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Slides modified from Dr. Frank Ferraro



Learning Objectives
Model classification problems using logistic regression

Define appropriate features for a logistic regression problem

Define an objective for LR modeling

Visualize the learning process for maxent models

Distinguish between discriminatively- and generatively-trained maxent models

2/25/2025 CLASSIFICATION 2



Outline

Maximum Entropy classifiers

 Defining the model: Discriminatively

 Defining the objective

 Learning: Optimizing the objective

 Defining the model: Generatively
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Outline

Maximum Entropy classifiers

 Defining the model: Discriminatively

 Defining the objective

 Learning: Optimizing the objective

 Defining the model: Generatively
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θ

Evaluation 
Function

score

Objective / Eval 
Function

Objective 
Function

score

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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Defining the Model



Examining Assumption 3 Made for 
Classification Evaluation
Given X, our classifier produces a score for each possible label
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p(       |X) vs. p(       |X)



 Key Take-away

We will learn this 
𝒑 𝒀 𝑿)
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Conditional 
probability:

probability of event Y, 
assuming event X 

happens too

NLP pg. 477



Maxent Models for Classification: 
Discriminatively or …
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𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)

Discriminatively trained classifier

Directly model 
the posterior

“Discriminative classifiers like logistic 
regression instead learn what features from 

the input are most useful to discriminate 
between the different possible classes.”

SLP, ch. 4



Bayes’ Rule
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𝑃 𝑌 𝑋 =
𝑃(𝑋|𝑌)∙𝑃(𝑌)

𝑃(𝑋)

PriorLikelihood

Posterior

Posterior:
probability of event Y  
with knowledge that X 

has occurred

NLP pg. 478

Likelihood:
probability of event X  

given that Y has occurred
NLP pg. 478

Prior:
probability of event X  

occurring (regardless of 
what other events 

happen)
NLP pg. 478



Bayes’ Rule
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𝑃 𝑐 𝑑 =
𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

=
𝑃  )∙𝑃( )

𝑃( )

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

P(     | )ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

ENTAILED ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.



Terminology: Posterior Probability
Posterior probability:

Conditionally dependent probabilities:

◦ If label0 and label1 are the only two options:

     and
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p( Y = label1 |X) + p(Y = label0 |X) = 1

p( Y = label1 |X) ≥  0, p(Y = label0 |X) ≥ 0

p( Y = label1 |X) vs. p(Y = label0 |X)



Maxent Models for Classification: 
Discriminatively or Generatively Trained
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𝑝 𝑌 𝑋) ∝ 𝐦𝐚𝐱𝐞𝐧𝐭 𝑋 𝑌)𝑝(𝑌)

Discriminatively trained classifier

Generatively trained classifier with 
maxent-based language model

Directly model 
the posterior

Model the 
posterior with 

Bayes rule

𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)



Maximum Entropy (Log-linear) Models 
For Discriminatively Trained Classifiers
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𝑝 𝑦 𝑥) = maxent 𝑥, 𝑦

Modeled 
jointly!



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output

θ

Evaluation 
Function

score

Objective 
Function

score

𝑝 𝑦 𝑥)
= maxent 𝑥, 𝑦
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Core Aspects to Maxent Classifier p(y|x)
We need to define:

• features 𝑓 𝑥  from x that are meaningful;

•weights 𝜃 (at least one per feature, often one per feature/label 
combination) to say how important each feature is; and

• a way to form probabilities from 𝑓 and 𝜃
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Overview of Featurization
Common goal: probabilistic classifier p(y | x)

Often done by defining features between x and y that are 
meaningful
◦ Denoted by a general vector of K features

𝑓 𝑥 = (𝑓1(𝑥), … , 𝑓𝐾(𝑥))

Features can be thought of as “soft” rules
◦ E.g., POSITIVE sentiments tweets may be more likely to have the word “happy”
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Discriminative Document Classification

s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball 
Association championships.

h: The Bulls basketball team 
is based in Chicago.

What does it mean 
for a feature to 

“fire”?
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ENTAILED
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball 
Association championships.

h: The Bulls basketball team 
is based in Chicago.

extract_and_scoreBulls, entailed(🗎)

extract_and_scorebasketball, entailed(🗎, ENTAILED)

extract_and_scoreChicago, entailed(🗎, ENTAILED)

We need to score the 
different extracted clues.
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Score and Combine Our Clues

score1, Entailed(🗎)

score2 , Entailed(🗎)

score3 , Entailed(🗎)

…

COMBINE
posterior 

probability of 
ENTAILED 

…
scorek , Entailed(🗎)
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Scoring Our Clues
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took the 
Chicago Bulls to six National 
Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

score(               , ) =ENTAILED

score1 , Entailed(🗎)

score2 , Entailed(🗎)

score3 , Entailed(🗎)

…

(ignore the 
feature indexing 

for now)
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Turning Scores into Probabilities

s: Michael Jordan, coach 
Phil Jackson and the star 
cast, including Scottie 
Pippen, took the Chicago 
Bulls to six National 
Basketball Association 
championships.
h: The Bulls basketball 
team is based in Chicago.

p(      | ) ENTAILED

s: Michael Jordan, coach 
Phil Jackson and the star 
cast, including Scottie 
Pippen, took the Chicago 
Bulls to six National 
Basketball Association 
championships.
h: The Bulls basketball 
team is based in Chicago.

score(              , )ENTAILED

s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, 
took the Chicago Bulls to six 
National Basketball 
Association championships.
h: The Bulls basketball team 
is based in Chicago.

score(               , )NOT

ENTAILED>

>
s: Michael Jordan, coach 
Phil Jackson and the star 
cast, including Scottie 
Pippen, took the Chicago 
Bulls to six National 
Basketball Association 
championships.
h: The Bulls basketball 
team is based in Chicago.

p(      | ) NOT

ENTAILED

KEY IDEA
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Turning Scores into Probabilities 
(More Generally)

p(y1|x) > p(y2|x)

score(x, y1) > score(x, y2)

KEY IDEA

2/25/2025 CLASSIFICATION 23



s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took the 
Chicago Bulls to six National 
Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

G(score(          , ))ENTAILED

Maxent Modeling s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

This could be any real number
This must be a probability

Convert through 
function G? 
What is this 
function?
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What function G…
operates on any real number?

is never less than 0?

is monotonic? (a < b ➔ G(a) < G(b))
G(x) = exp(x)

2/25/2025 CLASSIFICATION 25



weight2, Entailed * applies2(🗎)exp( ))
weight1, Entailed * applies1(🗎)

weight3, Entailed * applies3(🗎)
…
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

K different 
weights…

for K different 
features

1
1
1
2
0
…

.31
-.5
.1
.002
.522
…

𝜃 𝑓 𝑥



exp( ))
weight1, Entailed * applies1(🗎)

weight2, Entailed * applies2(🗎)

weight3, Entailed * applies3(🗎)
…
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

K different 
weights…

for K different 
features

multiplied and then summed



exp( )Dot_product of Entailed weight_vec  feature_vec(🗎)
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

K different 
weights…

for K different 
features

multiplied and 
then summed



exp( )𝜃ENTAILED
𝑇 𝑓(🗎)
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

K different 
weights…

for K different 
features

multiplied and 
then summed

1
1
1
2
0
…

.31 -.5 .1 .002 .522 … ×
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Maxent Classifier, schematically
𝑓(𝑥) 𝑦

𝑝 𝑦 = entailed 𝑥)∝
exp(𝜃entailed𝑓(𝑥))

𝜃entailed

𝑦1

1
1
1
2
0
…

.31
-.5
.1
.002
.522
…

𝑓(𝑥)

𝜃entailed



exp( )𝜃ENTAILED
𝑇 𝑓(🗎)
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )∝ ENTAILED

1

Z



exp( )𝜃ENTAILED
𝑇 𝑓(🗎)
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Maxent Modeling
s: Michael Jordan, coach Phil 
Jackson and the star cast, 
including Scottie Pippen, took 
the Chicago Bulls to six 
National Basketball Association 
championships.
h: The Bulls basketball team is 
based in Chicago.

p(       | )= ENTAILED

1

Z

How do we define Z?



exp( )Σ
label j

Z =
Normalization for Classification

𝑝 𝑦 𝑥) ∝ exp(𝜃𝑦
𝑇𝑓(𝑥)) classify doc x with label y in one go

𝜃J
𝑇𝑓(🗎)
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exp( )
…

Σ
label j

Normalization for Classification 
(long form)

weight1, j * applies1(🗎)

weight2, j * applies2(🗎)

weight3, j * applies3(🗎)

Z =
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𝑝 𝑦 𝑥) ∝ exp(𝜃𝑦
𝑇𝑓(𝑥)) classify doc x with label y in one go



Maxent Classifier, schematically

𝜃contra

𝑦

𝑝 𝑦 = entailed 𝑥)∝
exp(𝜃entailed𝑓(𝑥))

𝜃entailed

𝑦2

𝑦1

𝜃neutral

𝑦3

𝑝 𝑦 = contra 𝑥)∝
exp(𝜃contra𝑓(𝑥))

𝑝 𝑦 = neutral 𝑥)∝
exp(𝜃neutral𝑓(𝑥))

𝑓(𝑥)

output:
i = argmax scorei

class i

Why would we want 
to normalize the 
weights?
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Final Equation for Logistic Regression

features 𝑓 𝑥  from x that are meaningful;

weights 𝜃 (at least one per feature, often one per feature/label 
combination) to say how important each feature is; and

a way to form probabilities from 𝑓 and 𝜃

𝑝 𝑦 𝑥) =
exp(𝜃𝑦

𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

2/25/2025 CLASSIFICATION 36



2/25/2025 CLASSIFICATION 37

Different Notation, Same Meaning

𝑝 𝑌 = 𝑦 𝑥) ∝ exp(𝜃𝑦
𝑇𝑓 𝑥 )

𝑝 𝑌 𝑥) = softmax(𝜃𝑓(𝑥))

𝑝 𝑌 = 𝑦 𝑥) =
exp(𝜃𝑦

𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))



Review: Defining Appropriate Features in 
a Maxent Model

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Generally templated

Binary-valued (0 or 1) or real-valued
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Representing Linguistic Information

Integer 
representation

/ one-hot 
encoding

Dense embedding

Let E be some embedding size (often 
100, 200, 300, etc.)

Represent each word w with an E-
dimensional real-valued vector 𝑒𝑤

Assign each word to some index i, 
where 0 ≤ 𝑖 < 𝑉

Represent each word w with a V-
dimensional binary vector 𝑒𝑤, 
where 𝑒𝑤,𝑖 = 1 and 0 otherwise

User-
defined

Model-
produced
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Featurization is Similar but…
Vocab types (V) / embedding dimension (E) ➔ number of features (number of 
“clues”)

Word/Sentence/Phrase/Document ➔ Instances to represent

Features are extracted on each instance

2/25/2025 CLASSIFICATION 40



Bag-of-Words as a Function
Based on some tokenization, turn an input document into an array (or dictionary 
or set) of its unique vocab items

Think of getting a BOW representation as a function f

  input: Document

  output: Container of size E, indexable by each vocab type v
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Some Bag-of-words Functions
Kind Type of 𝒇𝒗 Interpretation

Binary 0, 1
Did v appear in the 
document?

Count-based Natural number (int >= 0)
How often did v occur in 
the document?

Averaged Real number (>=0, <= 1)
How often did v occur in 
the document, normalized 
by # words in doc?

TF-IDF (term 
frequency, 
inverse 
document 
frequency)

Real number (>= 0)

How frequent is a word, 
compared to how 
prevalent it is across the 
corpus (to be covered 
later!)

…
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Q: Is this a 
reasonable 

representation?

Q: What are some 
tradeoffs 

(benefits vs. 
costs)?



Useful Terminology: n-gram

n
Commonly 

called
History Size 

(Markov order)
Example n-gram ending in 

“furiously”

1 unigram 0 furiously

2 bigram 1 sleep furiously

3
trigram

(3-gram)
2 ideas sleep furiously

4 4-gram 3 green ideas sleep furiously

n n-gram n-1 wi-n+1 … wi-1 wi

Within a larger string (e.g., sentence), 
a contiguous sequence of n items (e.g., words)

Colorless green ideas sleep furiously
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Templated Features
Define a feature fclue(🗎) for each clue you want to consider

The feature fclue  fires if the clue applies to/can be found in 🗎

Clue is often a target phrase (an n-gram)
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exp( ))
weight1 , Entailed * applies1(🗎)

weight1 , Entailed * applies2(🗎)

weight1 , Entailed * applies3(🗎)
…

Maxent Modeling: 
Templated Binary Feature Functions

appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

p(     | )∝ ENTAILED

binary
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Example of a Templated Binary Feature 
Functions

appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise
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Example of a Templated Binary Feature 
Functions
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appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?



Example of a Templated Binary Feature 
Functions
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appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?

A1: 𝑉𝐿



Example of a Templated Binary Feature 
Functions

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?

2. How many features are defined if 
bigram targets are used (w/ each label)?

A1: 𝑉𝐿
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appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise



Example of a Templated Binary Feature 
Functions

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?

2. How many features are defined if 
bigram targets are used (w/ each label)?

A1: 𝑉𝐿

A2: 𝑉2𝐿
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appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise



Example of a Templated Binary Feature 
Functions

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?

2. How many features are defined if 
bigram targets are used (w/ each label)?

3. How many features are defined if 
unigram and bigram targets are used 

(w/ each label)?

A1: 𝑉𝐿

A2: 𝑉2𝐿
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appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise



CLASSIFICATION

Example of a Templated Binary Feature 
Functions

Q: If there are V vocab types and L label 
types:

1. How many features are defined if 
unigram targets are used (w/ each label)?

2. How many features are defined if 
bigram targets are used (w/ each label)?

3. How many features are defined if 
unigram and bigram targets are used 

(w/ each label)?

A1: 𝑉𝐿

A2: 𝑉2𝐿

A2: (V + 𝑉2)𝐿2/25/2025 52

appliestarget 🗎 =

ቊ
1, target 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 🗎

0, otherwise

appliesball 🗎 =

ቊ
1, ball 𝑖𝑛 both s and h of 🗎

0, otherwise



Outline

Maximum Entropy classifiers

 Defining the model: Discriminatively

 Defining the objective

 Learning: Optimizing the objective

 Defining the model: Generatively
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pθ(y | x ) probabilistic model

objective𝐹(𝜃; 𝑥, 𝑦)
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Defining the Objective

θ

Evaluation 
Function

score

Objective 
Function

score

Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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Defining the Objective

θ

Evaluation 
Function

score

Objective 
Function

score

Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output

give feedback 
to the predictor



How do we learn?
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instance 1

instance 2

instance 3

instance 4

Inductive Bias

Training 
Evaluator: 

Cross-
entropy 

loss

score

instances are 
typically 

examined 
independently

Gold/correct 
labels

give feedback 
to the predictor

𝒑 𝒚 𝒙
∝ 𝒆𝒙𝒑(𝜽𝒚

𝑻𝒇(𝒙))



How do we evaluate (or use)?
Change the eval function.
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instance 1

instance 2

instance 3

instance 4

Inductive Bias

Test 
Evaluator: 

Scoring 
function

score

instances are 
typically 

examined 
independently

Gold/correct 
labels

give feedback 
to the predictor

Accuracy, 
F1, 

precision, 
…

𝒑 𝒚 𝒙
∝ 𝒆𝒙𝒑(𝜽𝒚

𝑻𝒇(𝒙))



Primary Objective: Likelihood

Goal: maximize the score your model gives to the training data it observes

This is called the likelihood of your data

In classification, this is p(label | 🗎)

For language modeling, this is p(word | history of words)
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Objective = Full Likelihood?

These values can have very 
small magnitude ➔ underflow

Differentiating this 
product could be a pain

ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 ∝ ෑ

𝑖

exp(𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 )

2/25/2025 CLASSIFICATION 60

Our maxent equationOur goal probability



Logarithms

(0, 1] ➔ (-∞, 0]

Products ➔ Sums

 log(ab) = log(a) + log(b)

 log(a/b) = log(a) – log(b)

Inverse of exp

 log(exp(x)) = x
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How might you find the 
log of this?

ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖



Maximize Log-Likelihood
Wide range of (negative) numbers
Sums are more stable

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

Products ➔ Sums

 log(ab) = log(a) + log(b)

 log(a/b) = log(a) – log(b)
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Maximize Log-Likelihood

Inverse of exp
 log(exp(x)) = x

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

= 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)
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Differentiating this 
becomes nicer (even 

though Z depends on θ)

exp(𝜃𝑦
𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

Original maxent equation



Maximize Log-Likelihood

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

= 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

= 𝐹 𝜃
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Equivalent Version 2: 
Minimize Cross Entropy Loss

ℓxent 𝑦, ො𝑦

0
0
…
1
…
0

one-hot 
vector

index of “1” 
indicates 

correct value

loss uses ො𝑦 (random 
variable), or model’s 
probabilities
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Cross entropy:
How much ො𝑦 differs from 

the true 𝑦
SLP3, ch. 5, pg. 12

ℓxent 𝑦, 𝑝(𝑦|𝑥) 

True label



ℓxent 𝑦, ො𝑦 = − 

𝑘

𝑦 𝑘 ∙ log 𝑝(𝑦 = 𝑘|𝑥)

Equivalent Version 2: 
Minimize Cross Entropy Loss

ℓxent 𝑦, 𝑝(𝑦|𝑥) 

loss uses ො𝑦 (random 
variable), or model’s 
probabilities
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0
0
…
1
…
0

True label



Classification Log-likelihood (max) ≅
Cross Entropy Loss (min)

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)
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Log Likelihood

objective is 
convex

objective is 
concave



Preventing Extreme Values
Likelihood on its own can lead to overfitting and/or extreme values in the 
probability computation

𝐹(𝜃) = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

Learn the parameters based on 
some (fixed) data/examples
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Regularization:
Preventing Extreme Values

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍 𝑥𝑖 − 𝑅(𝜃)

With fixed/predefined 
features, the values of 𝜃 
determine how “good” 
or “bad” our objective 

learning is

• Augment the objective with a regularizer
• This regularizer places an inductive bias 

(or, prior) on the general “shape” and 
values of 𝜃
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(Squared) L2 Regularization

3/6/2024 LEARNING FOR CLASSIFICATION 70

https://explained.ai/regularization/



Regularization:
Preventing Extreme Values

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍 𝑥𝑖 − 

𝑘

𝜃𝑘
2
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Outline

Maximum Entropy classifiers

 Defining the model: Discriminatively

 Defining the objective

 Learning: Optimizing the objective

 Defining the model: Generatively
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How will we optimize F(θ)?

Calculus.
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F(θ)

θ
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F(θ)

θ
θ*
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F(θ)

θ

F’(θ)
derivative of F 

wrt θ

θ*
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Example 
(Best case, solve for roots of the derivative)

F’(x) = -2x + 4

F(x) = -(x-2)2

differentiate

Solve F’(x) = 0

x = 2
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)

θ0

z0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)

θ0

z0

g0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)

θ0

z0

g0
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Slope of loss at 
θ0 is negative



F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

g0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

z1

θ2

g0
g1
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

z1

θ2

z2

z3

θ3

g0
g1 g2
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0

Pick a starting value θt

Until converged:
1. Get value zt = F(θ t)
2. Get derivative g t = F’(θ t)

3. Get scaling factor ρ t
4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1
θ0

z0

θ1

z1

θ2

z2

z3

θ3

g0
g1 g2
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Gradient = Multi-variable derivative

K-dimensional input

K-dimensional output

2/25/2025 CLASSIFICATION 86



2/25/2025 CLASSIFICATION 87

Gradient Ascent
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Gradient Ascent
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Gradient Ascent
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Gradient Ascent
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Gradient Ascent
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Gradient Ascent



F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the gradient

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get gradient g t = F’(θ t)
3. Get scaling factor ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1
θ0

z0

θ1

z1

θ2

z2

z3

θ3

g0
g1 g2

K-dimensional 
vectors
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Outline

Maximum Entropy classifiers

 Defining the model: Discriminatively

 Defining the objective

 Learning: Optimizing the objective

 Defining the model: Generatively

2/25/2025 CLASSIFICATION 94



Maxent Models for Classification: 
Discriminatively or Generatively Trained
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𝑝 𝑌 𝑋) ∝ 𝐦𝐚𝐱𝐞𝐧𝐭 𝑋 𝑌)𝑝(𝑌)

Discriminatively trained classifier

Generatively trained classifier with 
maxent-based language model

Directly model 
the posterior

Model the 
posterior with 

Bayes rule

𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)



Bayes’ Rule
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𝑃 𝑌 𝑋 =
𝑃(𝑋|𝑌)∙𝑃(𝑌)

𝑃(𝑋)

PriorLikelihood

Posterior

It’s harder to model P(Y|X) directly 
since it might be that we only see 
that set of features once!



Bayes’ Rule
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𝑃 𝑐 𝑑 =
𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

=
𝑃  )∙𝑃( )

𝑃( )

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

P(     | )ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

ENTAILED ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.



Bayes’ Rule → Naïve Bayes Assumption
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Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 ≈ argmax
𝑐∈𝐶

 𝑃(𝑑|𝑐) ∙ 𝑃(𝑐)

Bayes

Naïve 
Bayes

We can make this assumption because P(d) stays the same 
regardless of the class!

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)



Bayes’ Rule → Naïve Bayes Assumption
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Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 ≈ argmax
𝑐∈𝐶

 𝑃(𝑑|𝑐) ∙ 𝑃(𝑐)

Bayes

Naïve 
Bayes

Naïve bayes is generative because we are sort of assuming 
this is how the data point is generated: pick a class c and 
then generate the words by sampling from P(d|c)
SLP 4.1
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