N-Gram Language Models

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro

N-GRAM LANGUAGE MODELS

Grad Assignment is Released

https://laramartin.net/NLP-class/homeworks/grad.html

Learning Objectives

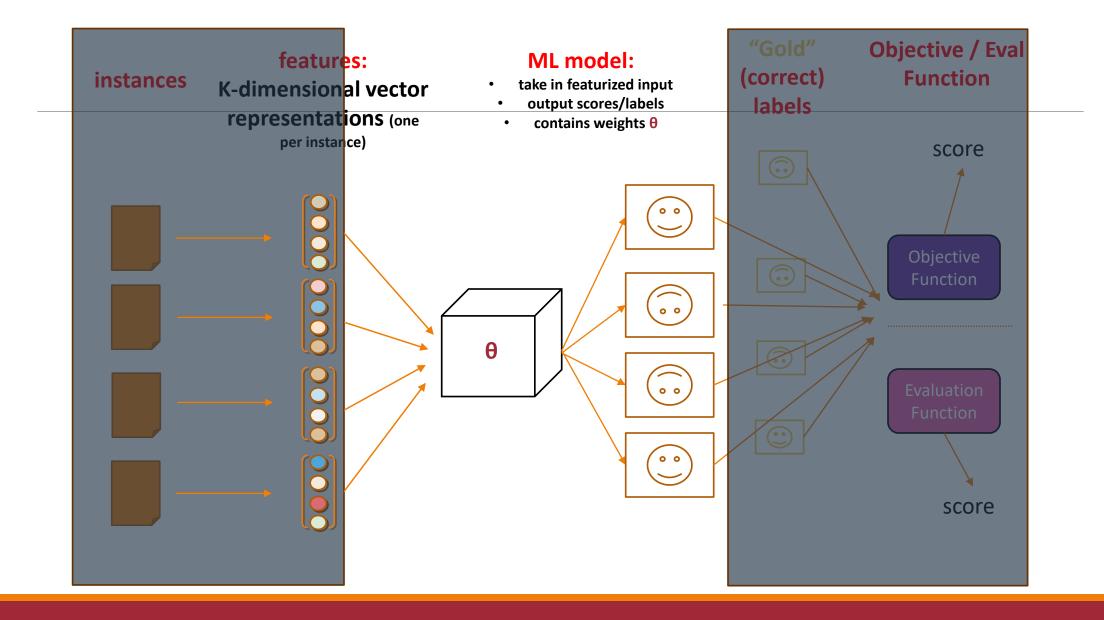
Formalize what a language model is using the Markov assumption

Code a LM using Maximum Likelihood Estimation (MLE)

Evaluate LMs with perplexity

Create a LM using smoothed counts

Defining the Model



Goal of Language Modeling

D_A [...text..]

Learn a probabilistic model of text

Accomplished through observing text and updating model parameters to make text more likely

Two Perspectives: Prediction vs. Generation

"Prediction"

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N

 $p(w_N = v \mid w_1 \dots w_{N-1})$

Two Perspectives: Prediction vs. Generation

"Prediction"

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N

$$p(w_N = v | w_1 \dots w_{N-1})$$
, e.g.,
 $p(w_N = \text{meowed |The, fluffy, cat})$

Two Perspectives: Prediction vs. Generation

"Prediction"

Given observed word tokens $w_1 \dots w_{N-1}$, create a classifier p to predict the next word w_N

$$p(w_N = v | w_1 \dots w_{N-1})$$
, e.g.,
 $p(w_N = \text{meowed} | \text{The, fluffy, cat})$

"Generation"

Develop a probabilistic model p to *explain/score* the word sequence $w_1 \dots w_N$

 $p(w_1 \dots w_N)$, e.g., p(The, fluffy, cat, meowed)

Design Question 1: What Part of Language Do We Estimate?

D_A [...text..]

Is [...text..] a

- Full document?
- Sequence of sentences?
- Sequence of words?
- Sequence of characters?

A: It's taskdependent!

Design Question 2: How do we estimate robustly?

D_A [...typo-text..]

What if [...text..] has a typo?

N-GRAM LANGUAGE MODELS

Design Question 3: How do we generalize?

O_A [...synonymous-text..]

What if [...text..] has a word (or character or...) we've never seen before?

N-GRAM LANGUAGE MODELS

Key Idea: Probability Chain Rule

$$p(x_1, x_2, \dots, x_S) =$$

 $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_S | x_1, \dots, x_{S-1})$

Key Idea: Probability Chain Rule

$$p(x_1, x_2, \dots, x_S) =$$

$$p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \cdots p(x_S | x_1, \dots, x_{S-1}) =$$

$$\prod_{i}^{S} p(x_i | x_1, \dots, x_{i-1})$$
Language modeling is about how to estimate each of these factors in {great, good, sufficient, ...} ways

Example: Develop a Probabilistic Email Classifier

Input: an email (all text)

Output (Gmail categories):

Primary, Social, Forums, Spam

 $\operatorname{argmax}_{y} p(\operatorname{label} Y = y | \operatorname{email} X)$

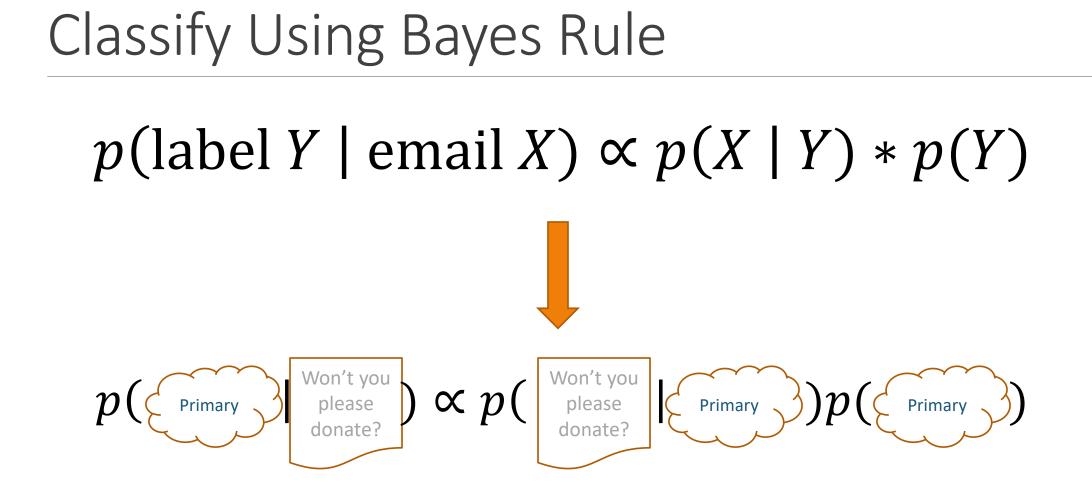
Approach #1: Discriminatively trained

Approach #2: Using Bayes rule

Classify Using Bayes Rule $p(label Y | email X) \propto p(X | Y) * p(Y)$

Classify Using Bayes Rule $p(\text{label } Y \mid \text{email } X) \propto p(X \mid Y) * p(Y)$

Q: Why is p(Y | X) what we want to model?



A Closer Look at p(primary)

This is the **prior probability** of each *class*

Answers the question: without knowing anything specific about a document, how likely is each class?

A Closer Look at $p(\xi^{\text{Primary}})$

This is the **prior probability** of each *class*

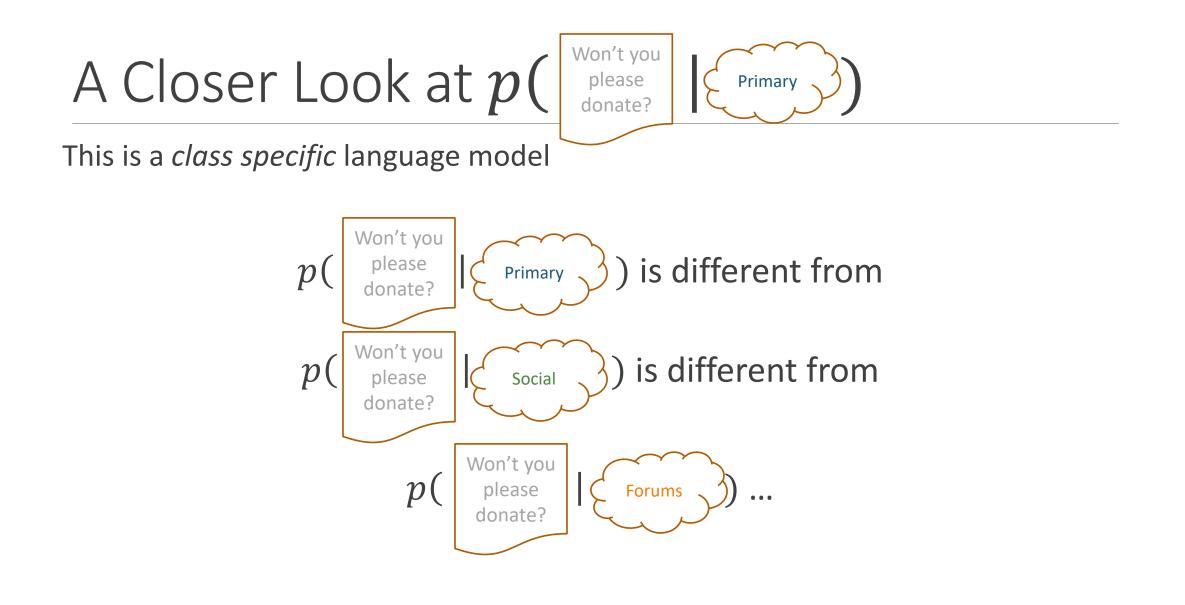
Answers the question: without knowing anything specific about a document, how likely is each class?

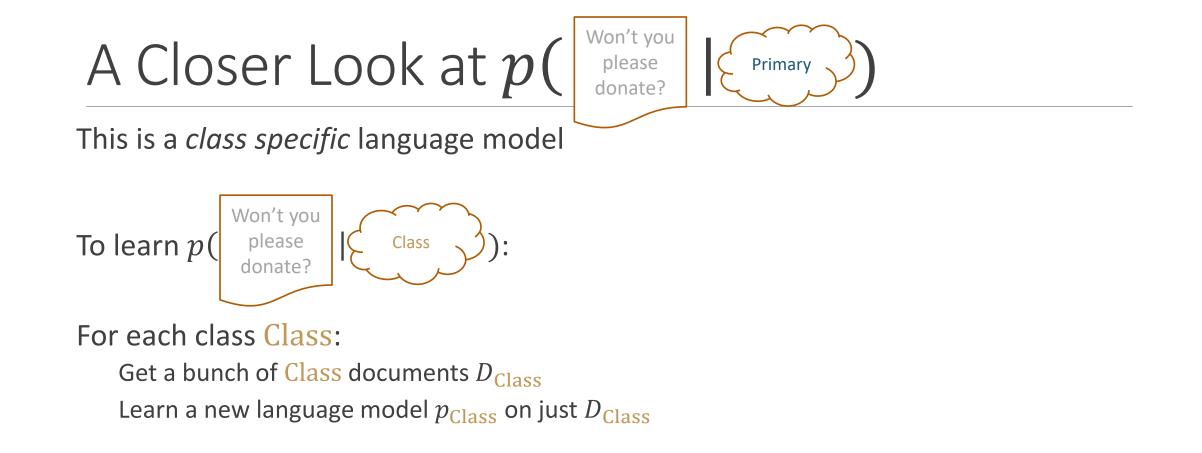
Q: What's an easy way to estimate it?

A Closer Look at p(

Won't you please donate?

This is a *class specific* language model





Language Models & Smoothing

Maximum likelihood (MLE): simple counting

Easy to

implement

Advanced/

out of

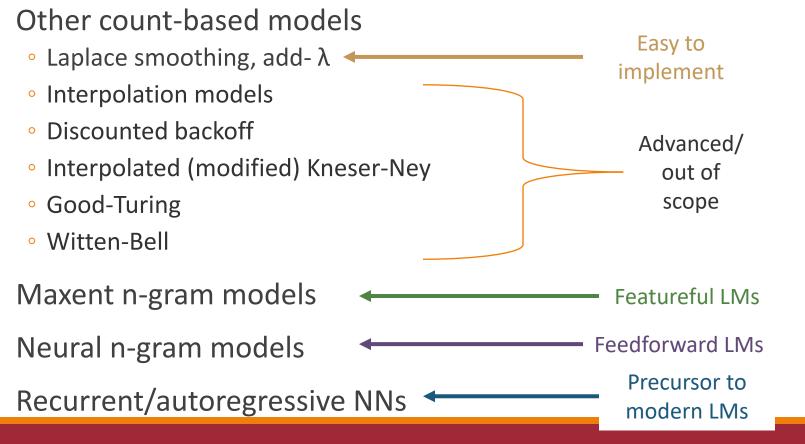
scope

Other count-based models Laplace smoothing, add-λ Interpolation models Discounted backoff Interpolated (modified) Kneser-Ney Good-Turing Witten-Bell

Maxent n-gram models Neural n-gram models Recurrent/autoregressive NNs Featureful LMs Precursor to modern LMs

Language Models & Smoothing

Maximum likelihood (MLE): simple counting



"Colorless green ideas sleep furiously"

Chomsky, Noam. Syntactic structures. Mouton & Co., 1957.

N-GRAM LANGUAGE MODELS

Maintaining an entire inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously)

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) = p(Colorless) *

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) *

N-GRAM LANGUAGE MODELS

Maintaining an entire *joint* inventory over sentences could be too much to ask

Store "smaller" pieces?

p(Colorless green ideas sleep furiously) =
 p(Colorless) *
 p(green | Colorless) *
 p(ideas | Colorless green) *
 p(sleep | Colorless green ideas) *
 p(furiously | Colorless green ideas sleep)

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈ p(furiously | Colorless green ideas sleep)

p(furiously | Colorless green ideas sleep)

How much does "Colorless" influence the choice of "furiously?"

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈ p(furiously | ideas sleep)

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | Colorless green ideas) * p(furiously | Colorless green ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) = p(Colorless) * p(green | Colorless) * p(ideas | Colorless green) * p(sleep | green ideas) * p(furiously | ideas sleep)

Trigrams

p(Colorless green ideas sleep furiously) =
 p(Colorless | <BOS> <BOS>) *
 p(green | <BOS> Colorless) *
 p(ideas | Colorless green) *
 p(sleep | green ideas) *
 p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols

Trigrams

p(Colorless green ideas sleep furiously) =
 p(Colorless | <BOS> <BOS>) *
 p(green | <BOS> Colorless) *
 p(ideas | Colorless green) *
 p(sleep | green ideas) *
 p(furiously | ideas sleep) *
 p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols *Fully proper distribution*: Pad the right with a single <EOS> symbol

n		History Size (Markov order)	Example
1	unigram	0	p(furiously)

n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously sleep)

n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously sleep)
3	trigram (3-gram)	2	p(furiously ideas sleep)

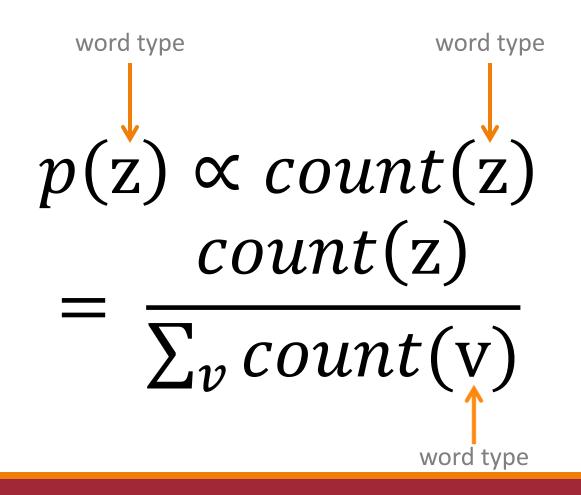
n	Commonly called	History Size (Markov order)	Example
1	unigram	0	p(furiously)
2	bigram	1	p(furiously sleep)
3	trigram (3-gram)	2	p(furiously ideas sleep)
4	4-gram	3	p(furiously green ideas sleep)
n	n-gram	n-1	p(w _i w _{i-n+1} w _{i-1})

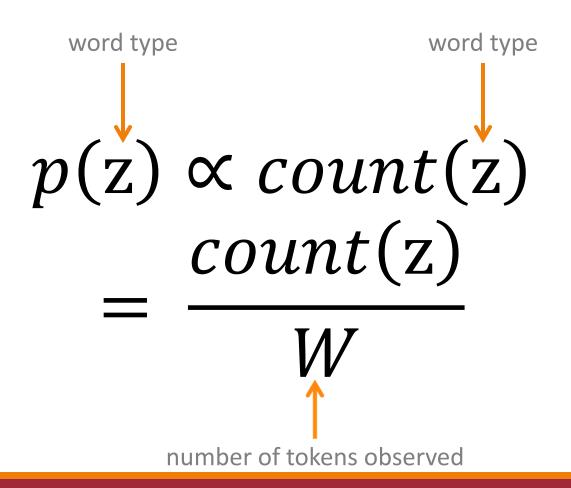
$$p(w_1, w_2, w_3, \cdots, w_S) =$$

$$\prod_{i=1}^{S} p(w_i | w_{i-N+1}, \cdots, w_{i-1})$$

$p(\text{item}) \propto count(\text{item})$

$p(z) \propto count(z)$





The film got a great opening and the film went on to become a hit.

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		
film	2		
got	1		
а	2		
great	1		
opening	1		
and	1		
the	1		
went	1		
on	1		
to	1		
become	1		
hit	1		

1

The film got a great opening and the film went on to become a hit.

Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
The	1		
film	2		
got	1		
а	2		
great	1		
opening	1		
and	1	16	
the	1	16	
went 1	1		
on	1		
to	1		
become	1		
hit	1		

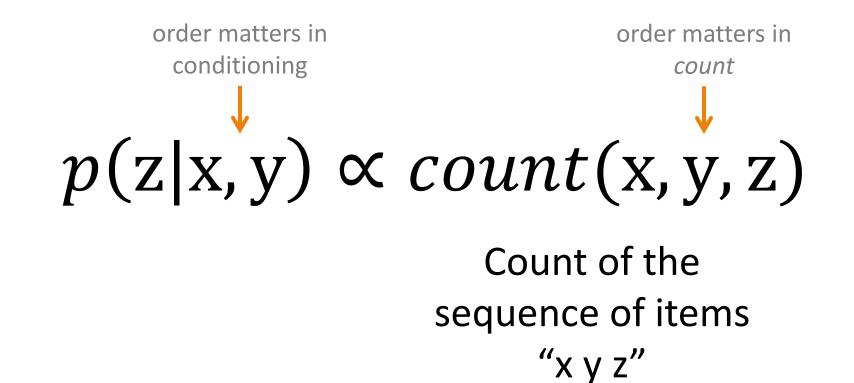
1

The film got a great opening and the film went on to become a hit.

			-	
	Word (Type) z	Raw Count count(z)	Normalization	Probability p(z)
	The	1		1/16
	film	2		1/8
	got	1		1/16
	а	2		1/8
	great	1		1/16
	opening	1	16	1/16
	and	1		1/16
	the	1		1/16
	went	1		1/16
	on	1		1/16
	to	1		1/16
	become	1		1/16
	hit	1		1/16

1

1/16



 $count(x, y, z) \neq count(x, z, y) \neq count(y, x, z) \neq ...$

 $p(z|x,y) \propto count(x,y,z)$ count(x, y, z)

 $\sum_{v} count(x, y, v)$

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Normalization	Probability p(z x y)
The film	The	0		0/1
The film	film	0	1	0/1
The film	got	1	1	1/1
The film	went	0		0/1
a great	great	0		0/1
a great	opening	1	1	1/1
a great	and	0		0/1
a great	the	0		0/1

Count-Based N-Grams (Lowercased Trigrams)

the film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Normalization	Probability: p(z x y)
the film	the	0		0/2
the film	film	0	2	0/2
the film	got	1	2	1/2
the film	went	1		1/2
a great	great	0		0/1
a great	opening	1	1	1/1
a great	and	0		0/1
a great	the	0		0/1

Implementation: EOS Padding

Create an end of sentence ("chunk") token <EOS>

Don't estimate p(<BOS> | <EOS>)

Training & Evaluation:

- 1. Identify "chunks" that are relevant (sentences, paragraphs, documents)
- 2. Append the <EOS> token to the end of the chunk
- 3. Train or evaluate LM as normal

Implementation: Memory Issues

Let V = vocab size, W = number of **observed** n-grams

Often, $W \ll V$

Dense count representation: $O(V^n)$, but many entries will be zero

Sparse count representation: O(W)

Sometimes selective precomputation is helpful (e.g., normalizers)

Implementation: Unknown words

Create an unknown word token <UNK>

Training:

- 1. Create a fixed lexicon L of size V
- 2. Change any word not in L to <UNK>
- 3. Train LM as normal

Evaluation:

Use UNK probabilities for any word not in training

A Closer Look at Count-based p(

Won't you please donate?

This is a *class specific* language model

For each class Class:

Get a bunch of Class documents D_{Class}

Learn a new language model p_{Class} on just D_{Class}

Two Ways to Learn Class-specific Countbased Language Models

1. Create different count table(s)

*c*_{Class}(...) for each Class

e.g., record separate trigram counts for Primary vs. Social vs. Forums vs. Spam

Two Ways to Learn Class-specific Countbased Language Models

1. Create different count table(s) $c_{\text{Class}}(...)$ for each Class

e.g., record separate trigram counts for Primary vs. Social vs. Forums vs. Spam

OR

2. Add a dimension to your existing tables c(Class, ...)

e.g., record how often each trigram occurs within Primary vs. Social vs. Forums vs. Spam documents

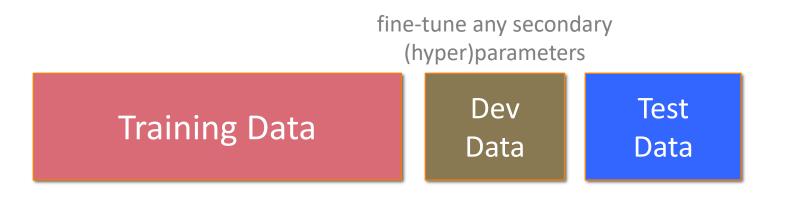
Coding Knowledge Check: Make a Trigram LM

count(x, y, z)p(z|x,y) = $\sum_{v} count(x, y, v)$

Evaluating Language Models

What is "correct?"

What is working "well?"



learn model parameters:

- acquire primary statistics
 - learn feature weights

perform final evaluation

DO NOT TUNE ON THE TEST DATA

Evaluating Language Models

What is "correct?"

What is working "well?"

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

Evaluating Language Models

What is "correct?"

What is working "well?"

Extrinsic: Evaluate LM in downstream task

Test an MT, ASR, etc. system and see which LM does better

Issue: Propagate & conflate errors

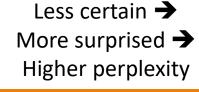
Intrinsic: Treat LM as its own downstream task

Use perplexity (from information theory)

Perplexity: Average "Surprisal"

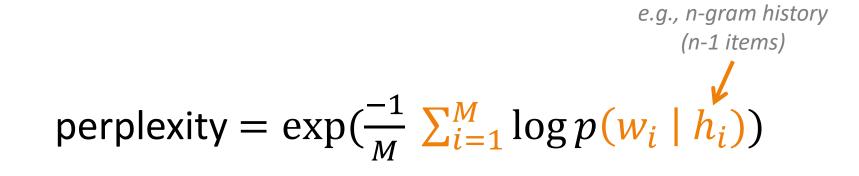
Lower is better : lower perplexity \rightarrow less surprised

More certain → Less surprised → Lower perplexity



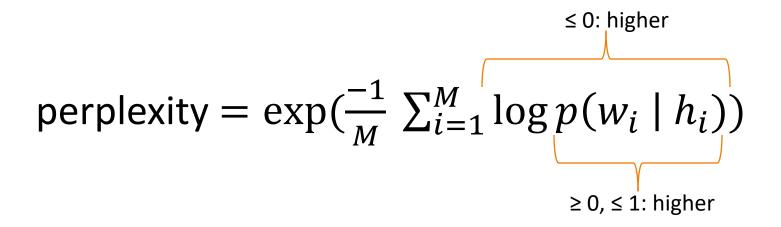
perplexity = exp(avg crossentropy)

perplexity =
$$\exp(\frac{-1}{M}\log p(w_1, \dots, w_M))$$

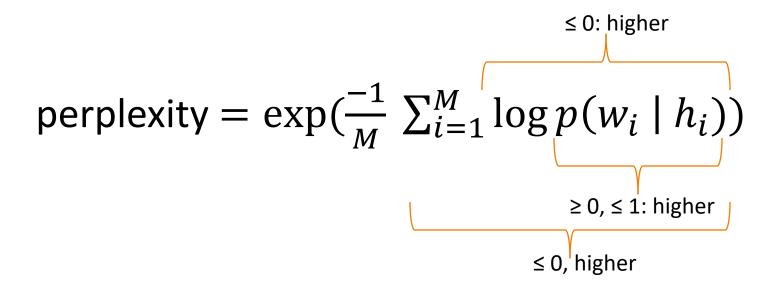


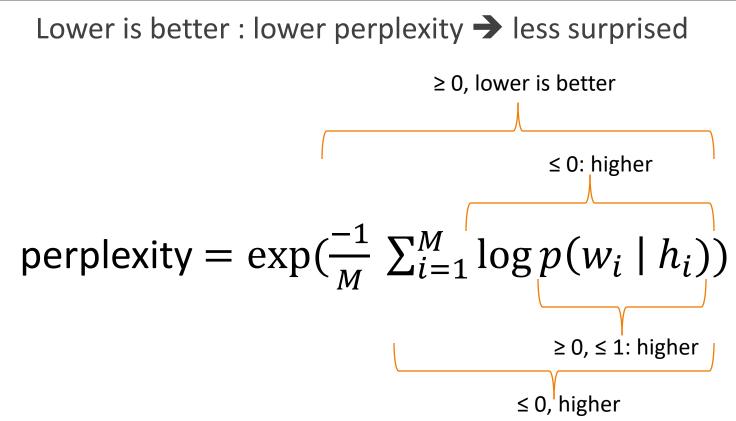
perplexity =
$$\exp(\frac{-1}{M} \sum_{i=1}^{M} \log p(w_i \mid h_i))$$

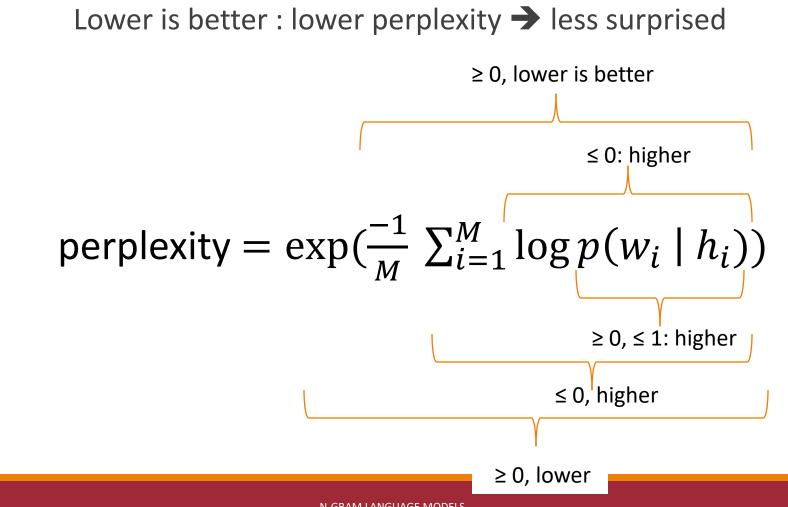
 $\geq 0, \leq 1$: higher



Lower is better : lower perplexity \rightarrow less surprised





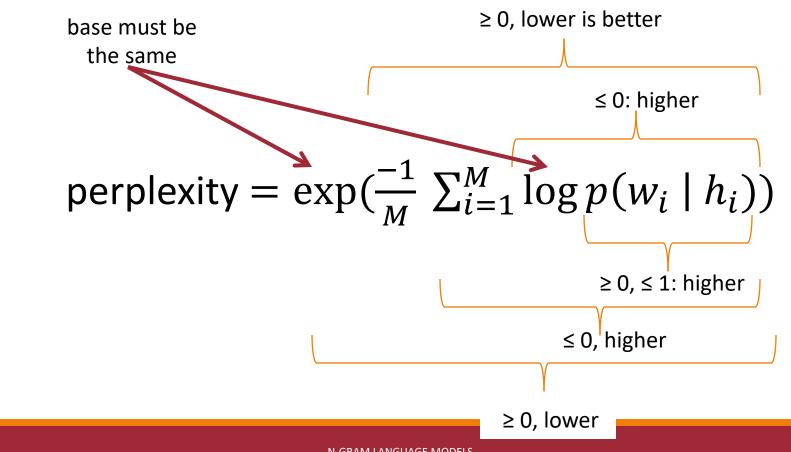


3/13/2025

N-GRAM LANGUAGE MODELS

76

Lower is better : lower perplexity \rightarrow less surprised



Lower is better : lower perplexity \rightarrow less surprised

$$perplexity = exp(\frac{-1}{M} \sum_{i=1}^{M} \log p(w_i \mid h_i))$$
$$= \sqrt[M]{\prod_{i=1} \frac{1}{p(w_i \mid h_i)}}$$
weighted
geometric
average

How to Compute Average Perplexity

If you have a list of the probabilities for each observed n-gram "token:"

numpy.exp(-numpy.mean(numpy.log(probs_per_trigram_token)))

If you have a list of observed n-gram "types" t and counts c, and log-prob. function lp:

numpy.exp(-numpy.mean(c*lp(t) for (t, c) in ngram_types.items()))

If you're computing a cross-entropy loss function (e.g., in Pytorch):

loss fn = torch.nn.CrossEntropyLoss(reduction='mean')

torch.exp(loss_fn(...))

Trigrams	MLE p(trigram)
<bos> <bos> The</bos></bos>	1
<bos> The film</bos>	1
The film ,	0
film , a	0
, a hit	0
a hit !	0
hit ! <eos></eos>	0
Perplexity	???

perplexity =

$$\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$$

Trigrams	MLE p(trigram)		
<bos> <bos> The</bos></bos>	1		
<bos> The film</bos>	1		
The film ,	0		
film , a	0		
, a hit	0		
a hit !	0		
hit ! <eos></eos>	0		
Perplexity	Infinity		

perplexity =

$$\exp\left(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i)\right)$$

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	???

perplexity = $\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$

Trigrams	MLE p(trigram)	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	2/17
<bos> The film</bos>	1	2/17
The film ,	0	1/17
film , a	0	1/16
, a hit	0	1/16
a hit !	0	1/17
hit ! <eos></eos>	0	1/16
Perplexity	Infinity	13.59

perplexity = $\exp(\frac{-1}{M}\sum_{i=1}^{M}\log p(w_i \mid h_i))$

Os Are Not Your (Language Model's) Friend

$p(\text{item}) \propto count(\text{item}) = 0 \rightarrow p(\text{item}) = 0$

0 probability \rightarrow item is *impossible*

Os annihilate: x*y*z*0 = 0

Language is creative:

new words keep appearing

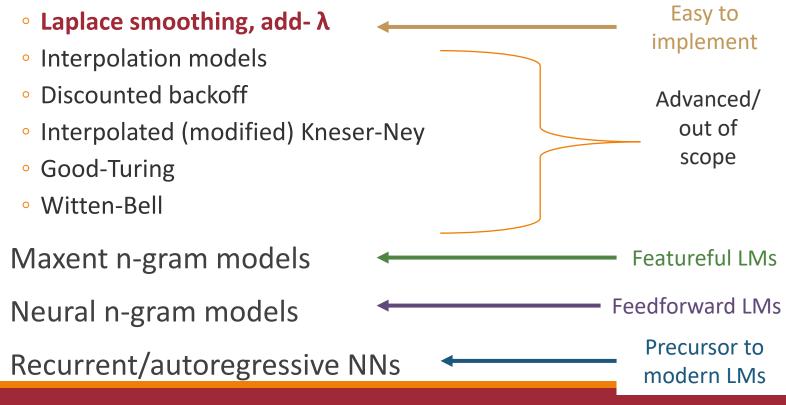
existing words could appear in known contexts

How much do you trust your data?

Language Models & Smoothing

-Maximum likelihood (MLE): simple counting

Other count-based models



Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$p(z) \propto count(z) + \lambda$

Add λ to all the counts

Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

$$p(z) \propto count(z) + \lambda$$
$$= \frac{count(z) + \lambda}{\sum_{v} (count(v) + \lambda)}$$

Add λ to all the counts

Add- λ estimation

Other names: Laplace smoothing, Lidstone smoothing

Pretend we saw each word λ more times than we did

 $p(z) \propto count(z) + \lambda$ $\underline{count(z) + \lambda}$

tokens

 $W + V\lambda$

types

Add λ to all the counts

3/13/2025

$\begin{array}{l} Add - \lambda \ N-Grams \ (Unigrams) \\ \text{The film got a great opening and the film went on to become a hit} . \end{array}$

Word (Type)	Raw Count	Norm	Prob.	Add-λ Count	Add-λ Norm.	Add-λ Prob.
The	1		1/16			
film	2		1/8			
got	1		1/16			
а	2		1/8			
great	1		1/16			
opening	1		1/16			
and	1	16	1/16			
the	1	10	1/16			
went	1		1/16			
on	1		1/16			
to	1		1/16			
become	1		1/16			
hit	1		1/16			
	1		1/16			

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Wo	ord (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
	The	1		1/16	2		
	film	2		1/8	3		
	got	1		1/16	2		
	а	2		1/8	3		
	great	1		1/16	2		
С	opening	1		1/16	2		
	and	1	16	1/16	2		
	the	1	10	1/16	2		
	went	1		1/16	2		
	on	1		1/16	2		
	to	1		1/16	2		
b	pecome	1		1/16	2		
	hit	1		1/16	2		
		1		1/16	2		

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		
film	2		1/8	3		
got	1		1/16	2		
а	2		1/8	3		
great	1		1/16	2		
opening	1		1/16	2		
and	1	16	1/16	2	16 + 14*1 =	
the	1	10	1/16	2	30	
went	1		1/16	2		
on	1		1/16	2		
to	1		1/16	2		
become	1		1/16	2		
hit	1		1/16	2		
	1		1/16	2		

Add-1 N-Grams (Unigrams) The film got a great opening and the film went on to become a hit .

Word (Type)	Raw Count	Norm	Prob.	Add-1 Count	Add-1 Norm.	Add-1 Prob.
The	1		1/16	2		=1/15
film	2		1/8	3		=1/10
got	1		1/16	2		=1/15
а	2		1/8	3		=1/10
great	1		1/16	2		=1/15
opening	1		1/16	2		=1/15
and	1	16	1/16	2	16 + 14*1 =	=1/15
the	1	16	1/16	2	30	=1/15
went	1		1/16	2		=1/15
on	1		1/16	2		=1/15
to	1		1/16	2		=1/15
become	1		1/16	2		=1/15
hit	1		1/16	2		=1/15
	1		1/16	2		=1/15

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

• • •

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0			
The film	film	0			
The film	got	1			
The film	went	0			
The film	OOV	0			
The film	EOS	0			
a great	great	0			
a great	opening	1			
a great	and	0			
a great	the	0			

• • •

The film got a great opening and the film went on to become a hit .

Q: With OOV, EOS, and BOS, how many types (for normalization)?

A: 16 (why don't we count BOS?)

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				(/	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1		1/17
a great	the	0	1		1/17

...

The film got a great opening and the film went on to become a hit .

Context: x y	Word (Type): z	Raw Count	Add-1 count	Norm.	Probability p(z x y)
The film	The	0	1		1/17
The film	film	0	1		1/17
The film	got	1	2		2/17
The film	went	0	1	17 (=1+16*1)	1/17
				(/	
The film	OOV	0	1		1/17
The film	EOS	0	1		1/17
a great	great	0	1		1/17
a great	opening	1	2	17	2/17
a great	and	0	1	17	1/17
a great	the	0	1		1/17

Q: What is the perplexity for the sentence "The film , a hit !"

What are the tri-grams for "The film, a hit!"

Trigrams	MLE p(trigram)	
<bos> <bos> The</bos></bos>	1	
<bos> The film</bos>	1	
The film ,	0	
film , a	0	
, a hit	0	
a hit !	0	
hit ! <eos></eos>	0	

What are the tri-grams for "The film, a hit!"

Trigrams	ms MLE p(trigram) UNK-ed trigram		
<bos> <bos> The</bos></bos>	1 <bos> <bos> The</bos></bos>		
<bos> The film</bos>	1	<bos> The film</bos>	
The film ,	0	The film <unk></unk>	
film , a	0	film <unk> a</unk>	
, a hit	0 <unk> a hit</unk>		
a hit !	0	0 a hit <unk></unk>	
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	

What are the tri-grams for "The film, a hit!"

Trigrams	MLE p(trigram)	UNK-ed trigrams	Smoothed p(trigram)
<bos> <bos> The</bos></bos>	1	<bos> <bos> The</bos></bos>	2/17
<bos> The film</bos>	1	<bos> The film</bos>	2/17
The film ,	0	The film <unk></unk>	1/17
film , a	0	film <unk> a</unk>	1/16
, a hit	0	<unk> a hit</unk>	1/16
a hit !	0	a hit <unk></unk>	1/17
hit ! <eos></eos>	0	hit <unk> <eos></eos></unk>	1/16

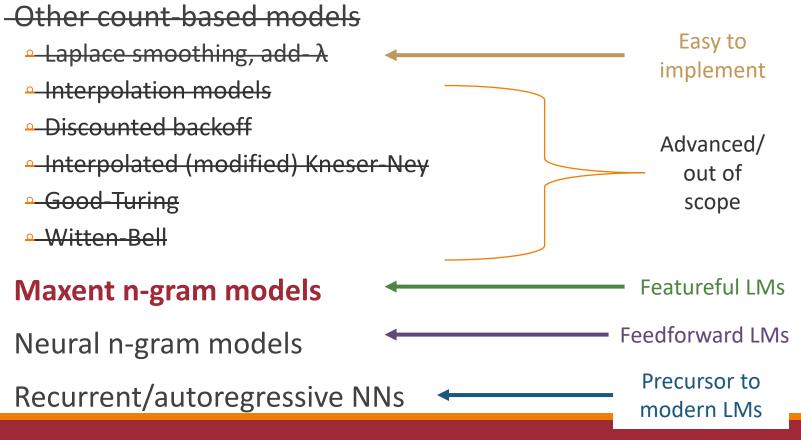
Setting Hyperparameters

Use a **development** corpus

Choose λs to maximize the probability of dev data: • Fix the N-gram probabilities (on the training data) • Then search for λs that give largest probability to held-out set:

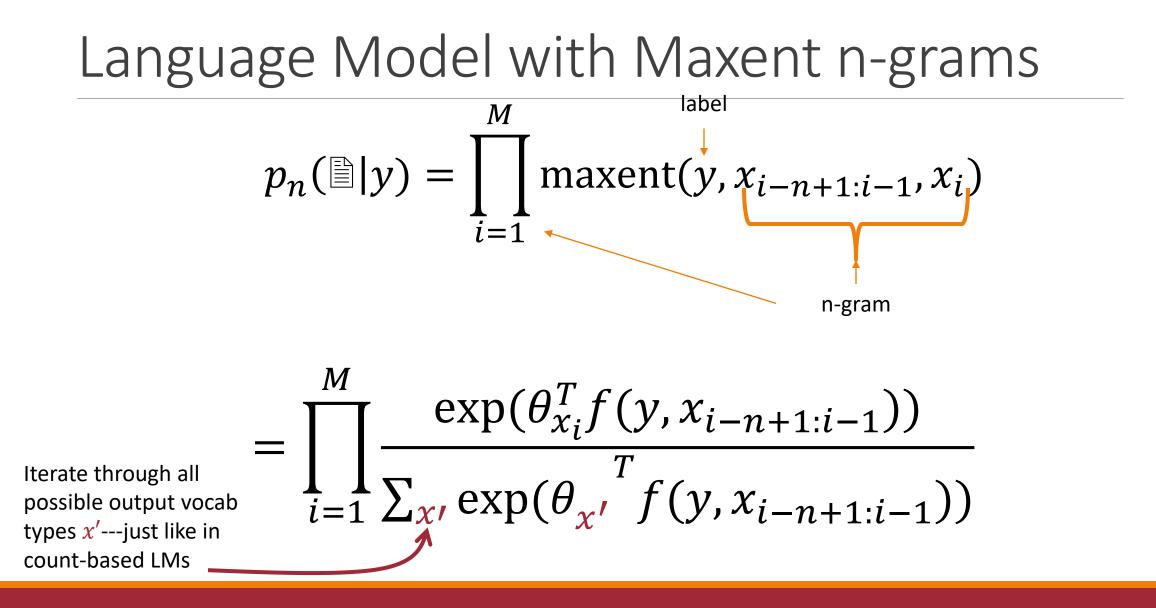
Language Models & Smoothing

-Maximum likelihood (MLE): simple counting



Maxent Models as Featureful n-gram Language Models

p(Colorless green ideas sleep furiously | Label) = p(Colorless | Label, <BOS>) * ... * p(<EOS> | Label, furiously) Model each n-gram term with a maxent model $p(x_i | y, x_{i-N+1:i-1}) =$ $maxent(y, x_{i-N+1:i-1}, x_i)$ generatively trained: *learn to* model (*class-specific*) *language*



What Should These Features Do?

 $p(x_i | y, x_{i-N+1:i-1}) = maxent(y, x_{i-N+1:i-1}, x_i), e.g.,$

$$p(\text{sleep} | y, \text{green, ideas}) = \\ \max(y, x_{i-2,i-1} = (\text{green, ideas}), x_i = \text{sleep}) \\ \propto \exp(\theta_{x_i = \text{sleep}}^T f(y, x_{i-2,i-1} = (\text{green, ideas})))$$

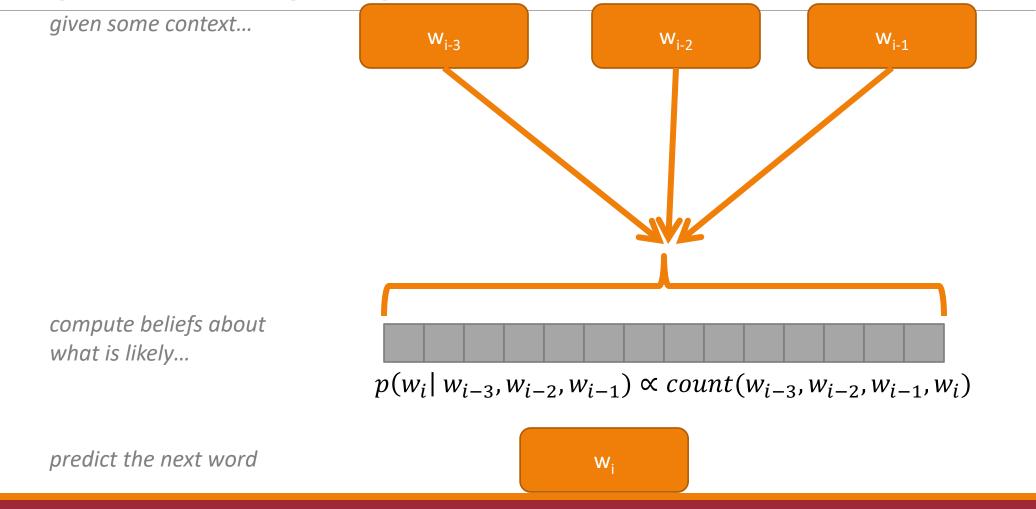
(in-class discussion)

N-gram Language Models

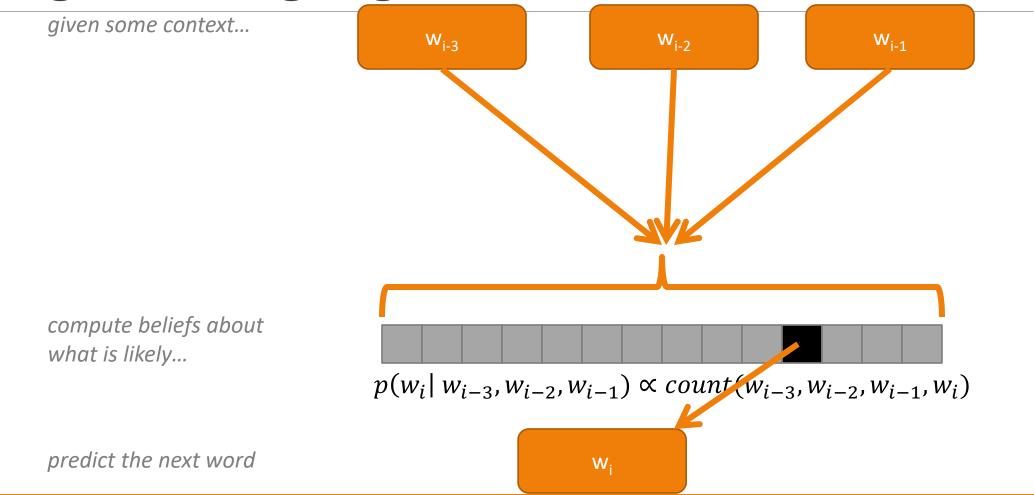
predict the next word

w_i

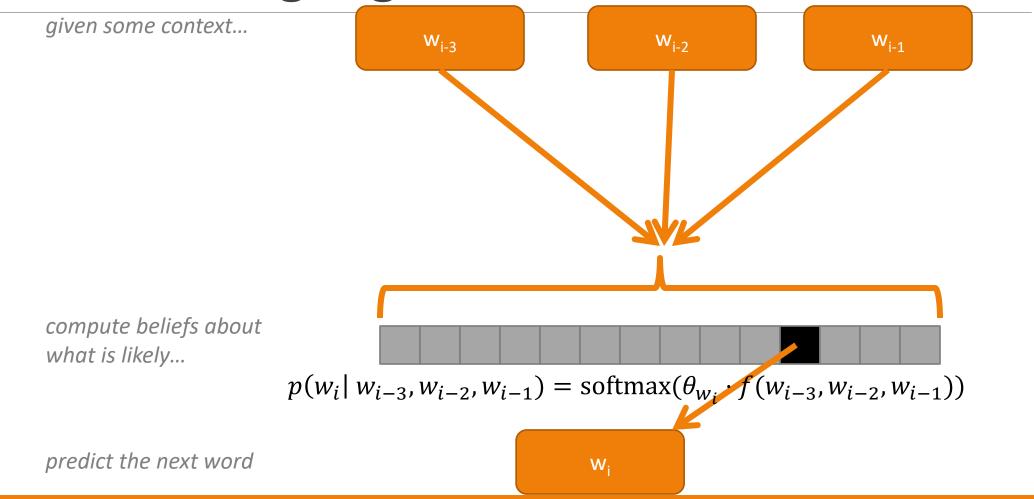
N-gram Language Models



N-gram Language Models



Maxent Language Models



This is a *class-based* language model, but incorporate the label into the features

Define features f that make use of the specific label Class

Unlike count-based models, you don't need "separate" models here