Classification

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro

Learning Objectives

Model classification problems using logistic regression

Define appropriate features for a logistic regression problem

Define an objective for LR modeling

Visualize the learning process for maxent models

Distinguish between discriminatively- and generatively-trained maxent models

Outline

Maximum Entropy classifiers

Defining the model: Discriminatively

Defining the objective

Learning: Optimizing the objective

Defining the model: Generatively

Outline

Maximum Entropy classifiers

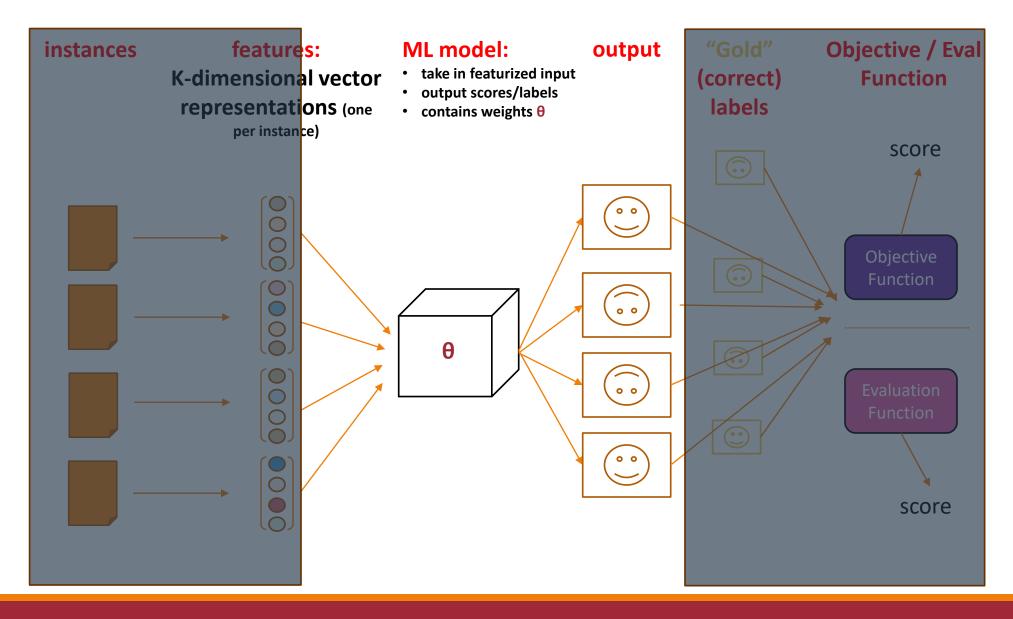
Defining the model: Discriminatively

Defining the objective

Learning: Optimizing the objective

Defining the model: Generatively

Defining the Model



Examining Assumption 3 Made for Classification Evaluation

Given X, our classifier produces a score for each possible label

best label = arg max P(|abel||example)label

We will *learn* this p(Y | X)

Conditional probability: probability of event Y, assuming event X happens too

NLP pg. 477

Maxent Models for Classification: Discriminatively or ...

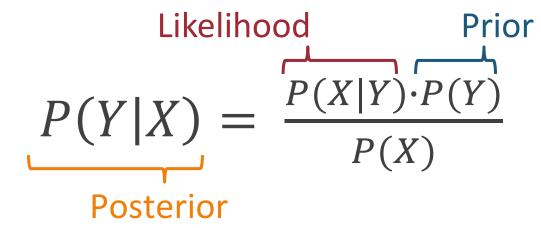
Directly model the posterior

p(Y | X) = maxent(X; Y)

Discriminatively trained classifier

"Discriminative classifiers like logistic regression instead learn what features from the input are most useful to discriminate between the different possible classes." SLP, ch. 4

Bayes' Rule



Posterior: probability of event Y with <u>knowledge that X</u> <u>has occurred</u>

NLP pg. 478

Likelihood: probability of event X given that Y <u>has occurred</u> NLP pg. 478

Prior: probability of event X occurring (regardless of what other events happen) NLP pg. 478

Bayes' Rule

 $P(c|d) = \frac{P(d|c) \cdot P(c)}{P(d)}$

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h: The Bulls basketball team is based in Chicago.

ENTAILED) $\cdot P($ ENTAILED)

P(

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

Terminology: Posterior Probability

Posterior probability:

$$p(Y = label_1 | X) vs. p(Y = label_0 | X)$$

Conditionally dependent probabilities:

• If label₀ and label₁ are the only two options:

$$p(Y = label_1 | X) + p(Y = label_0 | X) = 1$$

and
$$p(Y = label_1 | X) \ge 0, p(Y = label_0 | X) \ge 0$$

Maxent Models for Classification: Discriminatively or Generatively Trained

Directly model the posterior

$$p(Y \mid X) = maxent(X; Y)$$

Discriminatively trained classifier

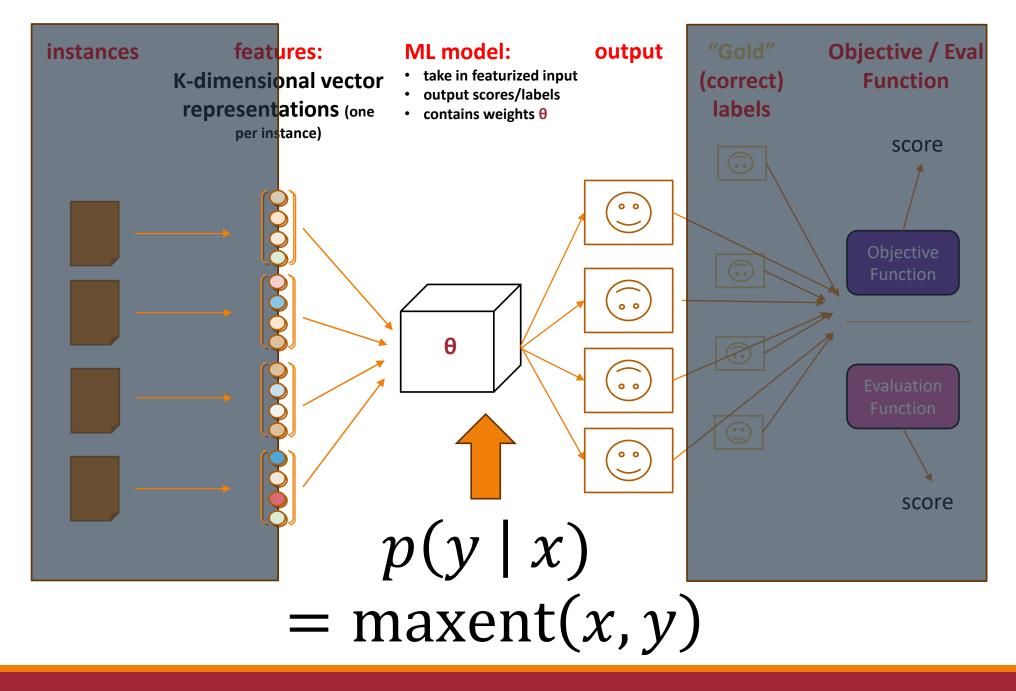
Model the posterior with Bayes rule

$$p(Y \mid X) \propto \mathbf{maxent}(X \mid Y)p(Y)$$

Generatively trained classifier with maxent-based language model

Maximum Entropy (Log-linear) Models For Discriminatively Trained Classifiers

$p(y \mid x) = maxent(x, y)$ Modeled



Core Aspects to Maxent Classifier p(y|x)

We need to define:

- features f(x) from x that are meaningful;
- weights θ (at least one per feature, often one per feature/label combination) to say how important each feature is; and
- a way to form probabilities from f and θ

Overview of Featurization

Common goal: probabilistic classifier p(y | x)

Often done by defining **features** between x and y that are meaningful

• Denoted by a general vector of K features

 $f(x) = (f_1(x), \dots, f_K(x))$

Features can be thought of as "soft" rules

• E.g., POSITIVE sentiments tweets may be more likely to have the word "happy"

Discriminative Document Classification

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.

What does it mean for a feature to "fire"?

We need to *score* the different extracted clues.

Score and Combine Our Clues

 $score_{1, Entailed}(\textcircled{)})$ $score_{2, Entailed}(\textcircled{)})$ $score_{3, Entailed}(\textcircled{)})$ \dots $score_{k, Entailed}(\textcircled{)})$ \dots

Scoring Our Clues

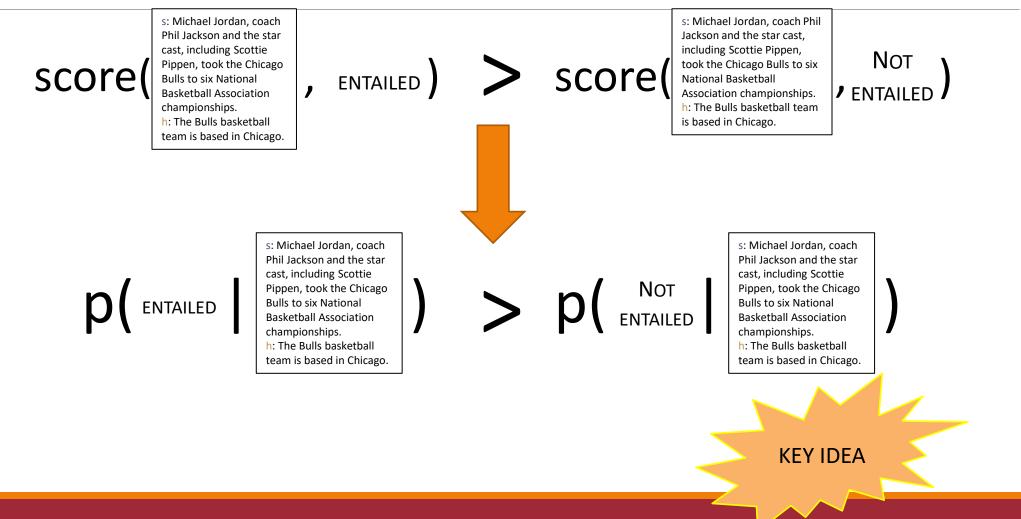
score(

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took the
Chicago Bulls to six National
Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

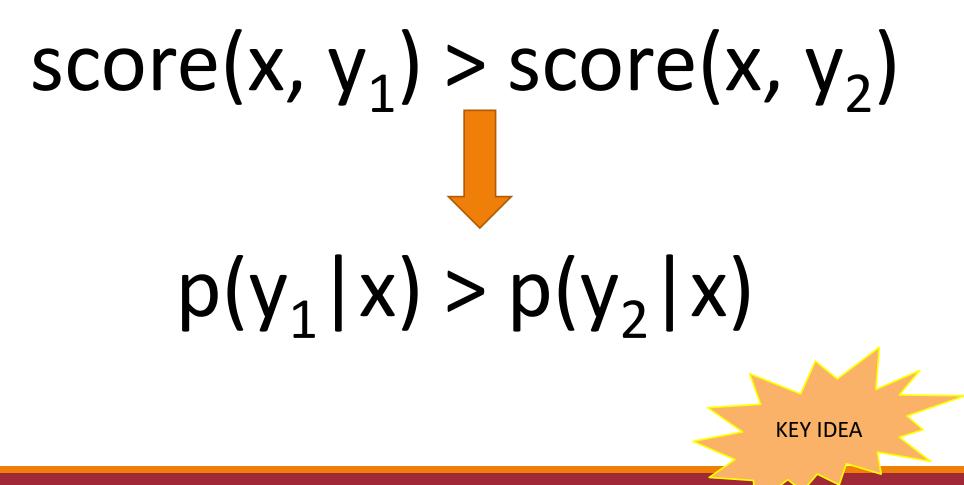
, ENTAILED) =

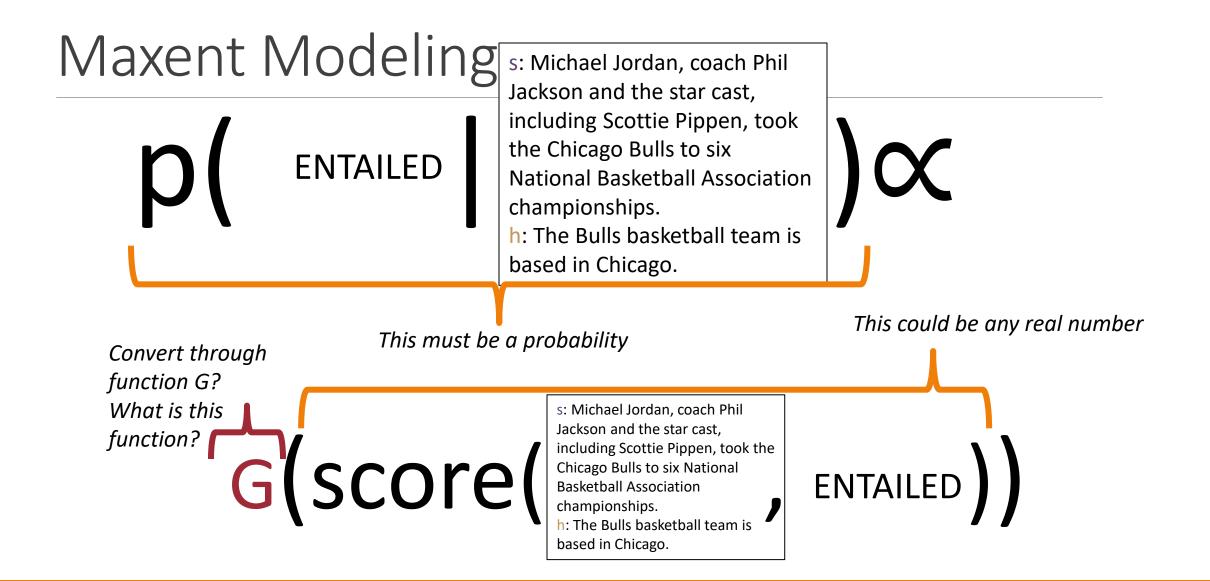
(ignore the feature indexing for now) score_{1, Entailed} (\square) score_{2, Entailed} (\square) score_{3, Entailed} (\square)

Turning Scores into Probabilities



Turning Scores into Probabilities (More Generally)



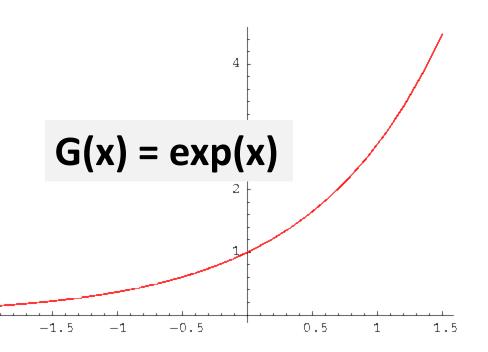


What function G...

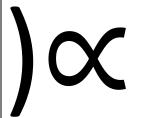
operates on any real number?

is never less than 0?

is monotonic? (a < b \rightarrow G(a) < G(b))

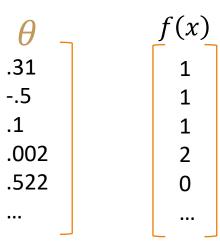


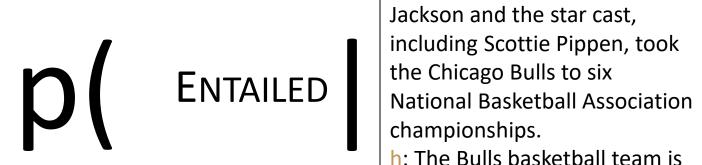
s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.



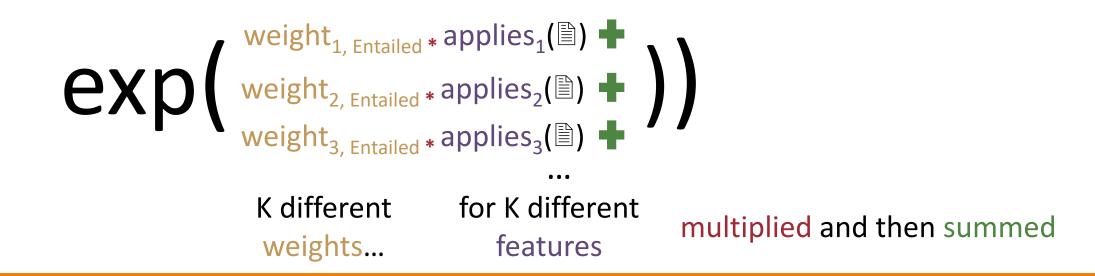
.31

.1



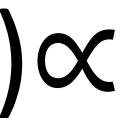


s: Michael Jordan, coach Phil Jackson and the star cast, h: The Bulls basketball team is based in Chicago.



D ENTAILED

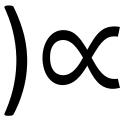
s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.



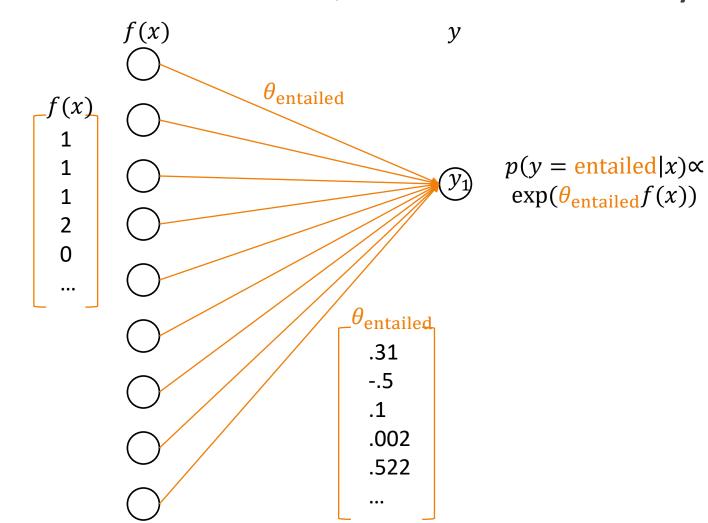
EXD (Dot_product of Entailed weight_vec feature_vec()) K different for K different multiplied and weights... features then summed

p(ENTAILED

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h: The Bulls basketball team is based in Chicago.



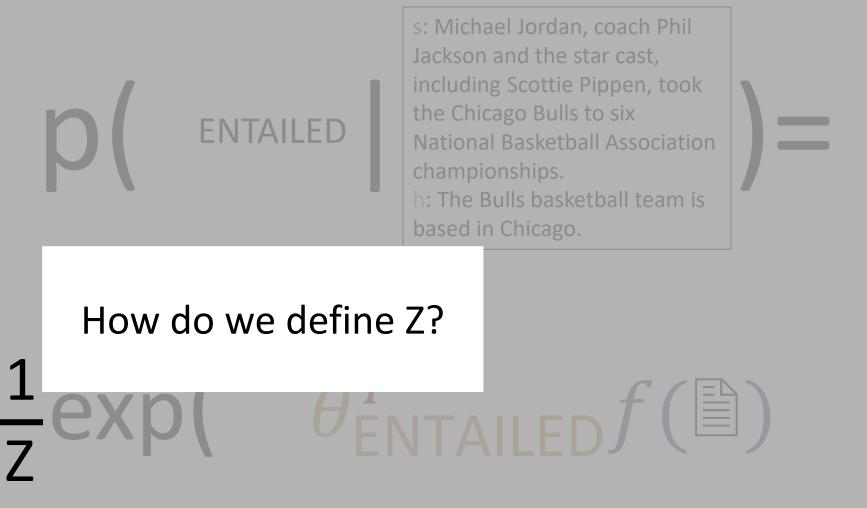
Maxent Classifier, schematically



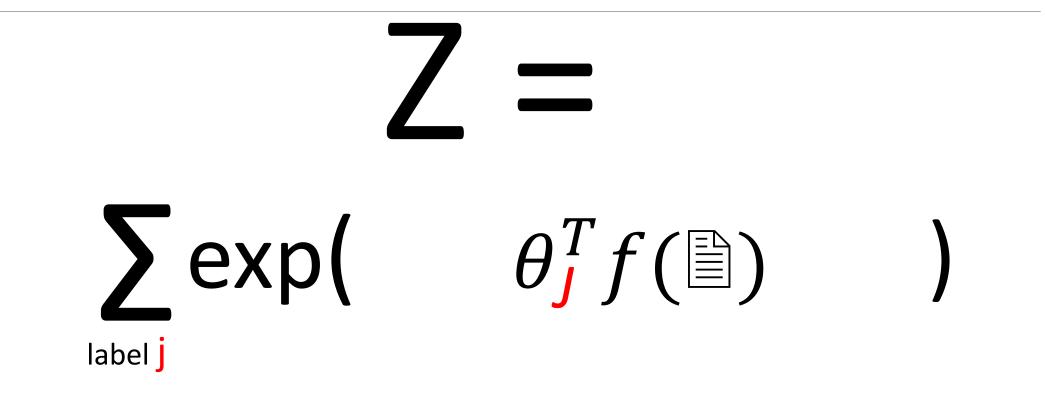
p(ENTAILED

s: Michael Jordan, coach Phil
Jackson and the star cast,
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball Association
championships.
h: The Bulls basketball team is
based in Chicago.

 $\frac{1}{Z} \exp(\theta_{\text{ENTAILED}}^T f(\mathbb{B}))$



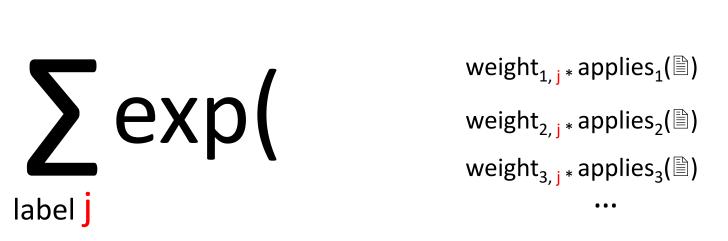
Normalization for Classification



 $p(y \mid x) \propto \exp(\theta_y^T f(x))$

classify doc x with label y in one go

Normalization for Classification (long form)



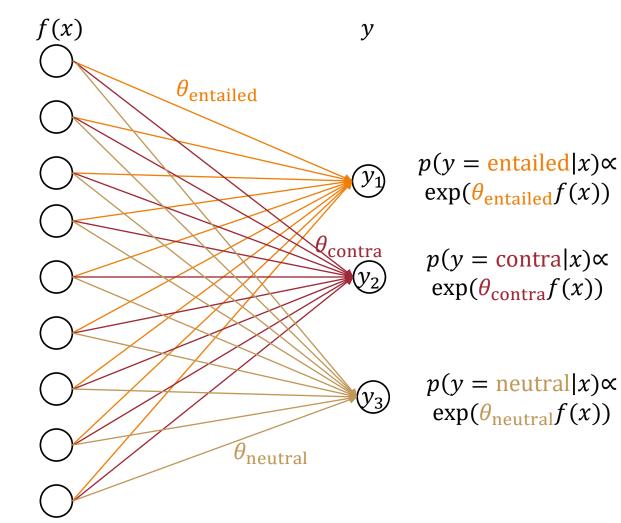
 $p(y \mid x) \propto \exp(\theta_y^T f(x))$

classify doc x with label y in one go

+

Maxent Classifier, schematically

Why would we want to normalize the weights?



output: *i* = argmax score_i class *i*

 $p(y = neutral | x) \propto$ $\exp(\theta_{\text{neutral}}f(x))$

Final Equation for Logistic Regression

features f(x) from x that are meaningful;

weights θ (at least one per feature, often one per feature/label combination) to say how important each feature is; and

a way to form probabilities from f and θ

$$p(\mathbf{y} | \mathbf{x}) = \frac{\exp(\theta_{\mathbf{y}}^T f(\mathbf{x}))}{\sum_{\mathbf{y}'} \exp(\theta_{\mathbf{y}'}^T f(\mathbf{x}))}$$

Different Notation, Same Meaning

$$p(Y = y | x) = \frac{\exp(\theta_y^T f(x))}{\sum_{y'} \exp(\theta_{y'}^T f(x))}$$

$p(Y = y \mid x) \propto \exp(\theta_y^T f(x))$

$p(Y \mid x) = \operatorname{softmax}(\theta f(x))$

Review: Defining Appropriate Features in a Maxent Model

Feature functions help extract useful features (characteristics) of the data

They turn *data* into *numbers*

Features that are not 0 are said to have fired

Generally *templated*

Binary-valued (0 or 1) or real-valued

Representing Linguistic Information

	Jser- efined	Integer representation	Assign each word to some index i, where $0 \le i < V$
U	enned	/ one-hot encoding	Represent each word w with a V- dimensional binary vector e_w , where $e_{w,i} = 1$ and 0 otherwise

Modelproduced

Dense embedding

Let E be some *embedding size* (often 100, 200, 300, etc.)

Represent each word w with an Edimensional **real-valued** vector e_w

Featurization is Similar but...

Vocab types (V) / embedding dimension (E) → number of features (number of "clues")

Word/Sentence/Phrase/Document

Instances to represent

Features are extracted on each instance

Bag-of-Words as a Function

Based on some tokenization, turn an input document into an array (or dictionary or set) of its unique vocab items

Think of getting a BOW representation as a function f

input: Document

output: Container of size E, indexable by each vocab type v

Some Bag-of-words Functions

Kind	Type of f_v	Interpretation		
Binary	0, 1	Did <i>v</i> appear in the document?	Q: Is this a reasonable representation?	
Count-based	Natural number (int >= 0)	How often did <i>v</i> occur in the document?		
Averaged	Real number (>=0, <= 1)	How often did <i>v</i> occur in the document, normalized by # words in doc?		
TF-IDF (term frequency, inverse document frequency)	Real number (>= 0)	How frequent is a word, compared to how prevalent it is across the corpus (to be covered later!)	Q: What are some tradeoffs (benefits vs. costs)?	

...

Useful Terminology: n-gram

Within a larger string (e.g., sentence), a contiguous sequence of n items (e.g., words)

Colorless green ideas sleep furiously

n	Commonly called	History Size (Markov order)	Example n-gram ending in "furiously"
1	unigram	0	furiously
2	bigram	1	sleep furiously
3	trigram (3-gram)	2	ideas sleep furiously
4	4-gram	3	green ideas sleep furiously
n	n-gram	n-1	$W_{i-n+1} \dots W_{i-1} W_i$

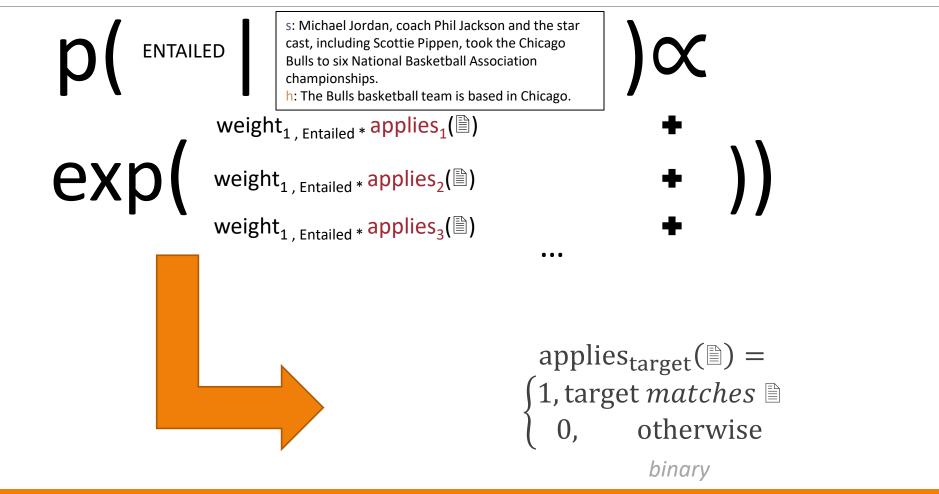
Templated Features

Define a feature fclue(
) for each clue you want to consider

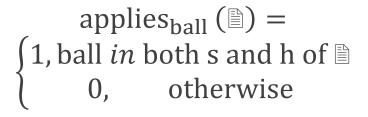
The feature fclue fires if the clue applies to/can be found in

Clue is often a target phrase (an n-gram)

Maxent Modeling: Templated Binary Feature Functions



applies_{target}(\square) = {1, target *matches* \square 0, otherwise



applies_{target}(\square) = (1, target *matches* \square 0, otherwise Q: If there are V vocab types and L label types:
1. How many features are defined if unigram targets are used (w/ each label)?

applies_{ball} (\square) = {1, ball *in* both s and h of \square 0, otherwise

applies_{target}(\mathbb{B}) = {1, target *matches* \mathbb{B} 0, otherwise

Q: If there are V vocab types and L label types:
1. How many features are defined if unigram targets are used (w/ each label)?

A1: *VL*

applies_{ball} (\mathbb{B}) = {1, ball *in* both s and h of \mathbb{B} 0, otherwise

applies_{target}(\square) = {1, target *matches* \square 0, otherwise

Q: If there are V vocab types and L label types:
1. How many features are defined if unigram targets are used (w/ each label)?

A1: *VL*

2. How many features are defined if bigram targets are used (w/ each label)?

applies_{ball} (\square) = {1, ball *in* both s and h of \square 0, otherwise

applies_{target}(\square) = (1, target *matches* \square 0, otherwise

applies_{ball} (\square) = {1, ball *in* both s and h of \square 0, otherwise Q: If there are V vocab types and L label types:
 1. How many features are defined if unigram targets are used (w/ each label)?

A1: VL

2. How many features are defined if bigram targets are used (w/ each label)?

A2: V^2L

applies_{target}(\square) = (1, target *matches* \square 0, otherwise

applies_{ball} (\mathbb{B}) = {1, ball *in* both s and h of \mathbb{B} 0, otherwise Q: If there are V vocab types and L label types:1. How many features are defined if

unigram targets are used (w/ each label)?

A1: VL

2. How many features are defined if bigram targets are used (w/ each label)?

A2: V^2L

3. How many features are defined if unigram and bigram targets are used (w/ each label)?

applies_{target}(\square) = {1, target *matches* \square 0, otherwise

applies_{ball} (\square) = {1, ball *in* both s and h of \square 0, otherwise Q: If there are V vocab types and L label types:

1. How many features are defined if unigram targets are used (w/ each label)?

A1: *VL*

2. How many features are defined if bigram targets are used (w/ each label)?

A2: V^2L

3. How many features are defined if unigram and bigram targets are used (w/ each label)?

Outline

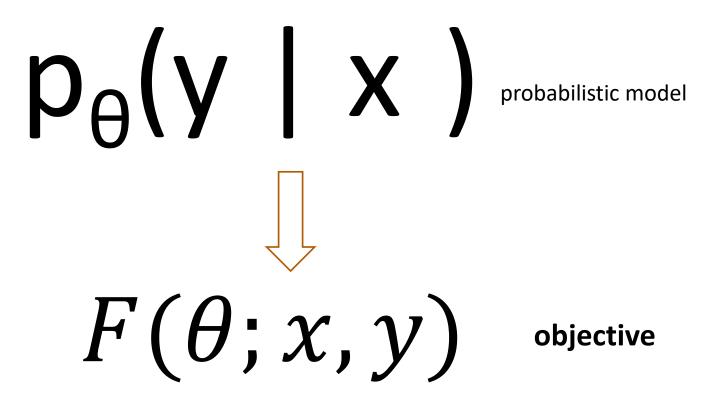
Maximum Entropy classifiers

Defining the model: Discriminatively

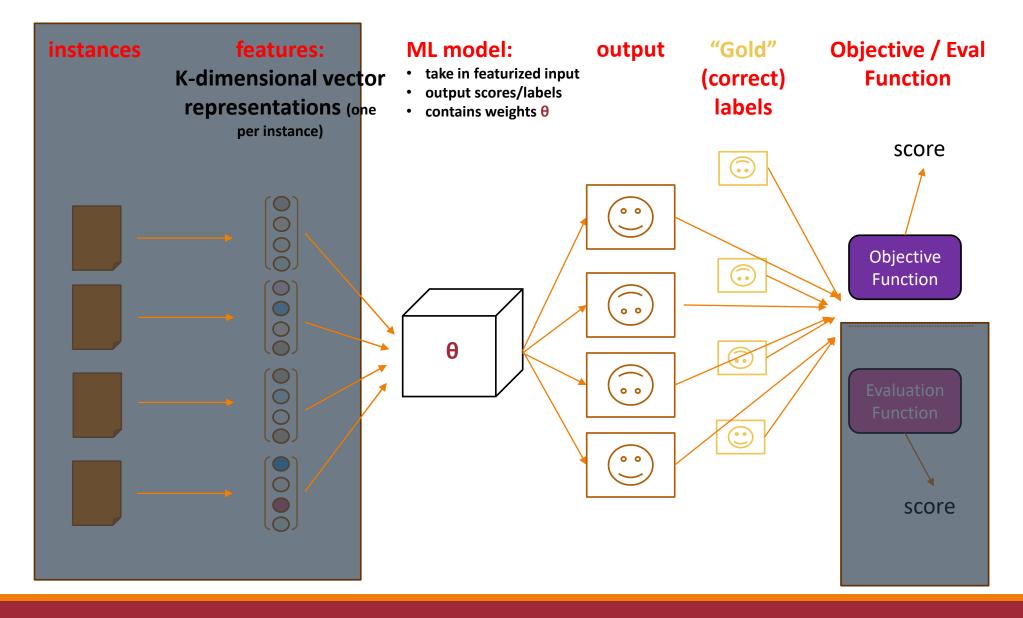
Defining the objective

Learning: Optimizing the objective

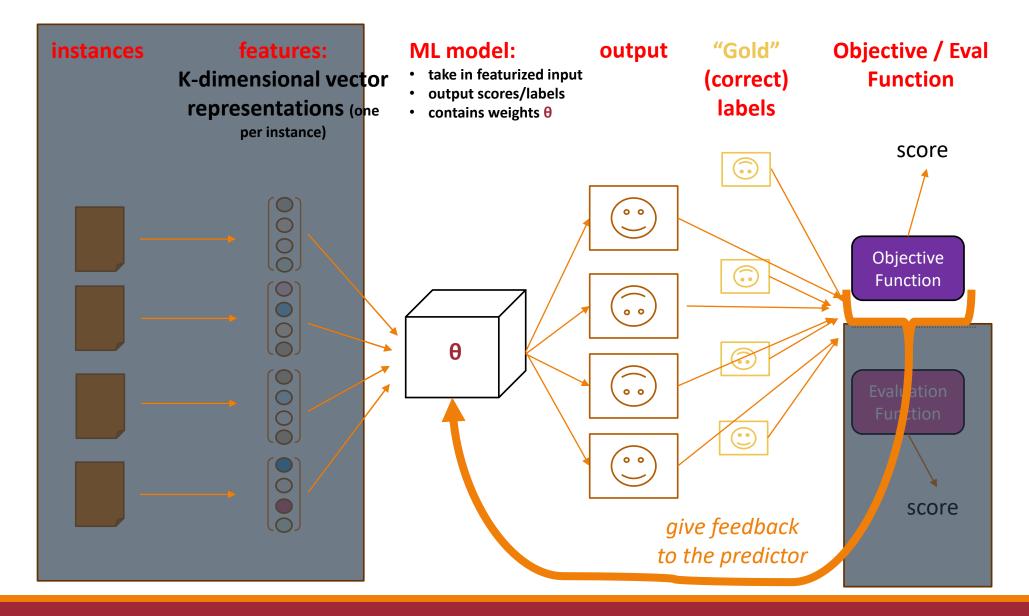
Defining the model: Generatively

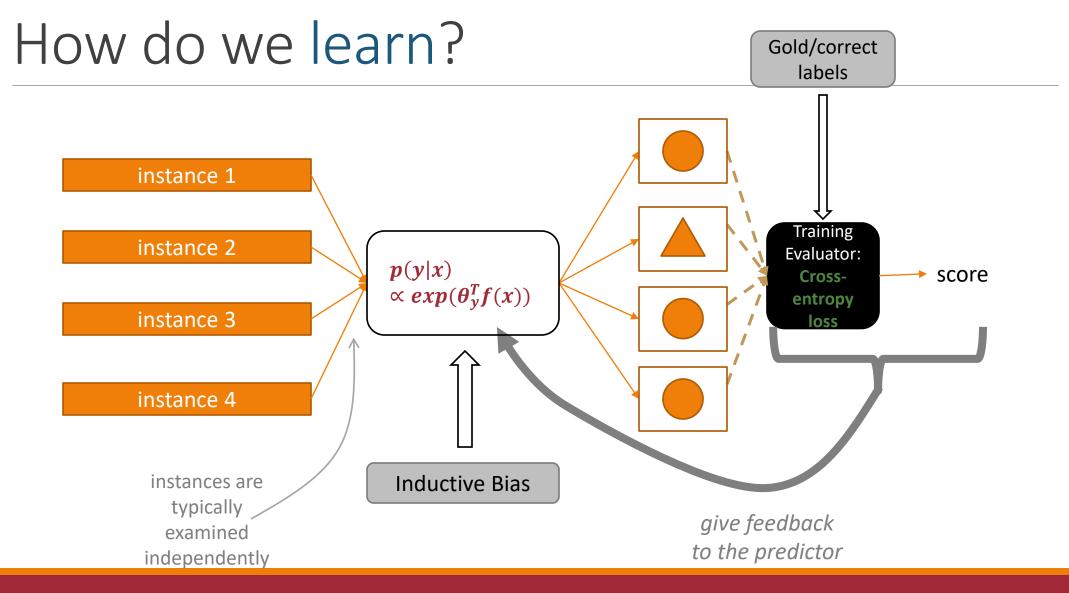


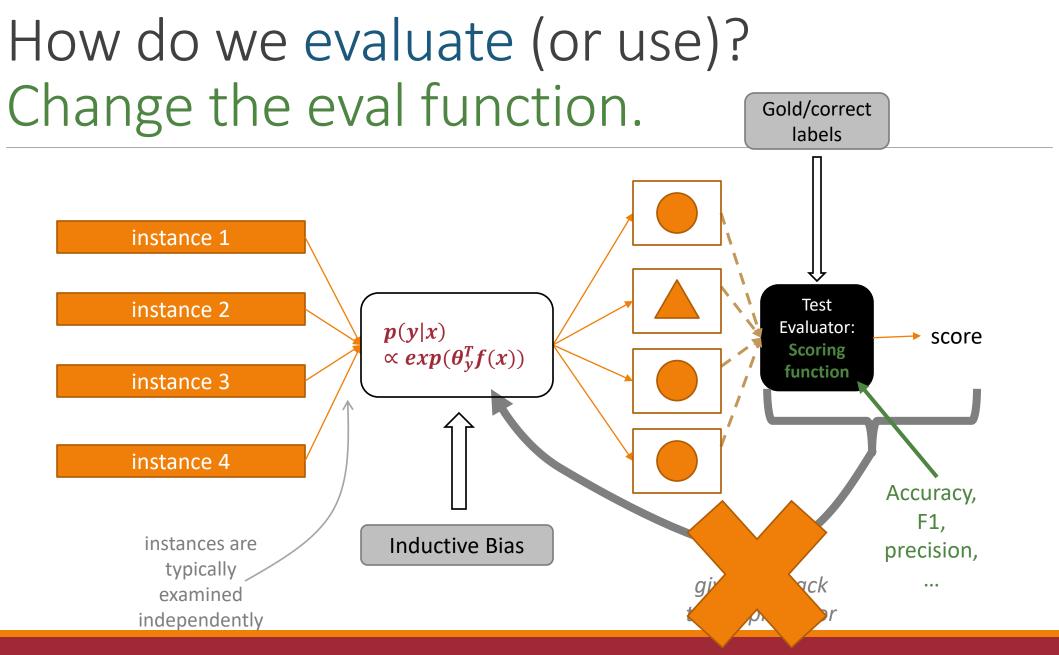
Defining the Objective



Defining the Objective







Primary Objective: Likelihood

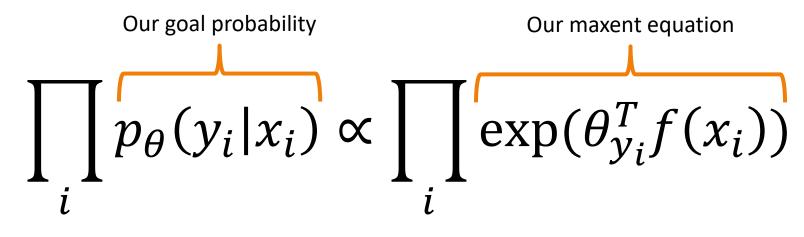
Goal: *maximize* the score your model gives to the training data it observes

This is called the **likelihood of your data**

In classification, this is p(label | 🖹)

For language modeling, this is p(word | history of words)

Objective = Full Likelihood?



These values can have very small magnitude → underflow

Differentiating this product could be a pain

Logarithms

(0, 1] → (-∞, 0]

Products \rightarrow Sums log(ab) = log(a) + log(b) log(a/b) = log(a) - log(b) How might you find the log of this?

 $\int p_{\theta}(y_i|x_i)$

Inverse of exp

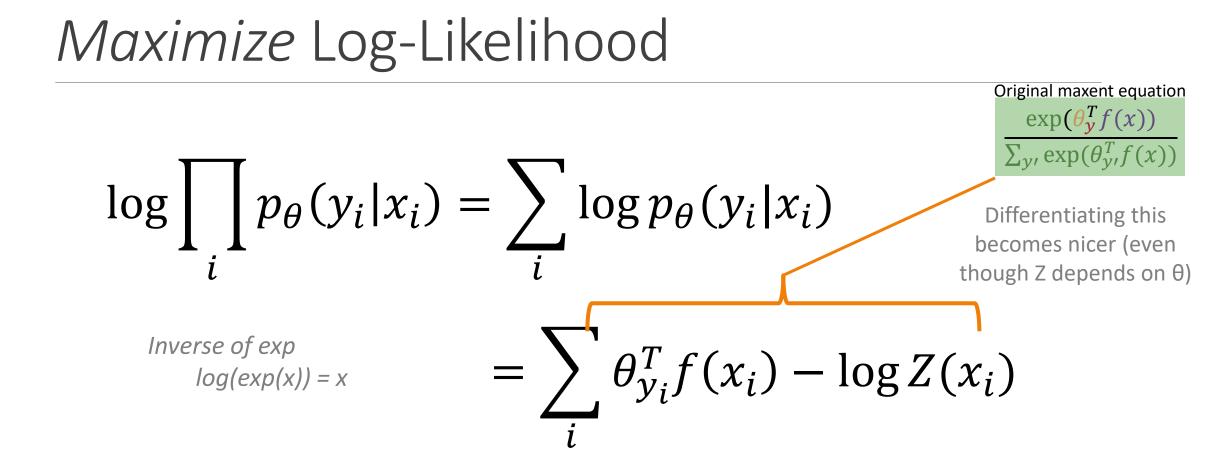
log(exp(x)) = x

Maximize Log-Likelihood

$$\log \prod_{i} p_{\theta}(y_{i}|x_{i}) = \sum_{i} \log p_{\theta}(y_{i}|x_{i})$$

Wide range of (negative) numbers
Sums are more stable

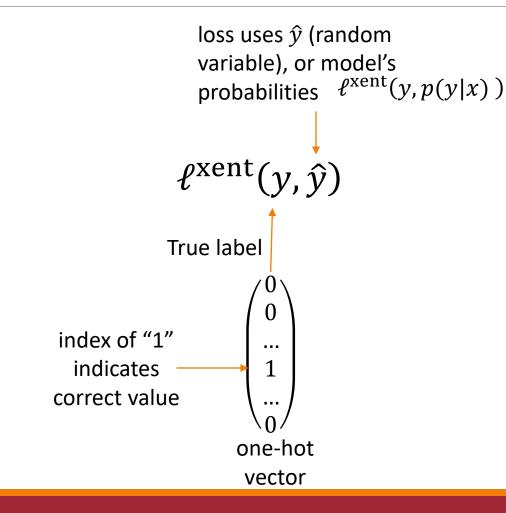
Products \Rightarrow Sums log(ab) = log(a) + log(b)log(a/b) = log(a) - log(b)



$$\log \prod_{i} p_{\theta}(y_{i}|x_{i}) = \sum_{i} \log p_{\theta}(y_{i}|x_{i})$$
$$= \sum_{i} \theta_{y_{i}}^{T} f(x_{i}) - \log Z(x_{i})$$
$$= F(\theta)$$

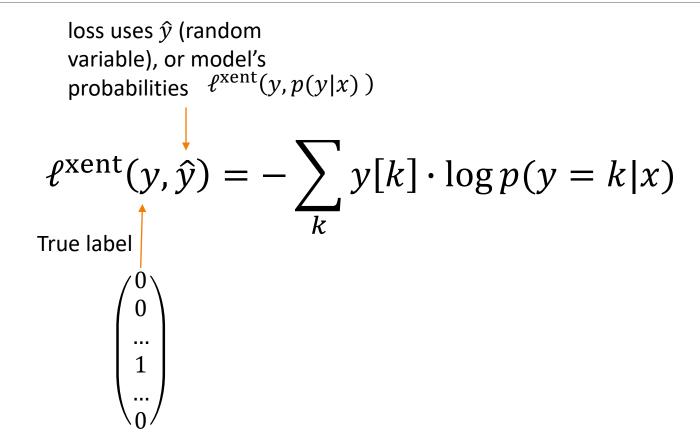
CLASSIFICATION

Equivalent Version 2: *Minimize* Cross Entropy Loss



Cross entropy: How much \hat{y} differs from the true y

Equivalent Version 2: *Minimize* Cross Entropy Loss



Classification Log-likelihood (max) ≅ Cross Entropy Loss (min)

CROSSENTROPYLOSS

Log Likelihood

$$F(\theta) = \sum_{i} \theta_{y_i}^T f(x_i) - \log Z(x_i)$$

CLASS torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean') [SOURCE]

This criterion combines LogSoftmax and NLLLoss in one single class.

It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D *Tensor* assigning weight to each of the classes. This is particularly useful when you have an unbalanced training set.

The input is expected to contain raw, unnormalized scores for each class.

input has to be a Tensor of size either (minibatch, C) or $(minibatch, C, d_1, d_2, ..., d_K)$ with $K \ge 1$ for the K-dimensional case (described later).

This criterion expects a class index in the range [0, C - 1] as the *target* for each value of a 1D tensor of size *minibatch*; if *ignore_index* is specified, this criterion also accepts this class index (this index may not necessarily be in the class range).

The loss can be described as:

$$\mathrm{loss}(x, class) = -\log\left(rac{\mathrm{exp}(x[class])}{\sum_{j}\mathrm{exp}(x[j])}
ight) = -x[class] + \log\left(\sum_{j}\mathrm{exp}(x[j])
ight)$$

Preventing Extreme Values

Likelihood on its own can lead to overfitting and/or extreme values in the probability computation

$$F(\theta) = \sum_{i} \theta_{y_i}^T f(x_i) - \log Z(x_i)$$

Learn the parameters based on
some (fixed) data/examples

Regularization: Preventing Extreme Values

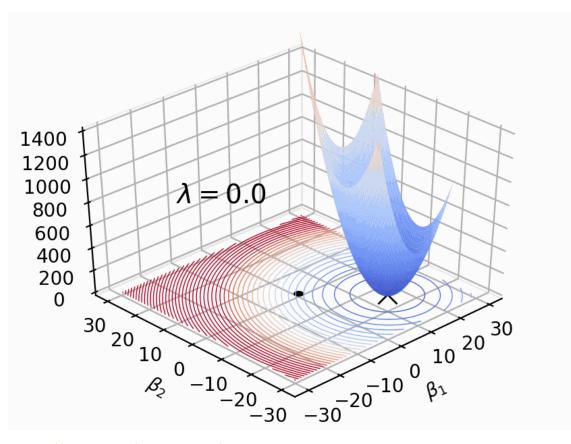
$$F(\theta) = \left(\sum_{i} \theta_{y_i}^T f(x_i) - \log Z(x_i)\right) - \frac{R(\theta)}{R(\theta)}$$

With fixed/predefined features, the values of θ determine how "good" or "bad" our objective learning is

- Augment the objective with a regularizer
- This regularizer places an inductive bias (or, prior) on the general "shape" and values of θ

(Squared) L2 Regularization

$$R(\theta) = \|\theta\|_2^2 = \sum_k \theta_k^2$$



https://explained.ai/regularization/

Regularization: Preventing Extreme Values

$$F(\theta) = \left(\sum_{i} \theta_{y_i}^T f(x_i) - \log Z(x_i)\right) - \sum_{k} \theta_k^2$$

Outline

Maximum Entropy classifiers

Defining the model: Discriminatively

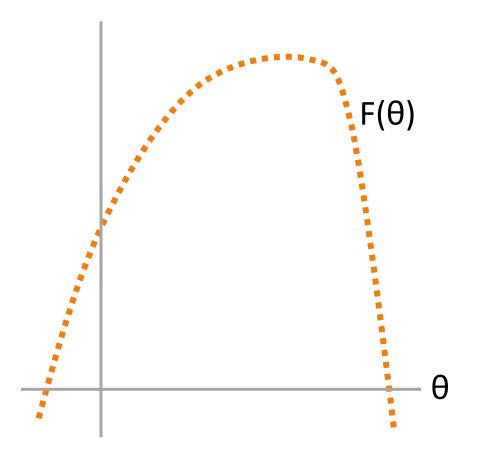
Defining the objective

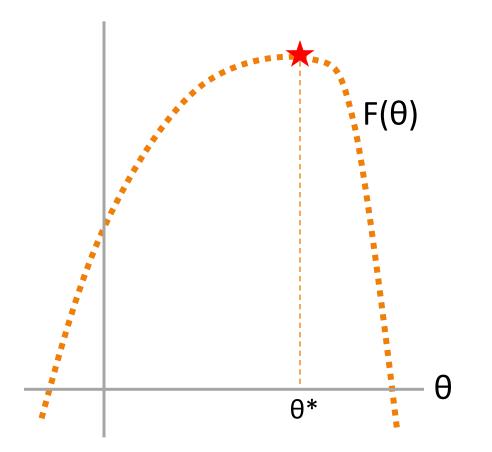
Learning: Optimizing the objective

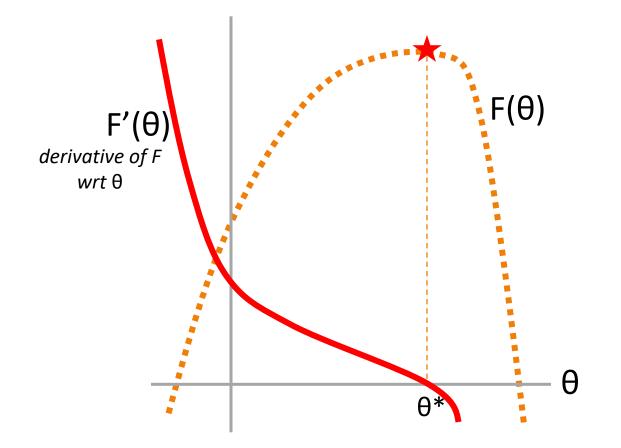
Defining the model: Generatively

How will we optimize $F(\theta)$?

Calculus.

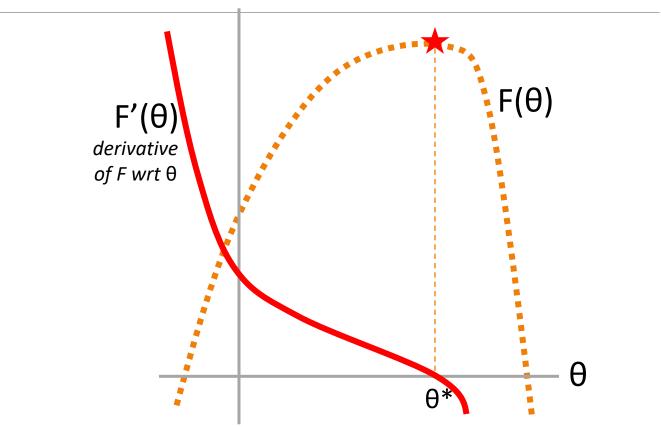






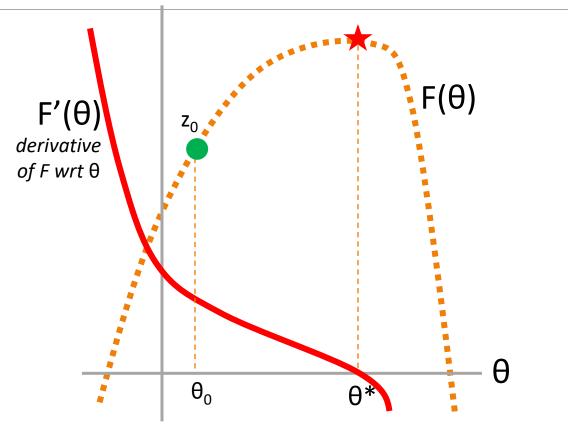
Example (Best case, solve for roots of the derivative)

 $F(x) = -(x-2)^2$ differentiate F'(x) = -2x + 4Solve F'(x) = 0x = 2



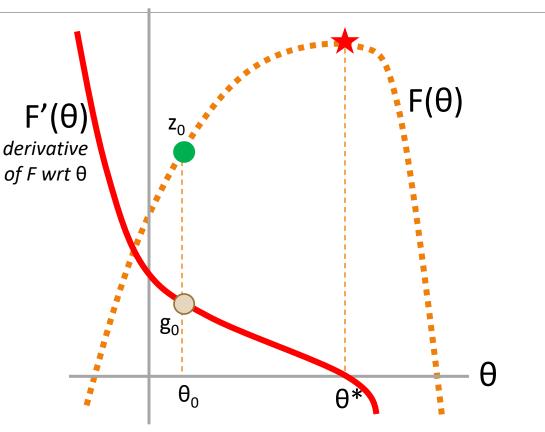
CLASSIFICATION

Set t = 0 Pick a starting value θ_t Until converged: 1. Get value $z_t = F(\theta_t)$



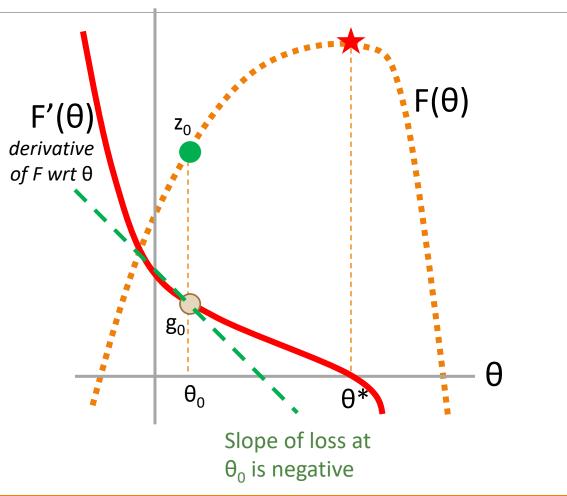
Set t = 0 Pick a starting value θ_t Until converged:

- 1. Get value $z_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$



Set t = 0 Pick a starting value θ_t Until converged:

- 1. Get value $z_t = F(\theta_t)$
- 2. Get derivative $g_t = F'(\theta_t)$



Set t = 0F(θ) **F'(θ**) Pick a starting value θ_{t} Z_0 derivative Until converged: of F wrt θ 1. Get value $z_{+} = F(\theta_{+})$ 2. Get derivative $g_{+} = F'(\theta_{+})$ 3. Get scaling factor (learning rate) ρ_+ g₀ 4. Set $\theta_{++1} = \theta_{+} + \rho_{+} * g_{+}$ θ 5. Set t += 1 $\theta_0 \rightarrow \theta_1$ θ*

Set t = 0**F'(θ**) Pick a starting value θ_{t} Z_0 derivative Until converged: of F wrt θ 1. Get value $z_{+} = F(\theta_{+})$ 2. Get derivative $g_{+} = F'(\theta_{+})$ 3. Get scaling factor (learning rate) ρ_+ g_0 4. Set $\theta_{++1} = \theta_{+} + \rho_{+} * g_{+}$ g_1 5. Set t += 1 $\theta_0 \rightarrow \theta_1 \rightarrow \theta_2$ θ*

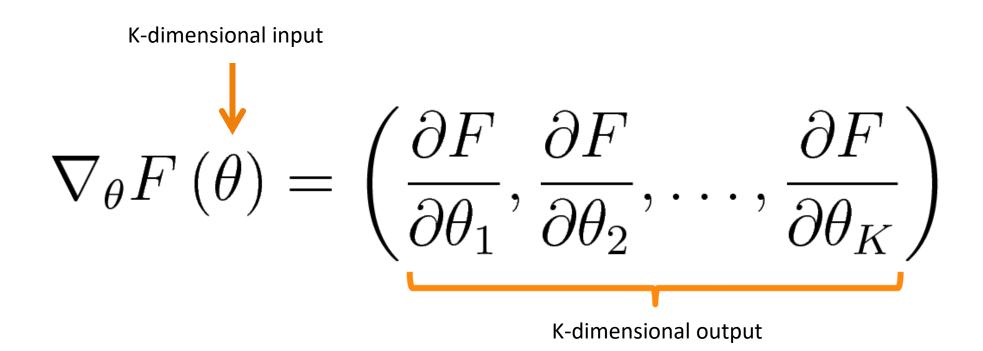
θ

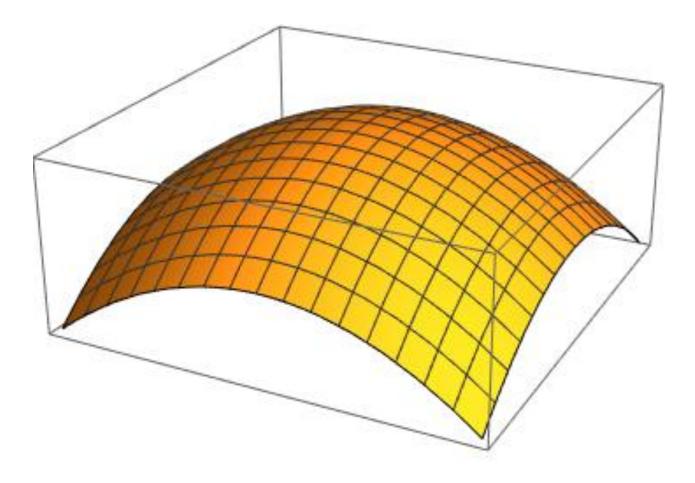
F(θ)

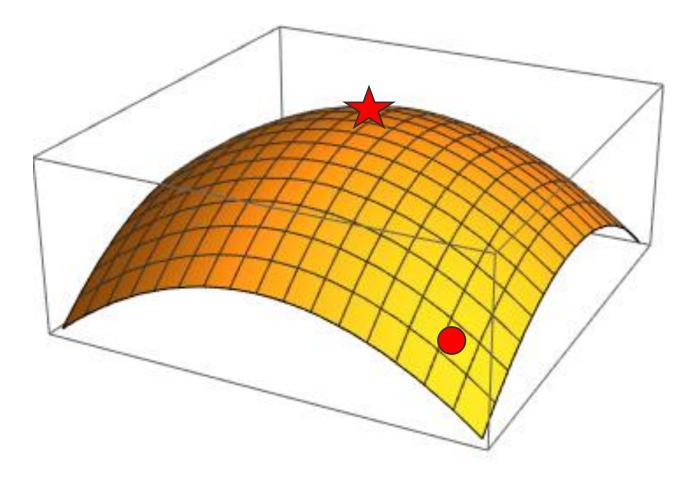
Set t = 0 $F(\theta)$ **F'(θ**) Pick a starting value θ_{t} derivative Until converged: of F wrt θ 1. Get value $z_{+} = F(\theta_{+})$ 2. Get derivative $g_{+} = F'(\theta_{+})$ 3. Get scaling factor (learning rate) ρ_+ g₀¦ 4. Set $\theta_{++1} = \theta_{+} + \rho_{+} * g_{+}$ g_1 g_2 θ $\theta_0 \rightarrow \theta_1 \rightarrow \theta_2 \rightarrow \theta_3 \theta^*$ 5. Set t += 1

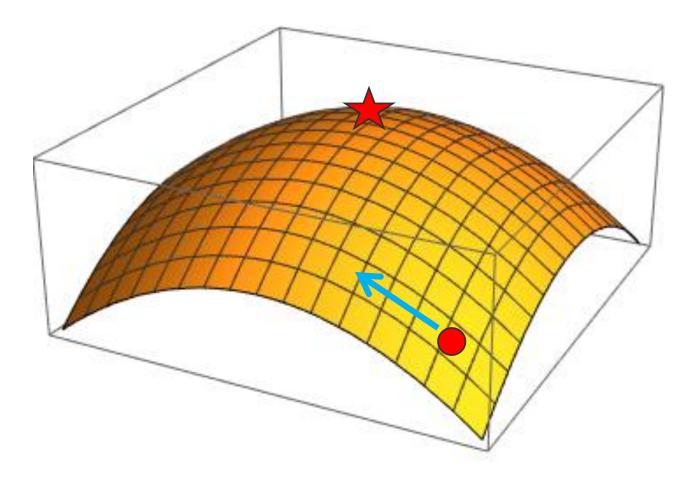
Set t = 0**F(θ) F'(θ**) **Pick** a starting value θ_{+} derivative Until **converged**: of F wrt θ 1. Get value $z_{t} = F(\theta_{t})$ 2. Get derivative $g_{+} = F'(\theta_{+})$ 3. Get scaling factor p. g_0 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$ g_1 \mathbf{g}_2 5. Set t += 1 θ $\theta_0 \rightarrow \theta_1 \rightarrow \theta_2 \rightarrow \theta_3 \theta^*$

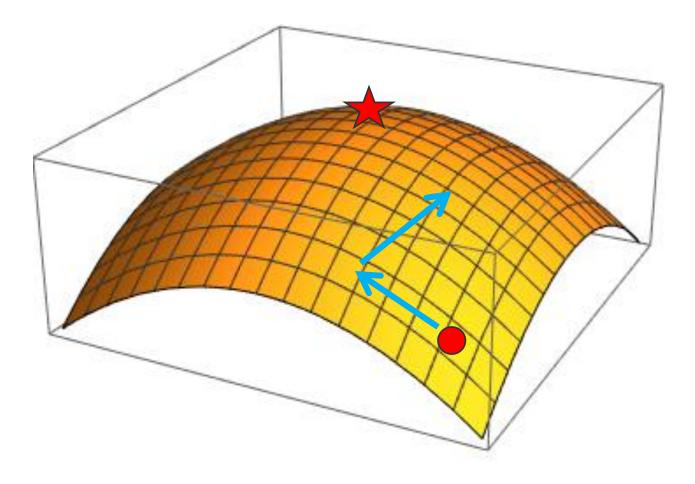
Gradient = Multi-variable derivative

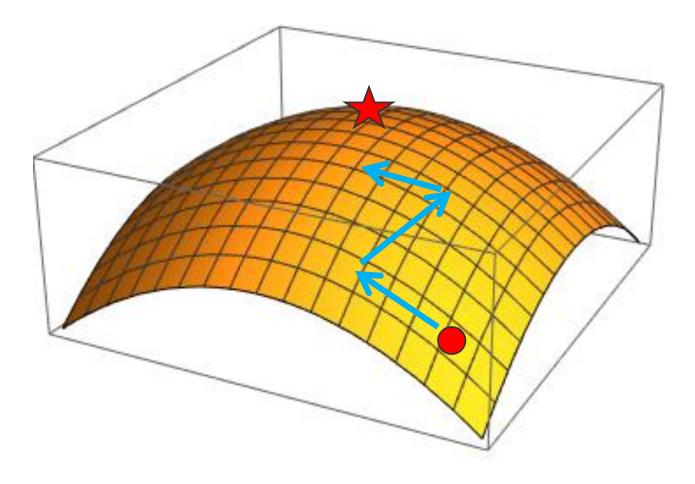


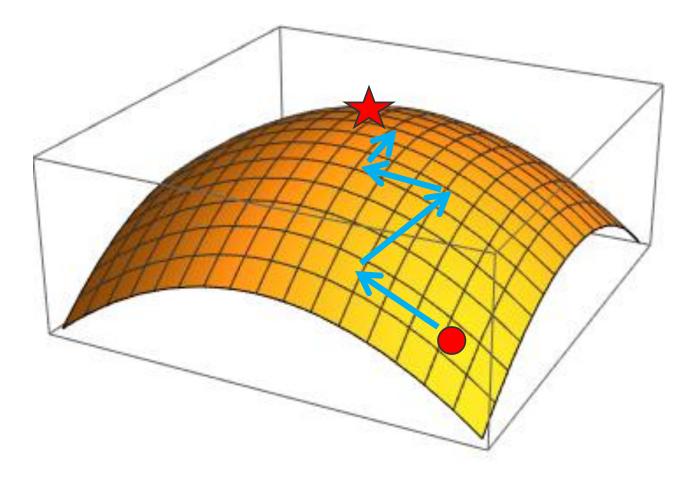












Set t = 0F(θ) **F'(θ**) Pick a starting value θ_{t} derivative Until converged: of F wrt θ 1. Get value $z_{+} = F(\theta_{+})$ 2. Get gradient $g_{+} = F'(\theta_{+})$ 3. Get scaling factor ρ_{+} 4. Set $\theta_{t+1} = \theta_t + \rho_t * g_t$ g_0 5. Set t += 1 g_1 g_2 θ $\theta_0 \rightarrow \theta_1 \rightarrow \theta_2 \rightarrow \theta_3 \theta^*$ K-dimensional vectors

Outline

Maximum Entropy classifiers

Defining the model: Discriminatively

Defining the objective

Learning: Optimizing the objective

Defining the model: Generatively

Maxent Models for Classification: Discriminatively or Generatively Trained

Directly model the posterior

$$p(Y \mid X) = maxent(X; Y)$$

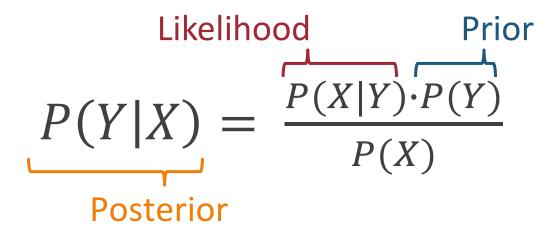
Discriminatively trained classifier

Model the posterior with Bayes rule

 $p(Y \mid X) \propto \mathbf{maxent}(X \mid Y)p(Y)$

Generatively trained classifier with maxent-based language model

Bayes' Rule



It's harder to model P(Y|X) directly since it might be that we only see that set of features once!

2/25/2025

Bayes' Rule

 $P(c|d) = \frac{P(d|c) \cdot P(c)}{P(d)}$

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.
h: The Bulls basketball team is based in Chicago.

ENTAILED) $\cdot P($ ENTAILED)

P(

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships.

h: The Bulls basketball team is based in Chicago.

Bayes' Rule
$$\rightarrow$$
 Naïve Bayes Assumption
Bayes $\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c) \cdot P(c)}{P(d)}$
 $\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) = \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c) \cdot P(c)}{P(d)}$
We can make this assumption because P(d) stays the same regardless of the class!

Naïve Bayes

$$\hat{c}_{es} \quad \hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) \approx \underset{c \in C}{\operatorname{argmax}} P(d|c) \cdot P(c)$$

Bayes' Rule
$$\rightarrow$$
 Naïve Bayes Assumption
 $\hat{c} = \operatorname{argmax}_{c \in C} P(c|d) = \operatorname{argmax}_{c \in C} \frac{P(d|c) \cdot P(c)}{P(d)}$

Naïve Bayes $\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d) \approx \underset{c \in C}{\operatorname{argmax}} P(d|c) \cdot P(c)$

Naïve bayes is **generative** because we are sort of assuming this is how the data point is generated: pick a class c and then generate the words by sampling from P(d|c) SLP 4.1