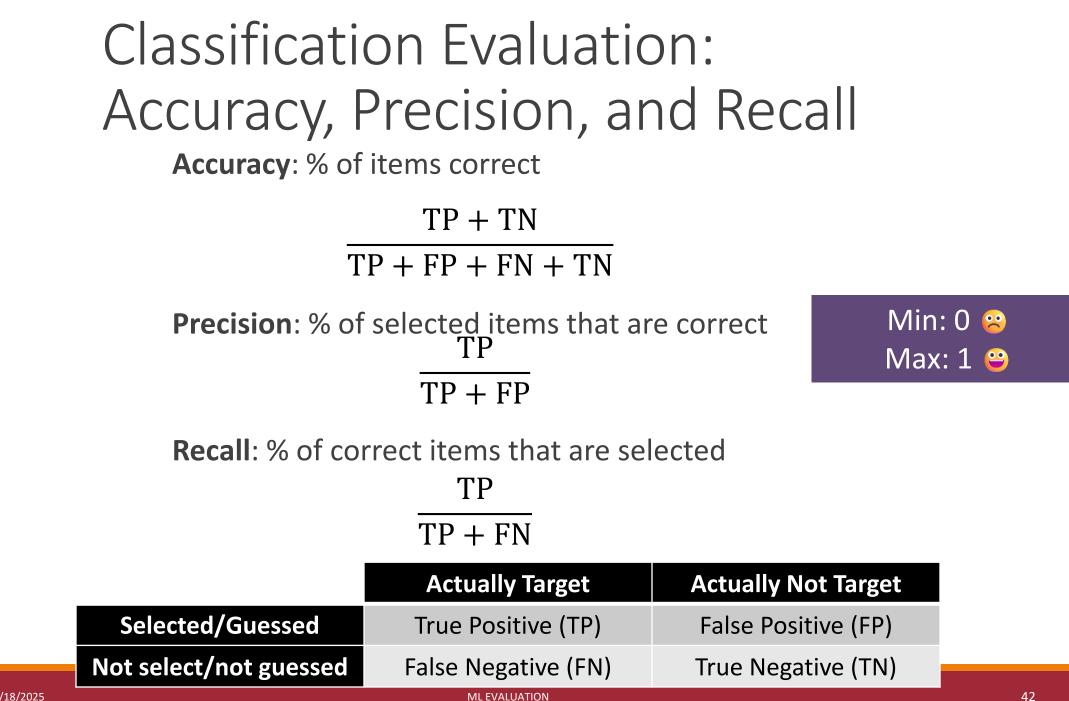
Precision: % of selected items that are correct TP

TP + FP

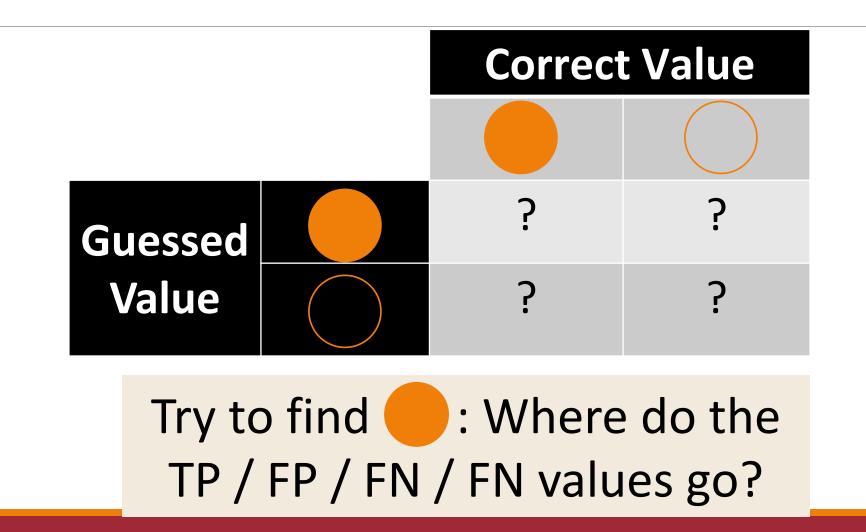
Recall: % of correct items that are selected TP

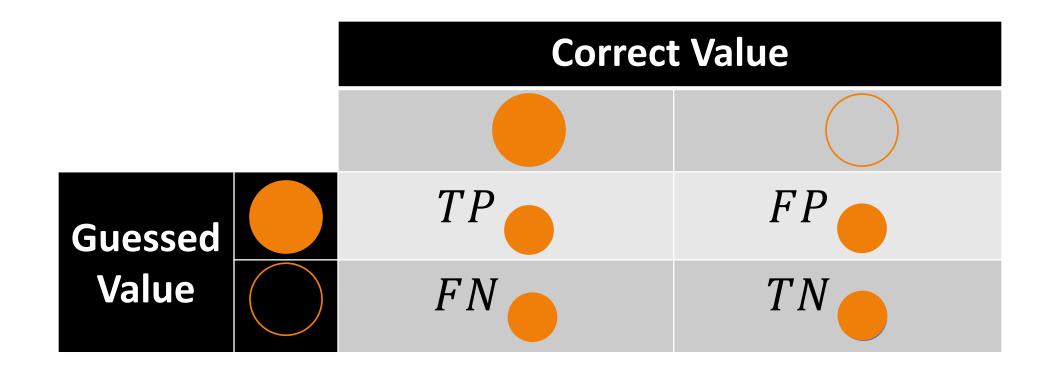
$\overline{TP + FN}$

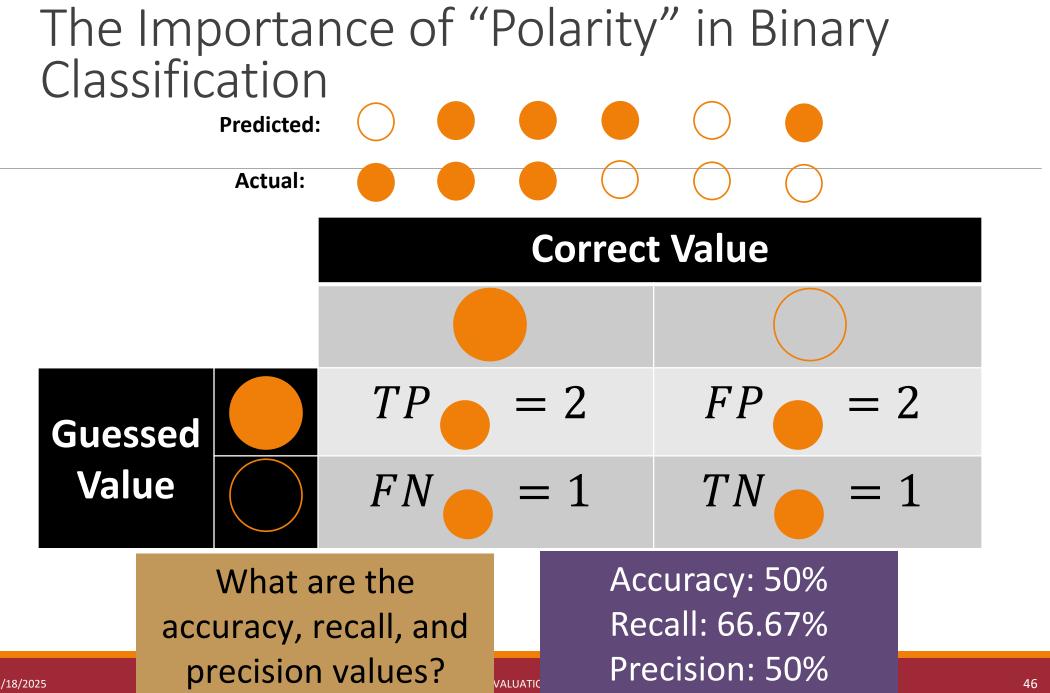
	Actually Target	Actually Not Target
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
	ML EVALUATION	

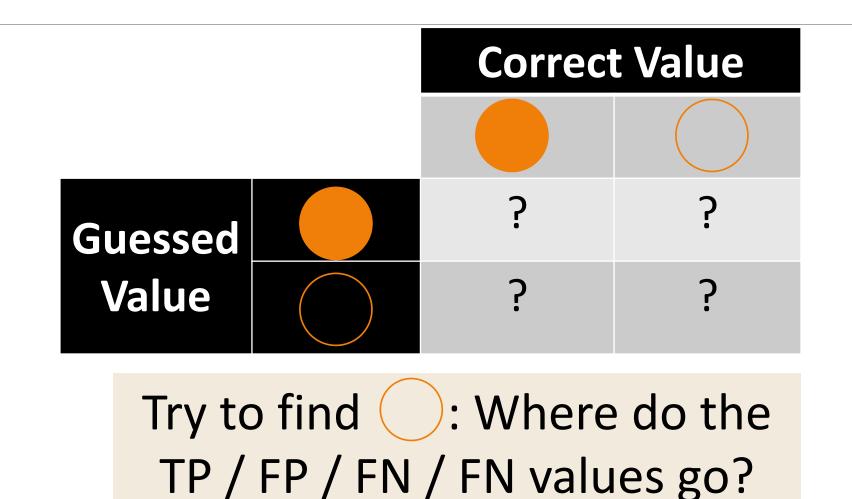


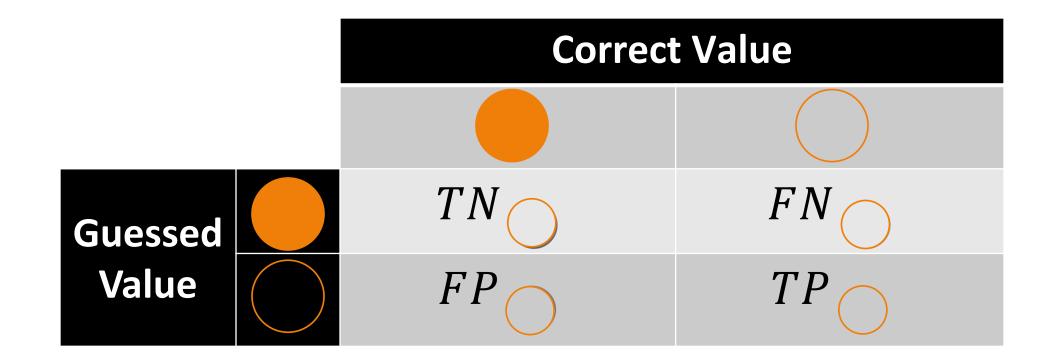
Fundamentally: what are you trying to "identify" in your classification?

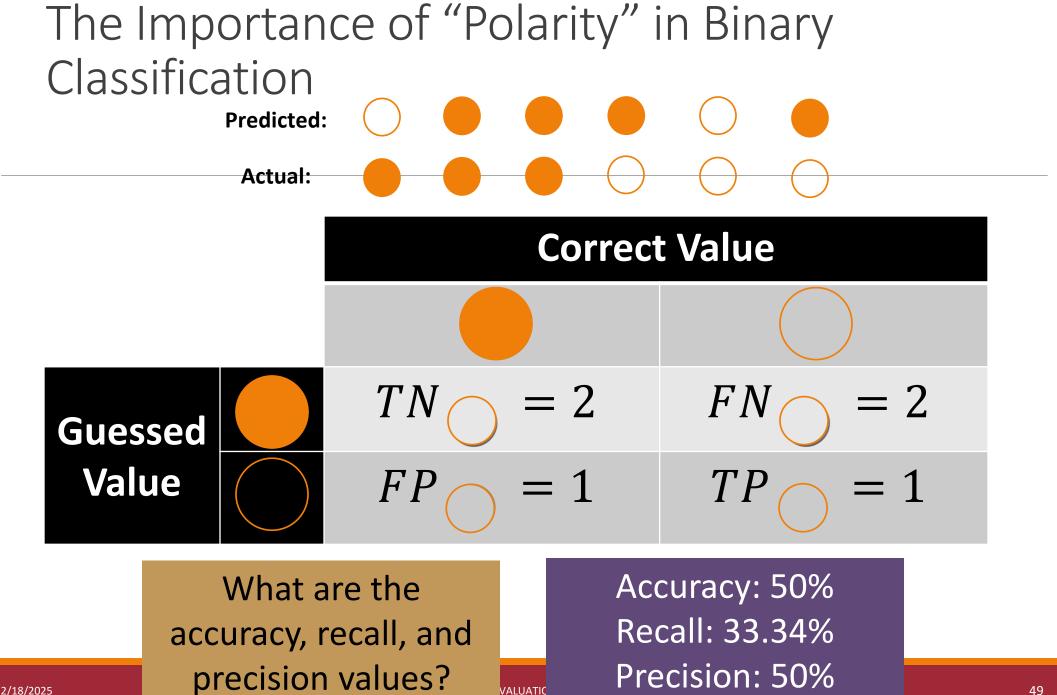




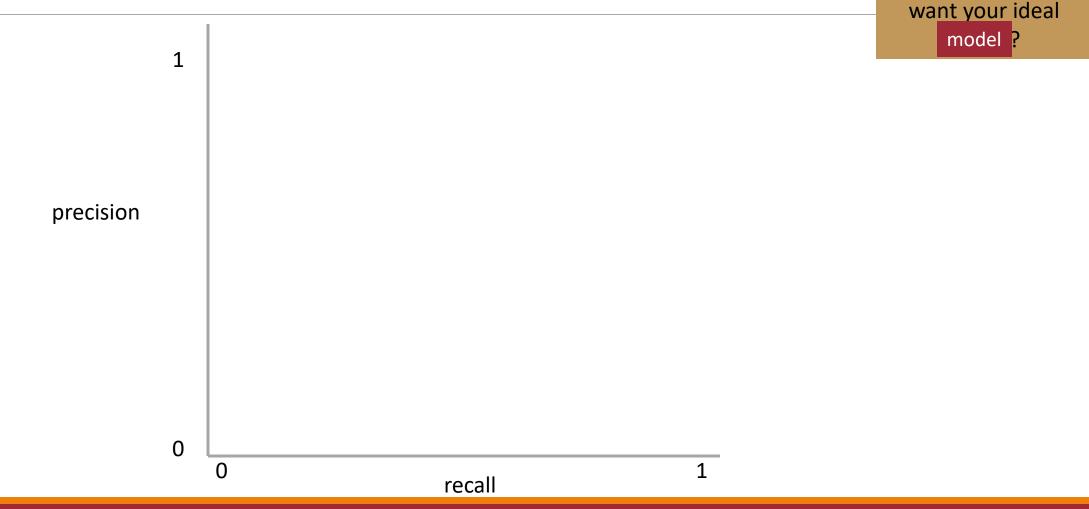




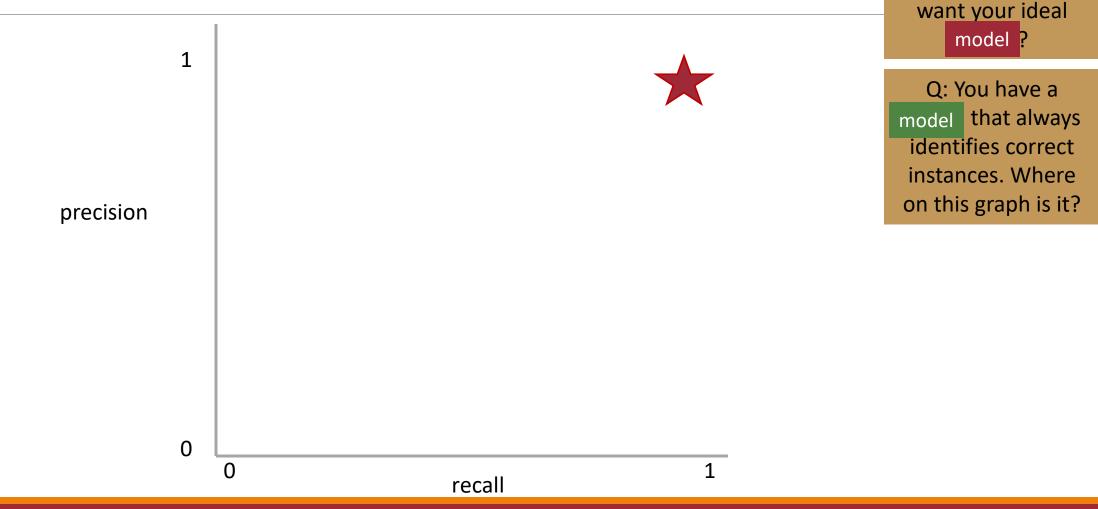




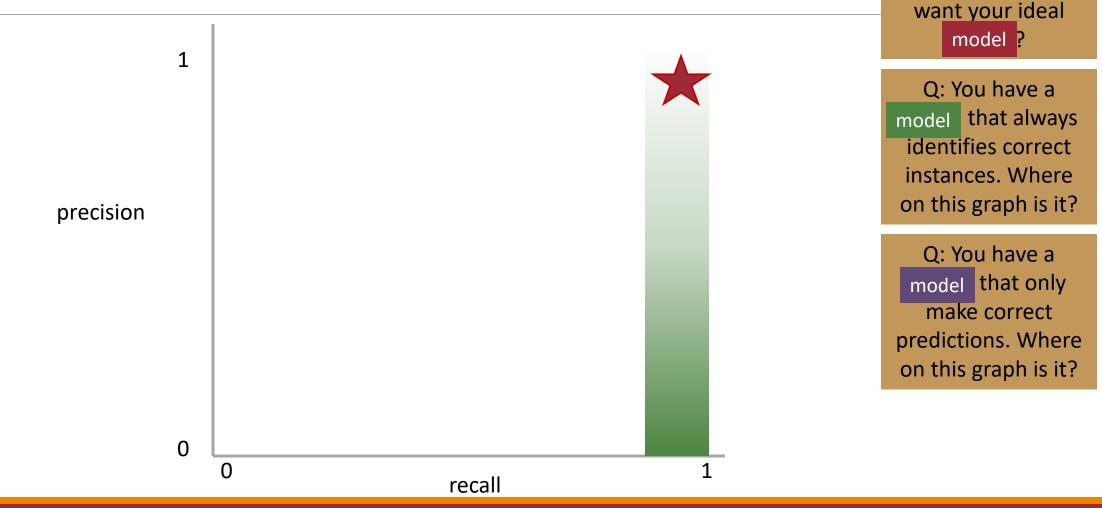




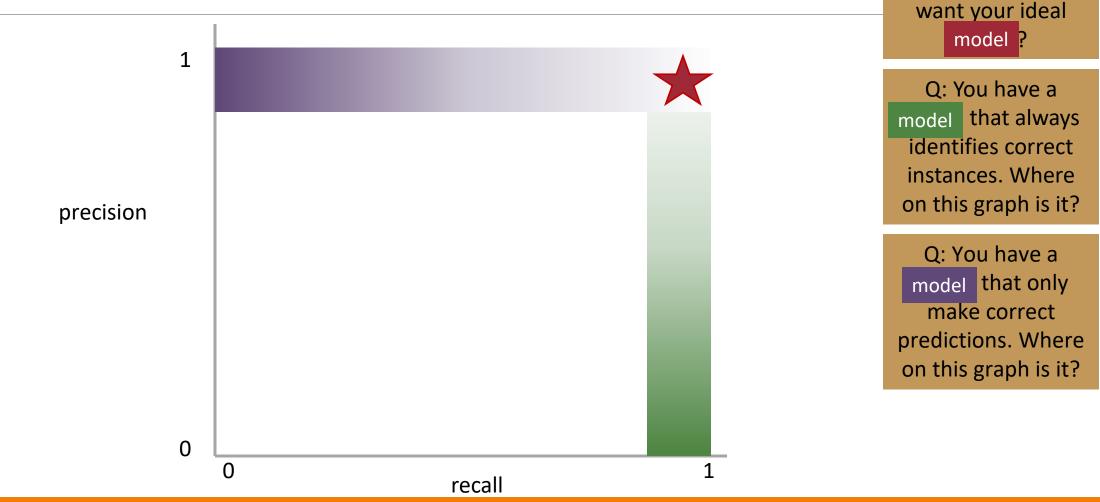
ML EVALUATION



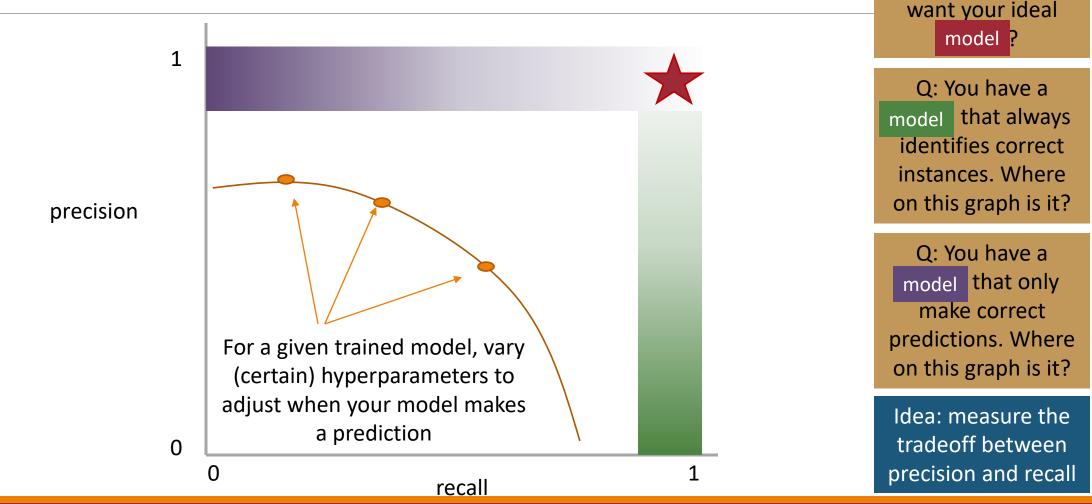
ML EVALUATION



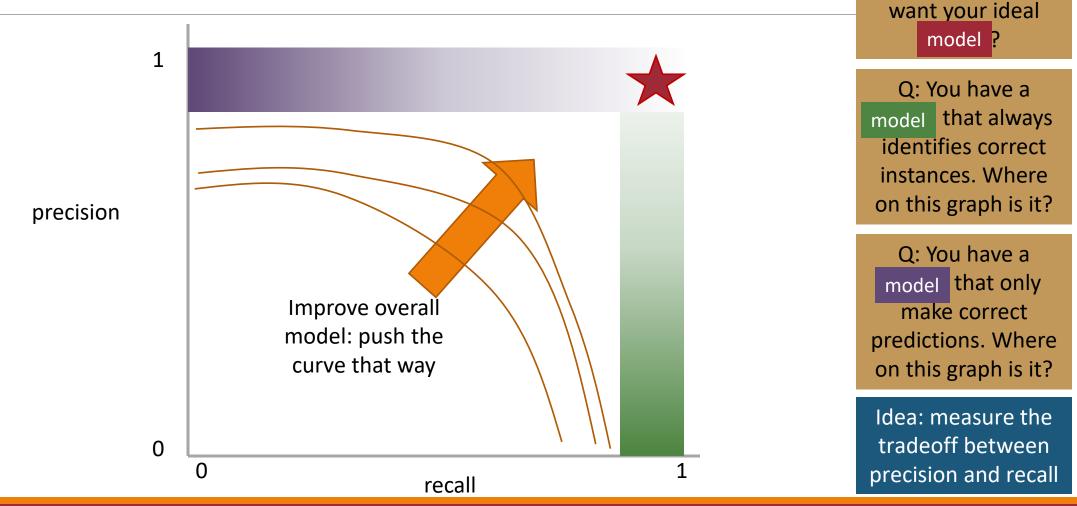
ML EVALUATION



ML EVALUATION

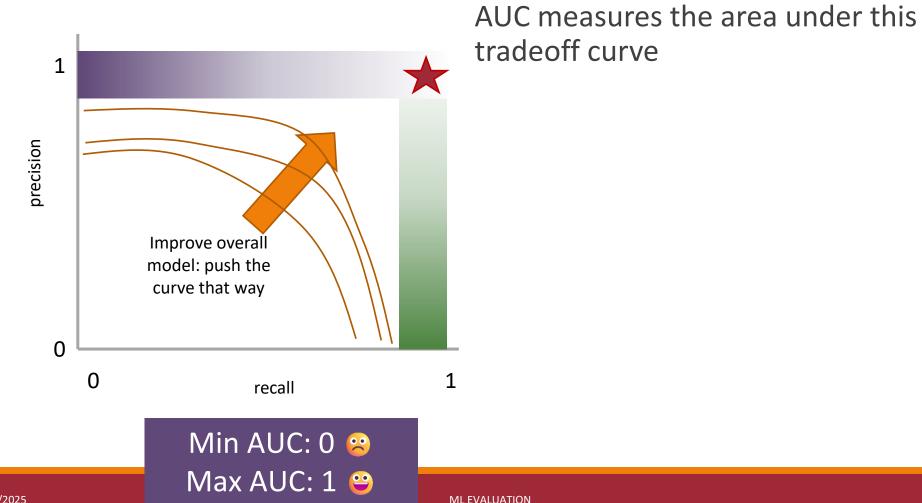


ML EVALUATION



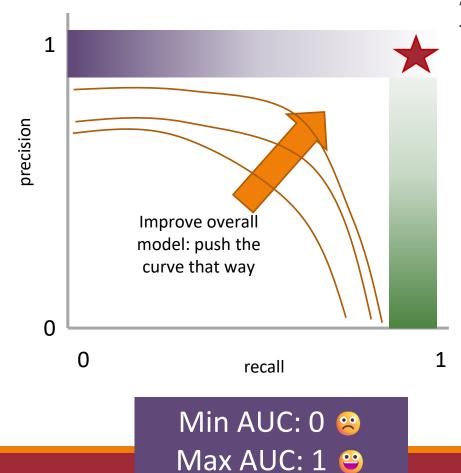
ML EVALUATION

Measure this Tradeoff: Area Under the Curve (AUC)



57

Measure this Tradeoff: Area Under the Curve (AUC)



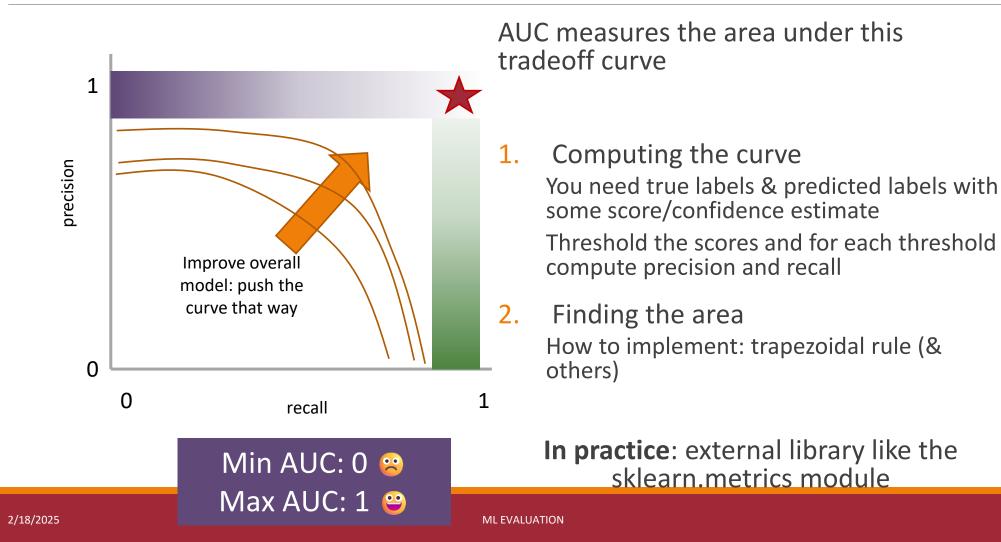
AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)



A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

$$F_1 = \frac{2 * P * R}{P + R}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

F1 measure: equal weighting between precision and recall

$$F_{1} = \frac{2 * P * R}{P + R} = \frac{2 * T P}{2 * T P + F P + F N}$$
(useful when $P = R = 0$)

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

macrorecall =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$
 microrecall = $\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average. macroprecision = $\frac{1}{C}\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \frac{1}{C}\sum_{c} \text{precision}_{c}$ when to prefer macroaveraging?

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

when to prefer microaveraging?