ML Evaluation \rightarrow Classification

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro

Learning Objectives

Develop an intuition about precision & recall

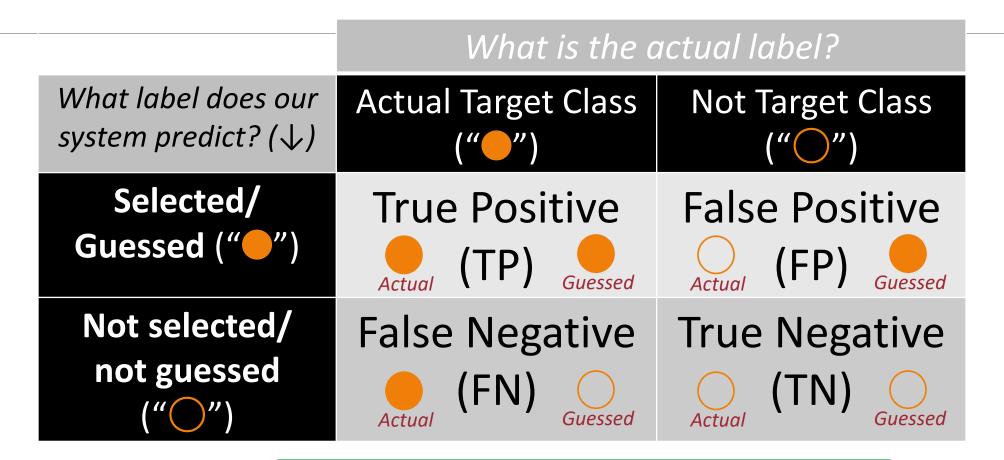
Extend P/R to multi-class problems

Identify when you might want certain evaluation metrics over others

Model classification problems using logistic regression

Define appropriate features for a logistic regression problem

Review: Classification Evaluation: the 2-by-2 contingency table

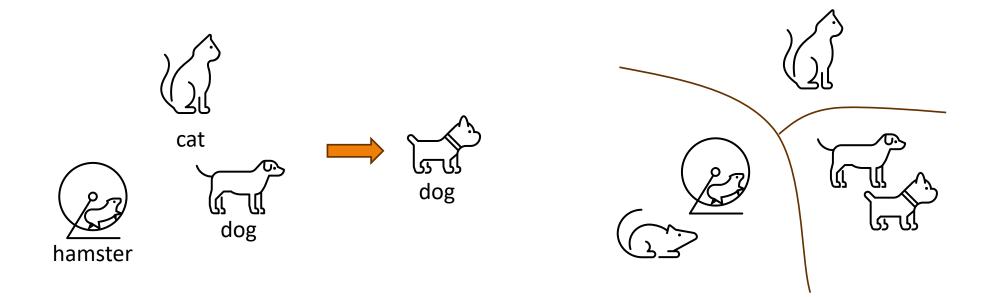


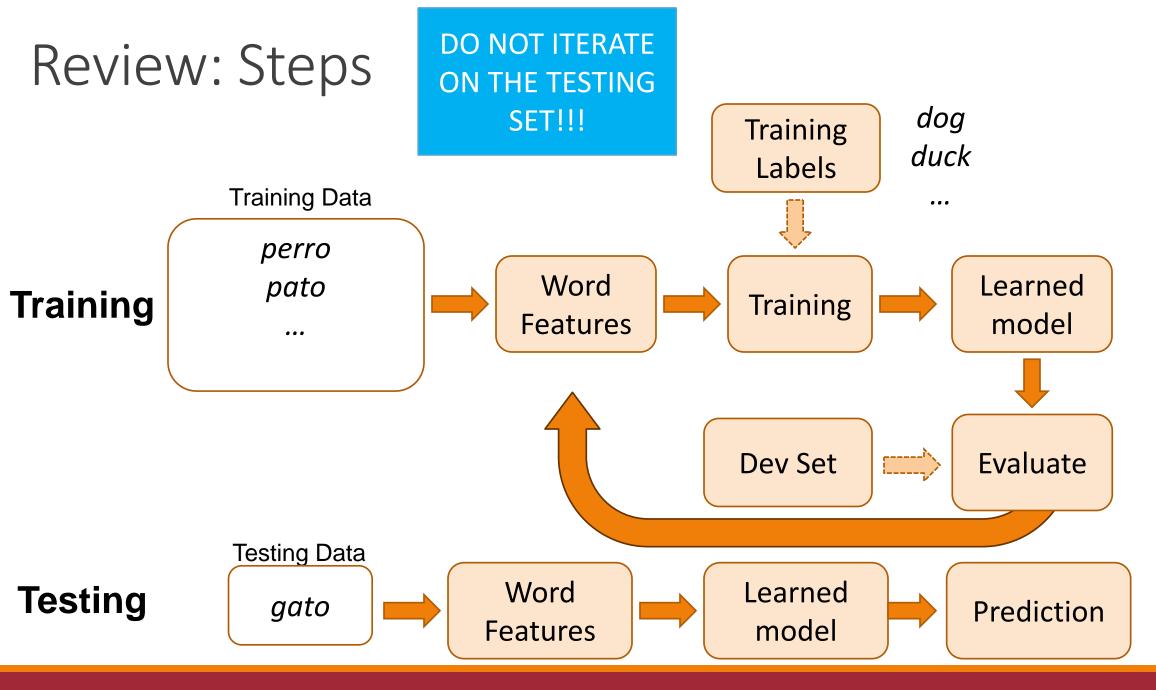
Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Review: Types of Learning

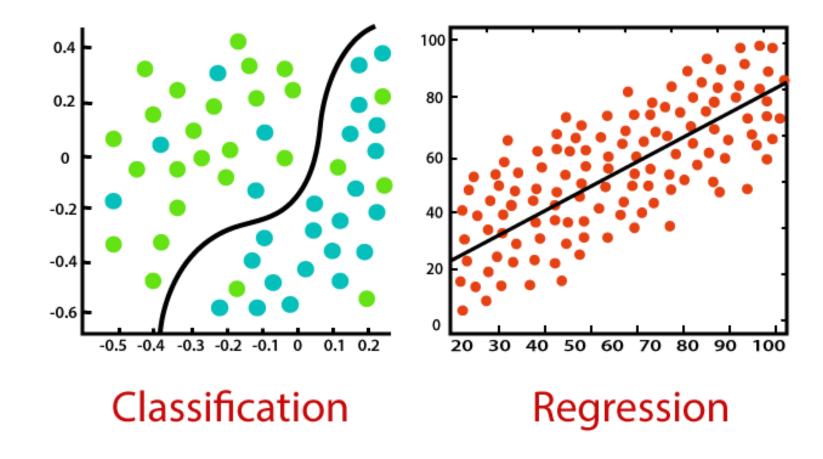
SUPERVISED LEARNING

UNSUPERVISED LEARNING



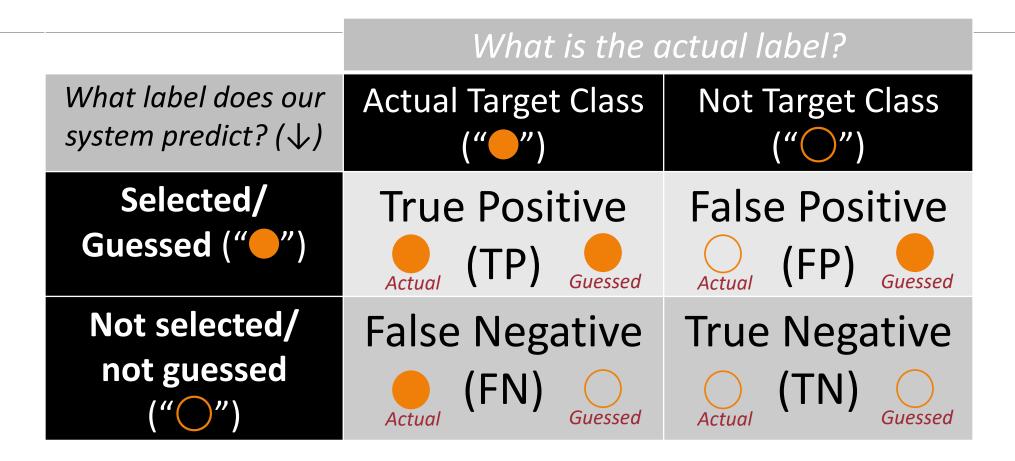


Review: Types of models

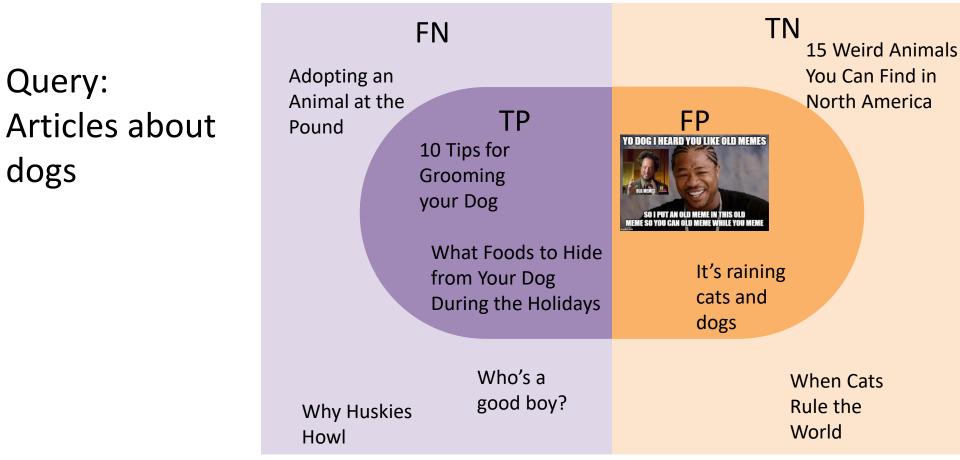


6

Review: Classification Evaluation: the 2-by-2 contingency table

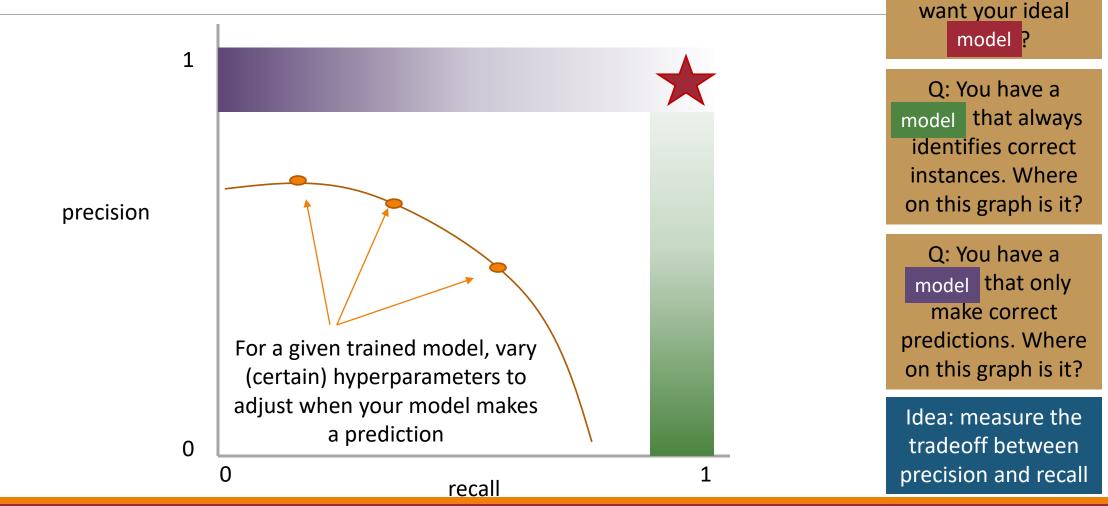


Contingency Table (out of table form)



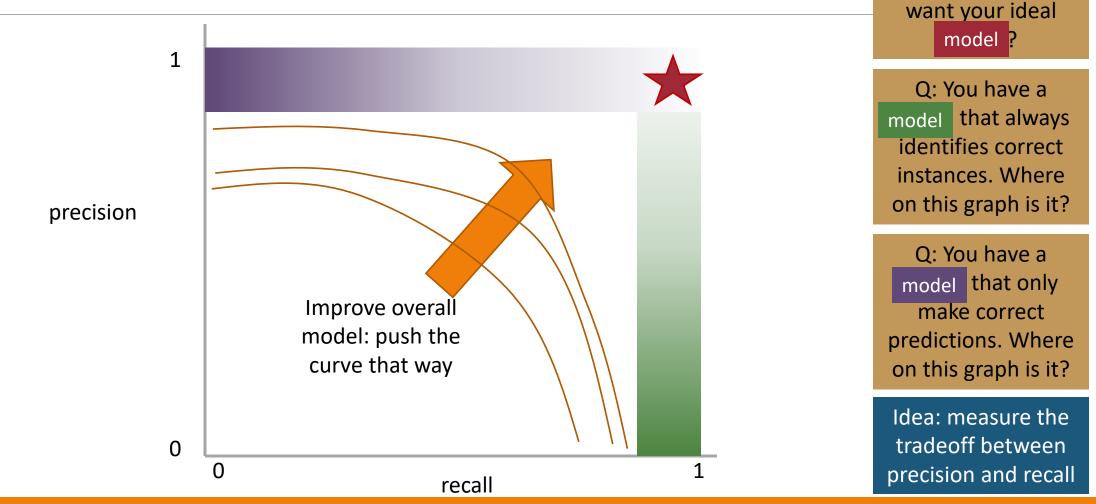
Meme from: https://www.reddit.com/r/AdviceAnimals/comments/ck8xh0/yo_dawg_i_heard_you_like_old_memes/

Review: Precision and Recall Present a Tradeoff



Q: Where do you

Review: Precision and Recall Present a Tradeoff



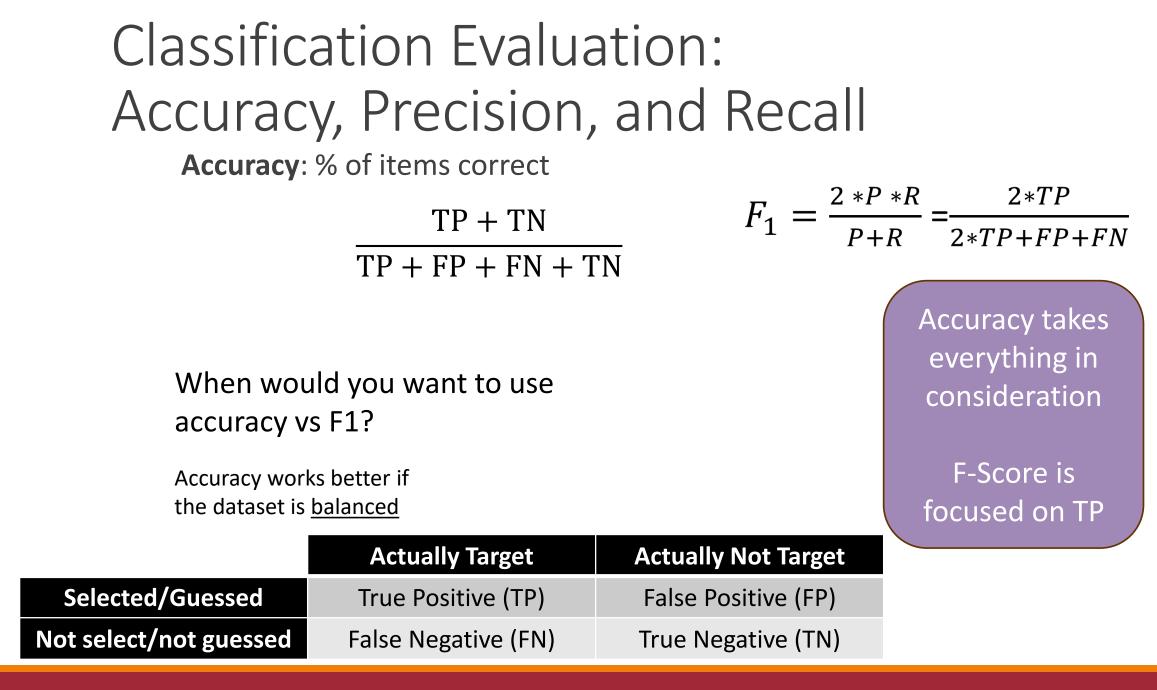
Q: Where do you

Review: A combined measure: F-score

Weighted (harmonic) average of **P**recision & **R**ecall

F1 measure: equal weighting between precision and recall

$$F_{1} = \frac{2 * P * R}{P + R} = \frac{2 * T P}{2 * T P + F P + F N}$$
(useful when $P = R = 0$)



P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average. macroprecision = $\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$ macrorecall = $\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$ when to prefer macroaveraging?

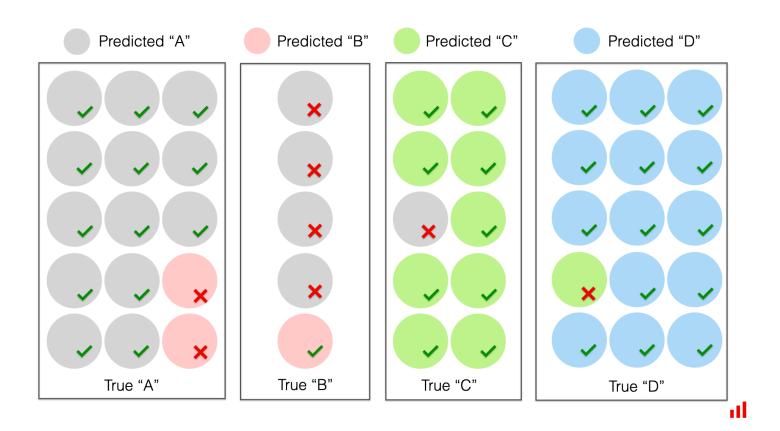
Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

when to prefer microaveraging?

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

microrecall = $\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$

Macro/Micro Example



Each *class* has equal weight

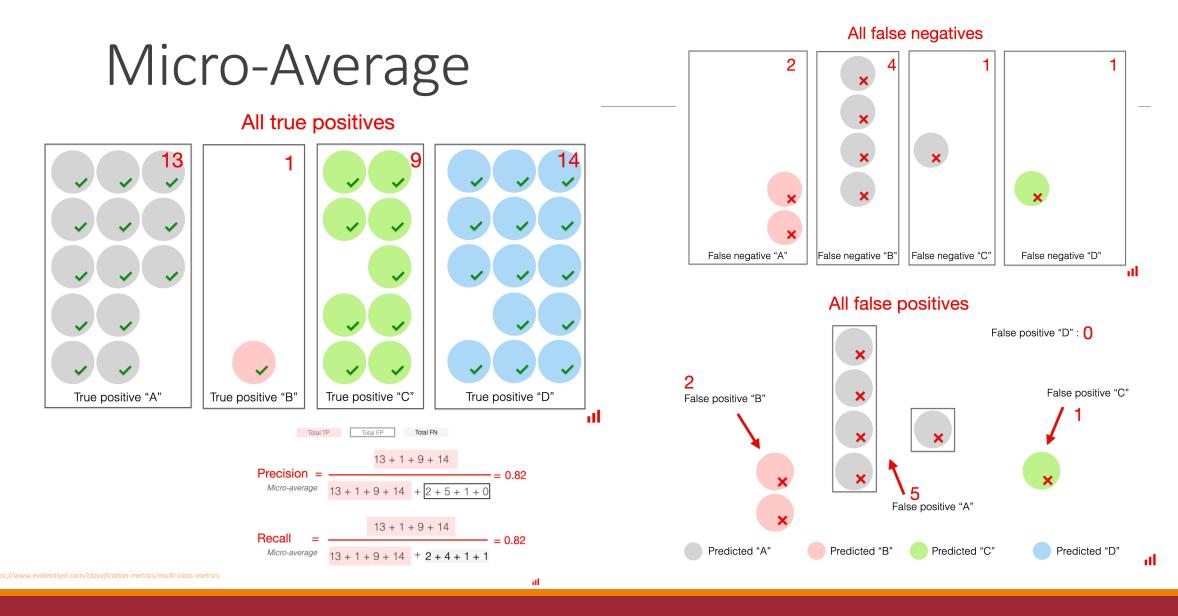
Predicted "A" Predicted "B" Predicted "C" Predicted "D"

Macro-Average

Predicted "A" Predicted "B" Predicted "C" Predicted "D" **Class** C Class D **Class A Class B** Recall: 90%. Recall: 93%. Recall: 87%. Recall: 33%. Precision: 90%. Precision: 100%. Precision: 72%. Precision: 20%. Macro-average Recall = (0.87 + 0.33 + 0.9 + 0.93)/4 = 0.76Precision = (0.72+0.2+0.9+1)/4=0.71 True "B" True "A" True "C" True "D" лI

https://www.evidentlyai.com/classification-metrics/multi-class-metrics

Each *instance* has equal weight



So when would we want to prefer micro-averaging vs macro-averaging?

macroprecision =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \frac{1}{C} \sum_{c} \text{precision}_{c}$$

macrorecall =
$$\frac{1}{C} \sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FN}_{c}} = \frac{1}{C} \sum_{c} \text{recall}_{c}$$

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$
 microrecall = $\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FN_{c}}$

But how do we compute stats for multiple classes?

We already saw how the "polarity" affects the stats we compute...

Two main approaches. Either:

- 1. Compute "one-vs-all" 2x2 tables. OR
- 2. Generalize the 2x2 tables and compute per-class TP / FP / FN based on the diagonals and off-diagonals

1. Compute "one-vs-all" 2x2 tables Predicted Actual

Look for	Actually Target	Actually Not Target	Look for	Actually Target	Actually Not Target
Selected/G	True	False	Selected/G	True	False
uessed	Positive (TP)	Positive (FP)	uessed	Positive (TP)	Positive (FP)
Not	False	True	Not	False	True
select/not	Negative	Negative	select/not	Negative	Negative
guessed	(FN)	(TN)	guessed	(FN)	(TN)

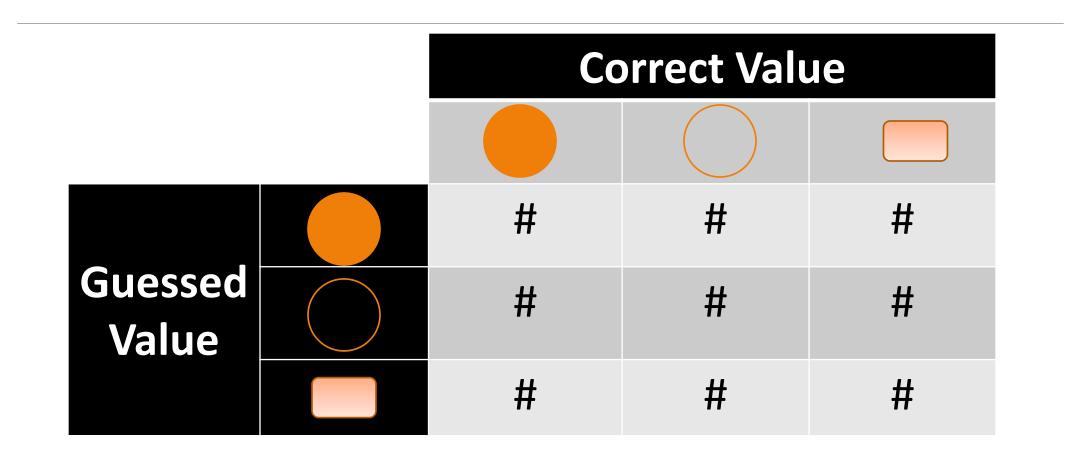
Look for	Actually Target	Actually Not Target
Selected/G	True	False
uessed	Positive (TP)	Positive (FP)
Not	False	True
select/not	Negative	Negative
guessed	(FN)	(TN)

1. Compute "one-vs-all" 2x2 tables Predicted Actual

Look for	Actually Target	Actually Not Target	Look for	Actually Target	Actually Not Target
Selected/G uessed	2	1	Selected/G uessed	2	1
Not select/not guessed	2	4	Not select/not guessed	1	5

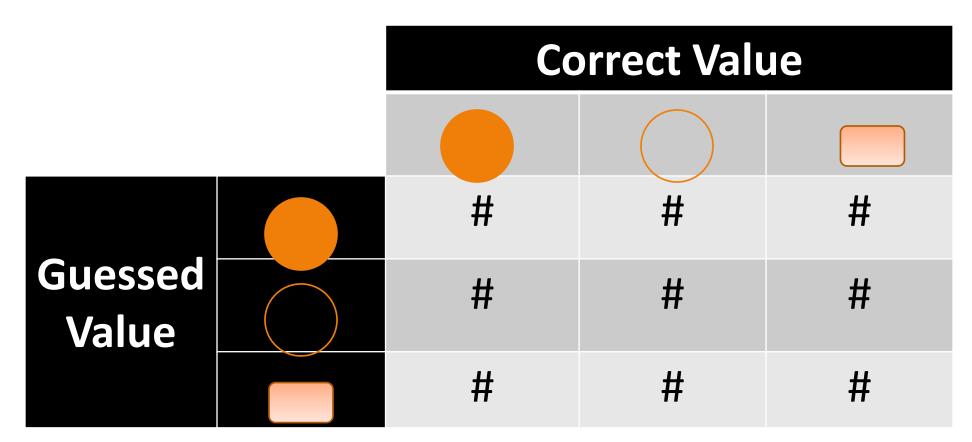
Look for	Actually Target	Actually Not Target
Selected/G uessed	1	2
Not select/not	1	5
guessed		

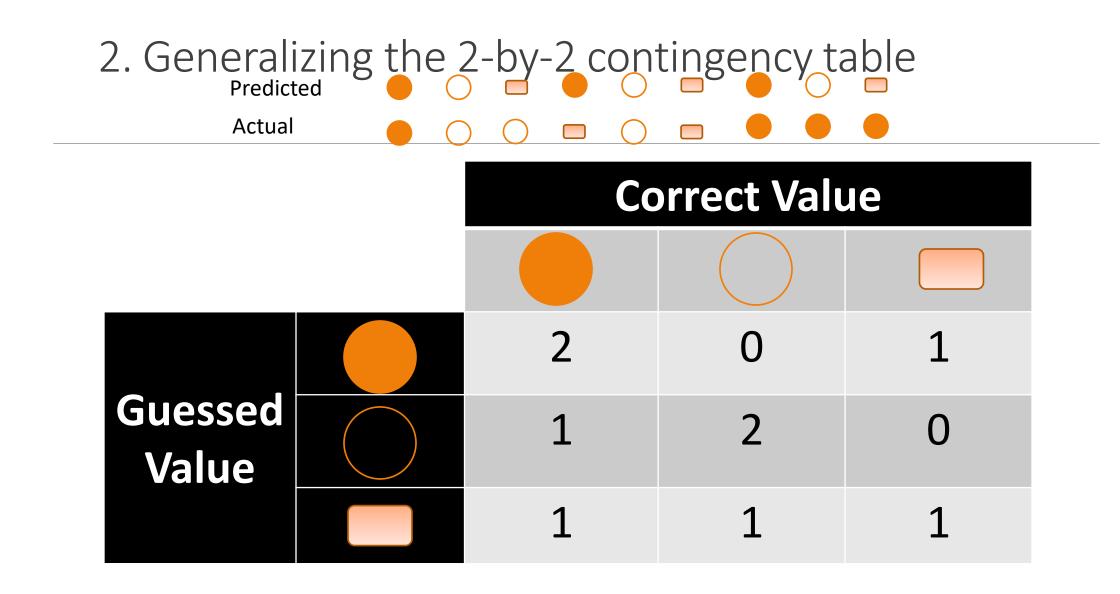
2. Generalizing the 2-by-2 contingency table

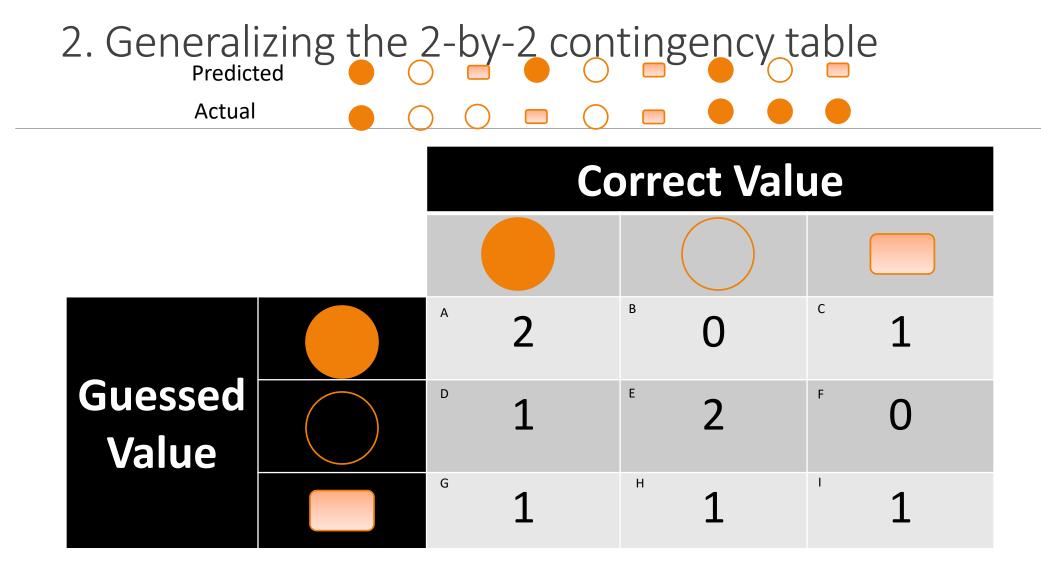


This is also called a **Confusion Matrix**

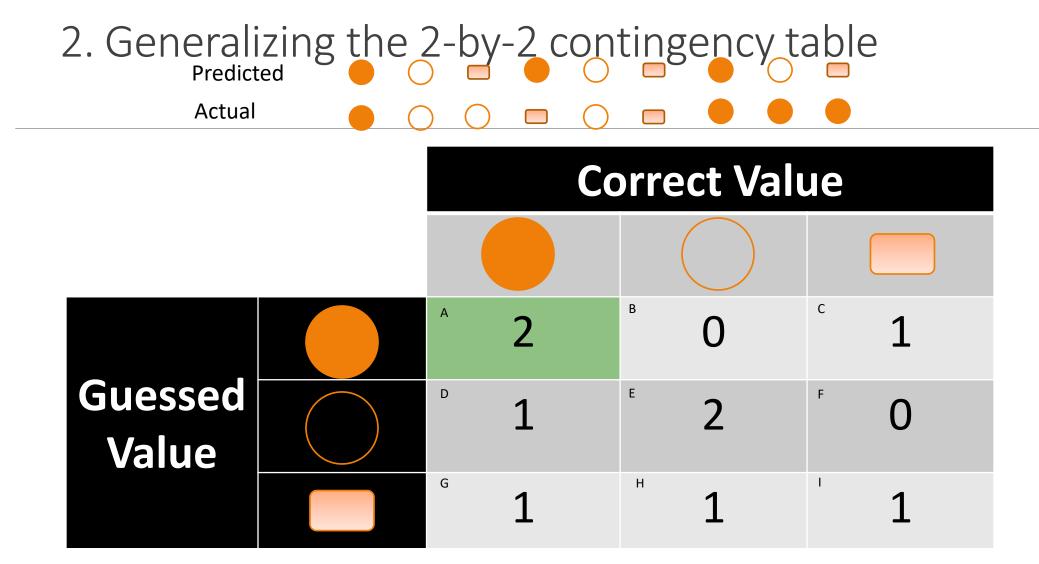
2. Generalizing the 2-by-2 contingency table Actual



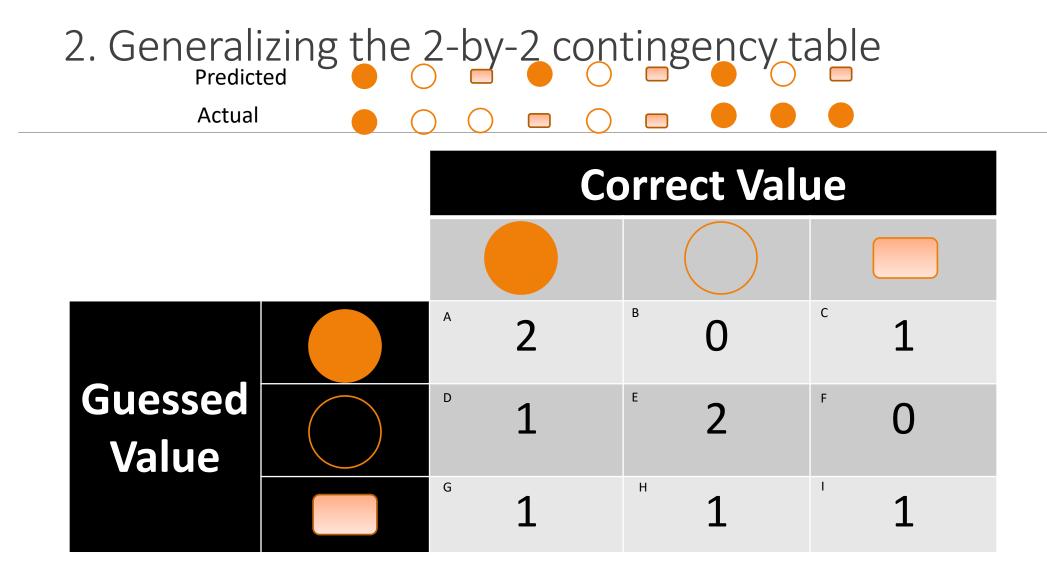




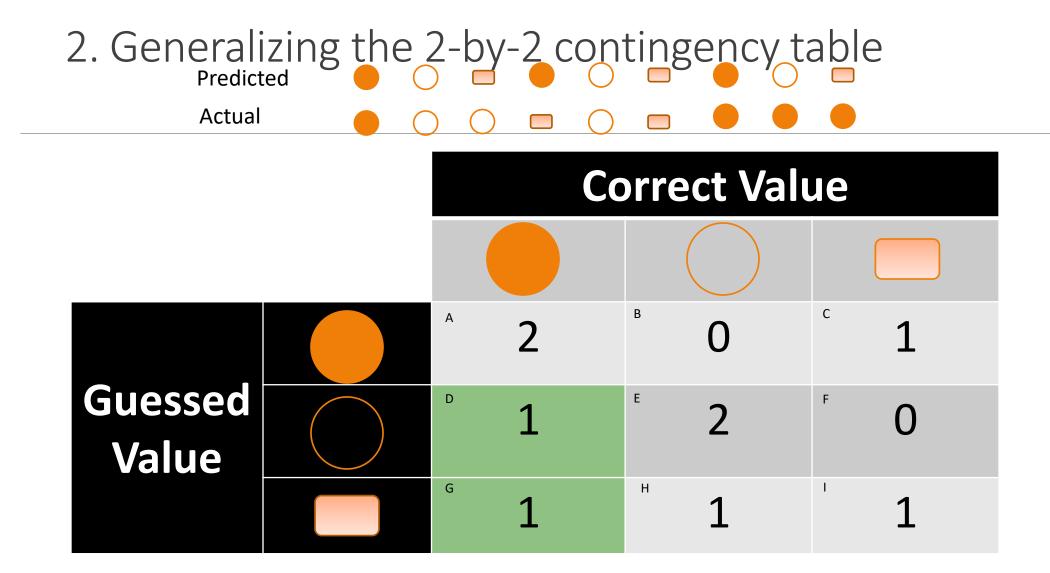
How do you compute *TP*?



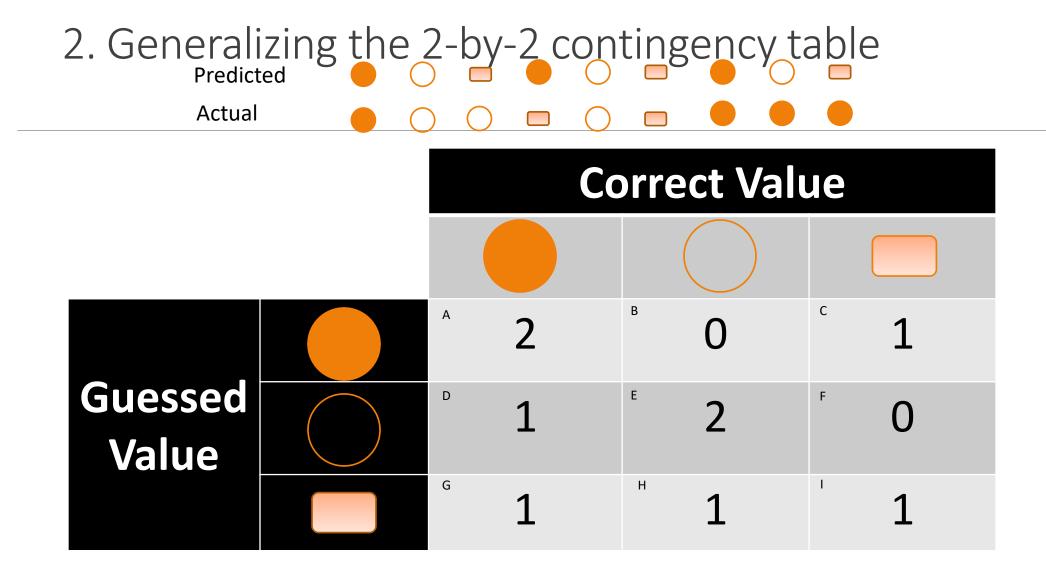
How do you compute *TP*?



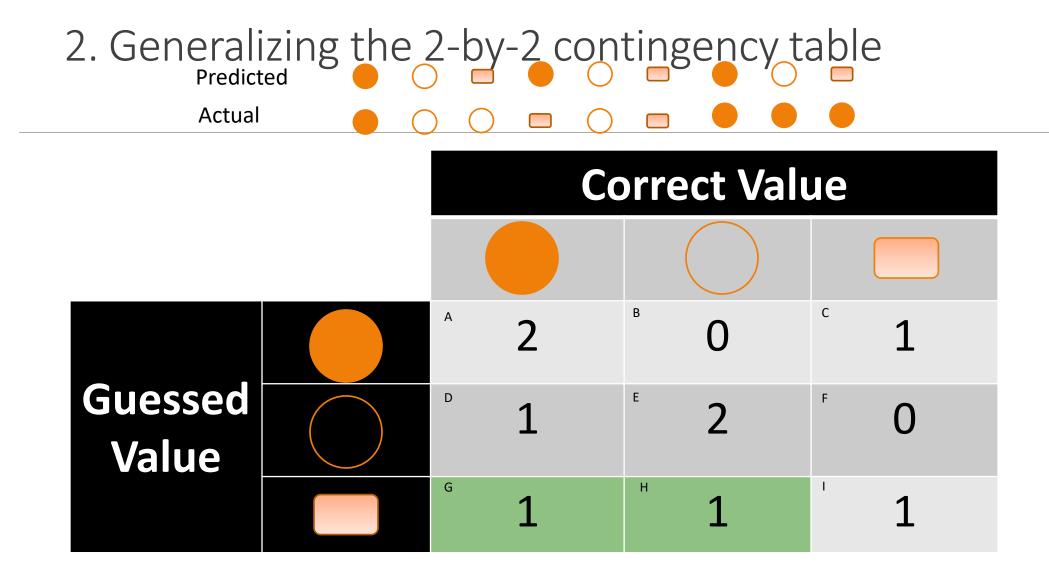
How do you compute *FN*_?



How do you compute *FN*_?



How do you compute FP_{-} ?



How do you compute FP_{-} ?

Generalizing the 2-by-2 contingency table

O. Ic thic		Сс	Correct Value		
Q: Is this a good result?					
		80	9	11	
Guessed Value		7	86	7	
		2	8	9	

Generalizing the 2-by-2 contingency table

O. le thic		Co	Correct Value		
Q: Is this a good result?					
		30	40	30	
Guessed Value		25	30	50	
		30	35	35	

Generalizing the 2-by-2 contingency table

O. Ic thic		Correct Value			
Q: Is this a good result?					
		7	3	90	
Guessed Value		4	8	88	
		3	7	90	

Classification

Outline

Maximum Entropy classifiers

Defining the model

Defining the objective

Learning: Optimizing the objective

Outline

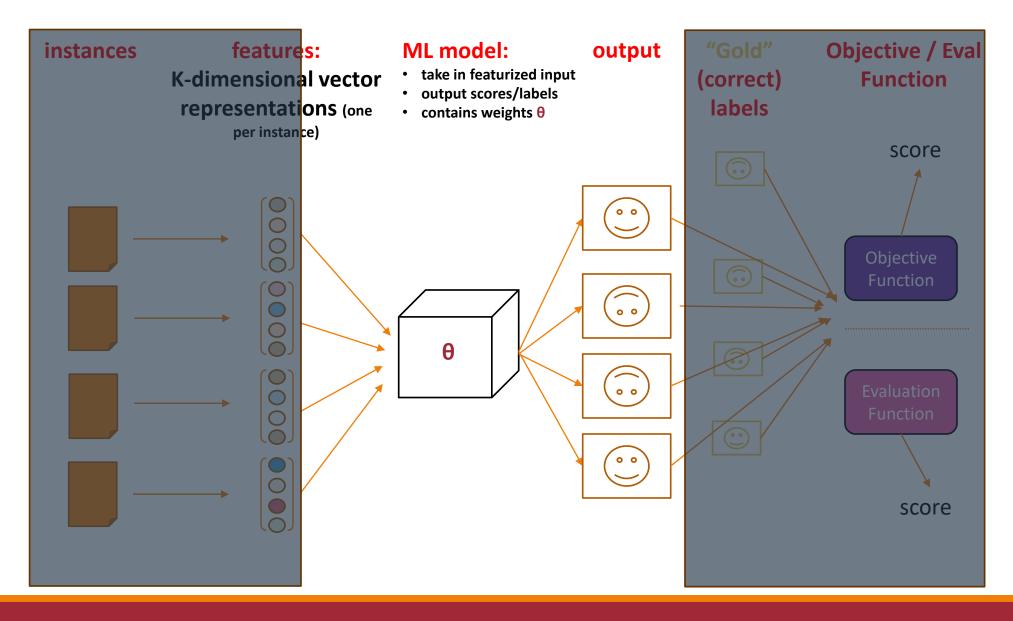
Maximum Entropy classifiers

Defining the model

Defining the objective

Learning: Optimizing the objective

Defining the Model



common NLP term	Log-Linear Models		
as statistical regression	(Multinomial) logistic regression		
	Softmax regression		
based in information theory	, Maximum Entropy models (MaxEnt)		
a form of	Generalized Linear Models		
viewed as	Discriminative Naïve Bayes		
to be cool today	Very shallow (sigmoidal) neural nets		

Maxent Models are Flexible

Maxent models can be used:

- to design discriminatively trained classifiers, or
- to create featureful language models

(among other approaches in NLP and ML more broadly)

Examining Assumption 3 Made for Classification Evaluation

Given X, our classifier produces a score for each possible label

best label = arg max P(|abel||example)label

We will *learn* this p(Y | X)

Conditional probability: probability of event Y, assuming event X happens too

NLP pg. 477

Maxent Models for Classification: Discriminatively or ...

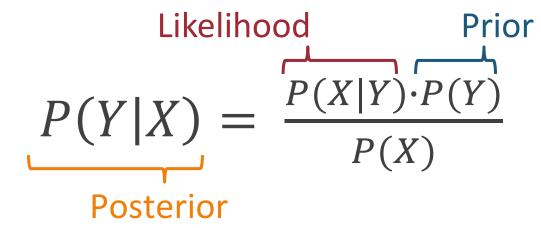
Directly model the posterior

 $p(Y \mid X) = maxent(X; Y)$

Discriminatively trained classifier

"Discriminative classifiers like logistic regression instead learn what features from the input are most useful to discriminate between the different possible classes." SLP, ch. 4

Bayes' Rule



Posterior: probability of event Y with <u>knowledge that X</u> <u>has occurred</u>

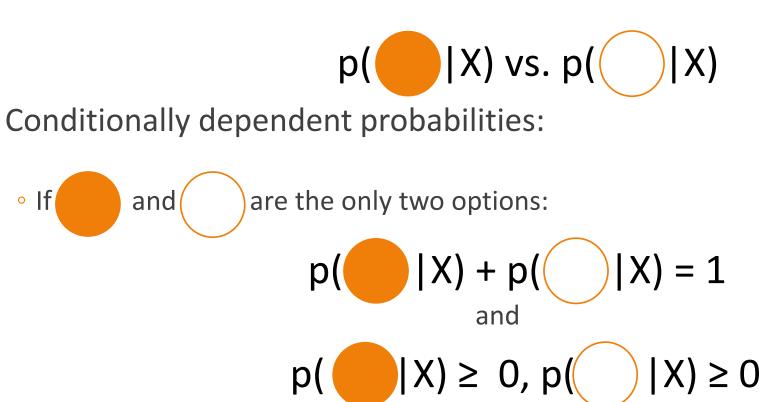
NLP pg. 478

Likelihood: probability of event X given that Y <u>has occurred</u> NLP pg. 478

Prior: probability of event X occurring (regardless of what other events happen) NLP pg. 478

Terminology: Posterior Probability

Posterior probability:



Posterior Probability with Variables

Maxent Models for Classification: Discriminatively or Generatively Trained

Directly model the posterior

$$p(Y \mid X) = maxent(X; Y)$$

Discriminatively trained classifier

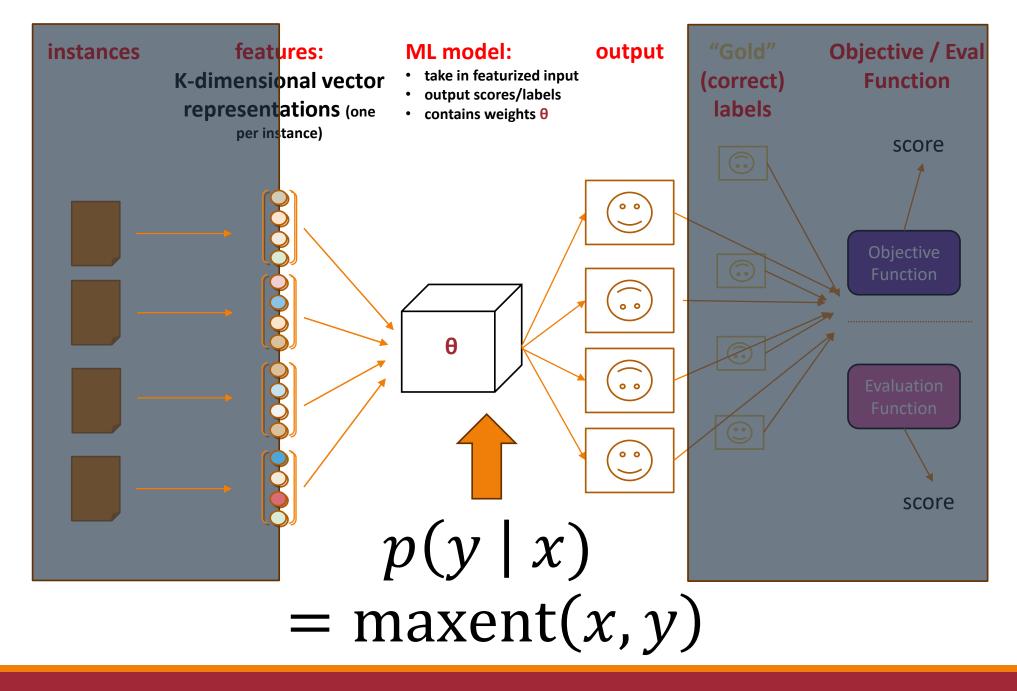
Model the posterior with Bayes rule

$$p(Y \mid X) \propto \mathbf{maxent}(X \mid Y)p(Y)$$

Generatively trained classifier with maxent-based language model

Maximum Entropy (Log-linear) Models For Discriminatively Trained Classifiers

$p(y \mid x) = maxent(x, y)$ Modeled



Core Aspects to Maxent Classifier p(y|x)

We need to define:

- features f(x) from x that are meaningful;
- weights θ (at least one per feature, often one per feature/label combination) to say how important each feature is; and
- a way to form probabilities from f and θ

Overview of Featurization

Common goal: probabilistic classifier p(y | x)

Often done by defining **features** between x and y that are meaningful

• Denoted by a general vector of K features

 $f(x) = (f_1(x), \dots, f_K(x))$

Features can be thought of as "soft" rules

• E.g., POSITIVE sentiments tweets may be more likely to have the word "happy"

Review: Document Classification via Bagof-Words Features (Example)

Core assumption: Amazon acquired MGM in 2022, taking TECH the label can be over a sprawling library that includes predicted from more than 4,000 feature films and NOT TECH counts of individual 17,000 television shows. The tech word types behemoth also earned the rights to distribute all the Bond movies, but the new deal solidifies the company's feature $f_i(x)$ value oversight of Bond's big-screen future. f(x)Amazon 1 With V word types, define V 1 acquired 1 feature functions $f_i(x)$ as behemoth 1 $f_i(x) = \#$ of times word Bond 2 type *i* appears 0 in document x • • • ••• sniffle 0 $f(x) = \left(f_i(x)\right)_i^V$ • • •

Adapted from https://www.nbcnews.com/pop-culture/movies/amazon-taking-control-james-bond-movie-franchise-rcna192

ML EVALUATION + CLASSIFICATION

Example Classification Tasks

SuperGLUE 1

GLUE Tasks

Name	Download
The Corpus of Linguistic Acceptability	*
The Stanford Sentiment Treebank	*
Microsoft Research Paraphrase Corpus	*
Semantic Textual Similarity Benchmark	*
Quora Question Pairs	*
MultiNLI Matched	*
MultiNLI Mismatched	*
Question NLI	Ł
Recognizing Textual Entailment	*
Winograd NLI	*
Diagnostics Main	*

Name	Identifier
Broadcoverage Diagnostics	AX-b
CommitmentBank	СВ
Choice of Plausible Alternatives	COPA
Multi-Sentence Reading Comprehension	MultiRC
Recognizing Textual Entailment	RTE
Words in Context	WiC
The Winograd Schema Challenge	WSC
BoolQ	BoolQ
Reading Comprehension with Commonsense Reasoning	ReCoRD
Winogender Schema Diagnostics	AX-g

SuperGLUE

https://super.gluebenchmark.com/

🤗 datasets: super_glue

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):

NOT ENTAILED (no):

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

NOT ENTAILED (no):

Given a premise sentence s and hypothesis sentence h, determine if h "follows from" s

ENTAILMENT (yes):

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

NOT ENTAILED (no):

s: Based on a worldwide study of smoking-related fire and disaster data, UC Davis epidemiologists show smoking is a leading cause of fires and death from fires globally.

h: Domestic fires are the major cause of fire death.

RTE

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

D ENTAILED

ENTAILED

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team is
based in Chicago.

ML EVALUATION + CLASSIFICATION

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association charpionships. h: The Bulls basketball team is based in Chicago.

ENTAILED

These extractions are all **features** that have **fired** (likely have some significance)

We need to *score* the different extracted clues.

Score and Combine Our Clues

 $score_{1, Entailed}(\textcircled{)})$ $score_{2, Entailed}(\textcircled{)})$ $score_{3, Entailed}(\textcircled{)})$ \dots $score_{k, Entailed}(\textcircled{)})$ \dots

Scoring Our Clues

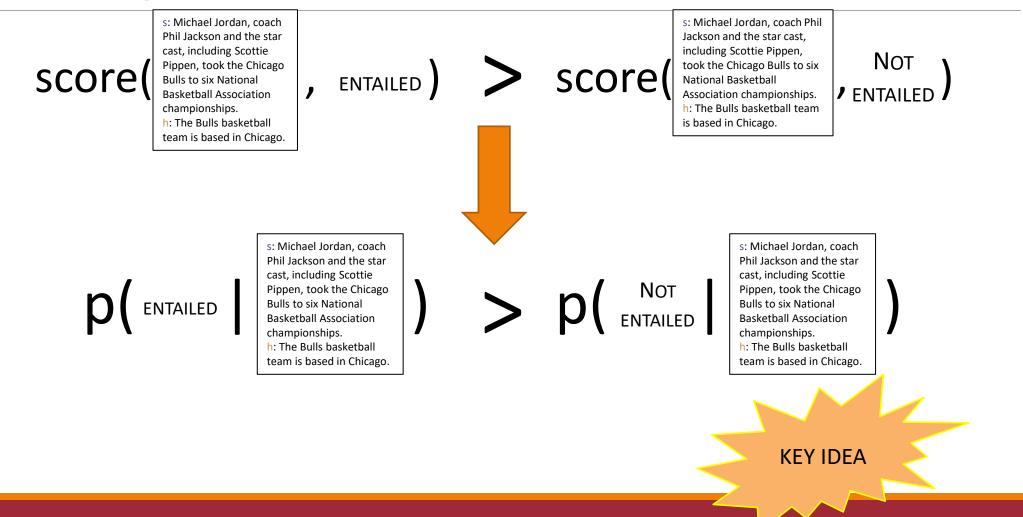
score(

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took the
Chicago Bulls to six National
Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

, ENTAILED) =

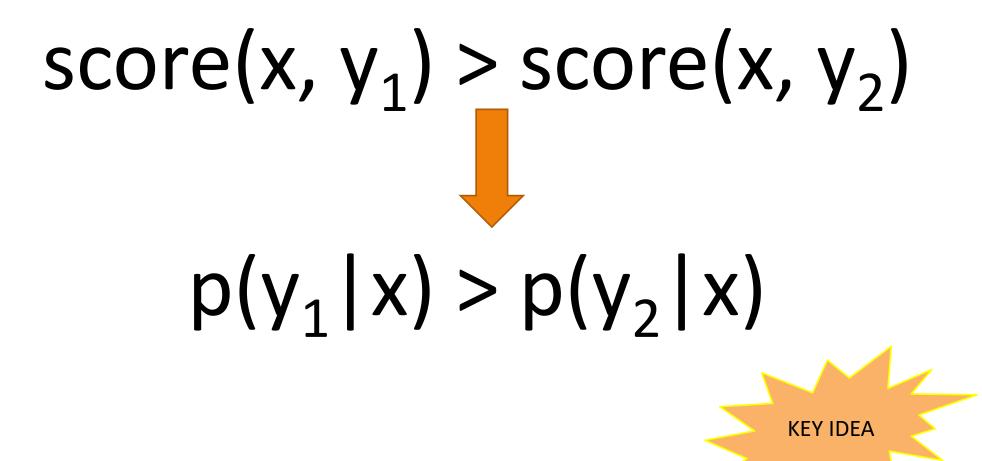
(ignore the feature indexing for now) score_{1, Entailed} (\square) score_{2, Entailed} (\square) score_{3, Entailed} (\square)

Turning Scores into Probabilities

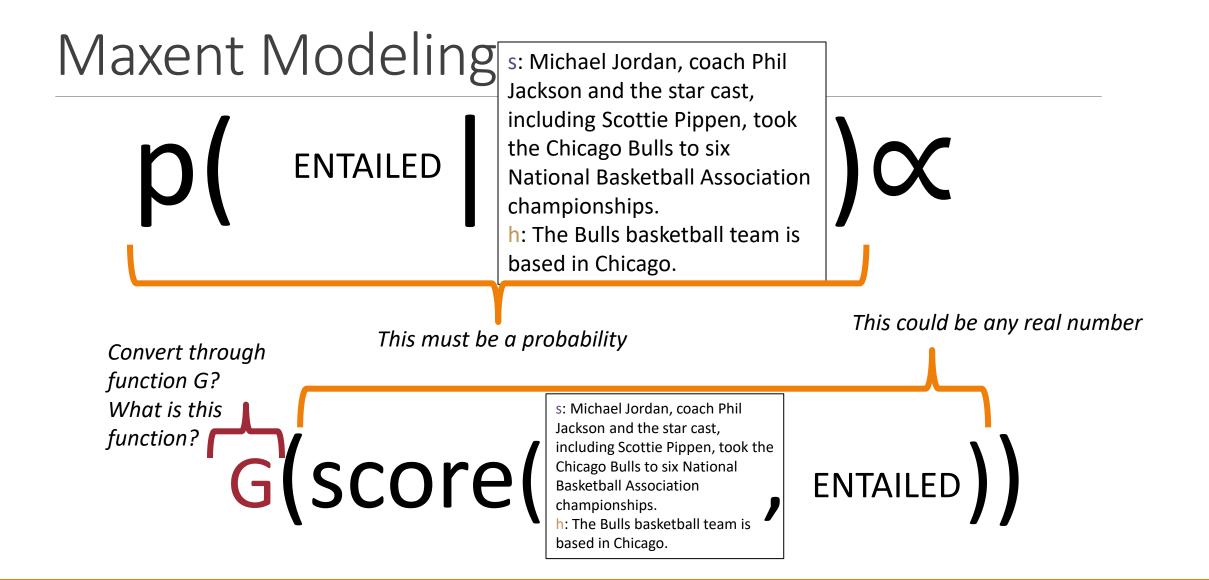


ML EVALUATION + CLASSIFICATION

Turning Scores into Probabilities (More Generally)



ML EVALUATION + CLASSIFICATION



What function G...

operates on any real number?

is never less than 0?

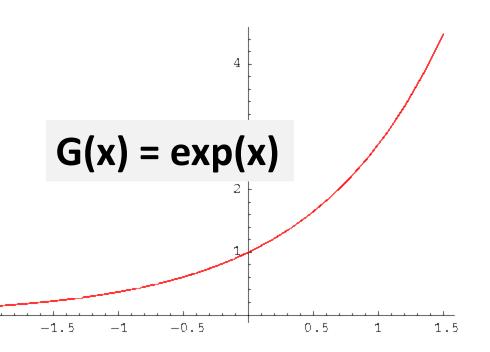
is monotonic? (a < b \rightarrow G(a) < G(b))

What function G...

operates on any real number?

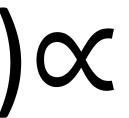
is never less than 0?

is monotonic? (a < b \rightarrow G(a) < G(b))



p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

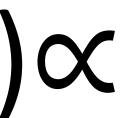


exp(score(

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

D ENTAILED

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.



$$\begin{array}{c} \text{score}_{1, \text{Entailed}}(\textcircled{B}) \clubsuit \\ \text{score}_{2, \text{Entailed}}(\textcircled{B}) \clubsuit \end{array} \end{array} \right) \\ \text{score}_{3, \text{Entailed}}(\textcircled{B}) \clubsuit \end{array} \right)$$

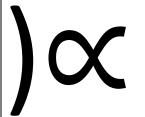
DENTAILEDincluding Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.

s: Michael Jordan, coach Phil Jackson and the star cast, h: The Bulls basketball team is based in Chicago.

 $\begin{array}{c} \text{weight}_{1, \text{Entailed}} * \text{applies}_{1}(\textcircled{)} \\ \text{weight}_{2, \text{Entailed}} * \text{applies}_{2}(\textcircled{)} \\ \text{weight}_{3, \text{Entailed}} * \text{applies}_{3}(\textcircled{)} \\ \end{array} \right) \end{array}$

. . .

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.



.31

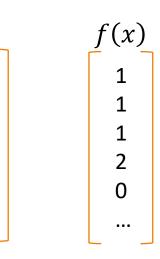
-.5

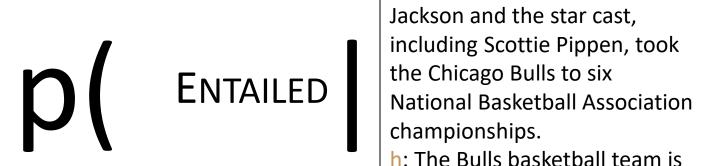
.1

.002

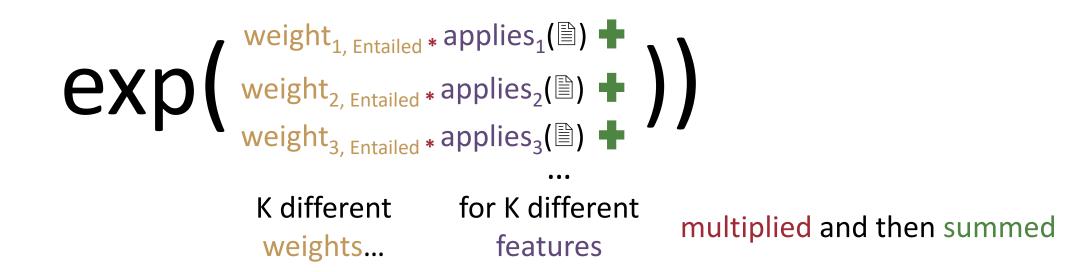
.522

 $\begin{array}{c} \text{weight}_{1, \text{ Entailed } * \text{ applies}_{1}(\textcircled{B}) \clubsuit \\ \text{weight}_{2, \text{ Entailed } * \text{ applies}_{2}(\textcircled{B}) \clubsuit \end{array} \end{array} \right) \\ \text{weight}_{3, \text{ Entailed } * \text{ applies}_{3}(\textcircled{B}) \clubsuit \\ ... \\ \text{K different weights...} \qquad \text{for K different features} \end{array}$





s: Michael Jordan, coach Phil Jackson and the star cast, h: The Bulls basketball team is based in Chicago.



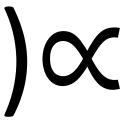
D ENTAILED

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

EXD Dot_product of Entailed weight_vec feature_vec() K different for K different multiplied and weights... features then summed

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.



Knowledge Check: Data Prep

https://colab.research.google.com/drive/19yg0EUXQtHozBiSuO6cKOBhoSPzQHg ug?usp=sharing

CMSC 473/673	About Schedule	Homework -	Knowledge Checks -
CMSC 473/673 Natural			Coding Knowledge Check 1: Handling Types and Tokens Coding Knowledge Check 2: Data Prep
	ing at UN	Languago	
Spring 202	25		
	oription		