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Linguistics
The study of language

3/25/2025 NLP REVIEW 2

https://en.wikipedia.org/wiki/Morphology_(linguistics)#/media/File:Major_levels_of_linguistic_structure.svg



Semantics
Meaning
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https://plato.stanford.edu/entries/computational-linguistics/



Syntax
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https://allthingslinguistic.com/post/100617668093/how-to-draw-syntax-trees-part-3-type-1-a

Grammar



Phonology
Processing of sounds
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https://upload.wikimedia.org/wikipedia/commons/a/a5/Tsunami_by_hokusai_19th_century.jpg

tsunami

sunami
https://pubs.asha.org/doi/10.1044/0161-1461%282001/022%29



Phonetics
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https://wstyler.ucsd.edu/talks/l111_3_phonetics_review_handout.html

Physical 
production/understanding 
of sounds

https://en.wikipedia.org/wiki/Spectrogram#/media/File:Spectrogram-19thC.png



3/25/2025 NLP REVIEW 7

ML/NLP Framework

instances
features: 

K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

1.352
36.26
262.4
925
…

θ



Helpful ML Terminology
Model: the (computable) way to go from features (input) to labels/scores 
(output)

Weights/parameters: vectors of numbers that control how the model produces 
labels/scores from inputs. These are learned through training. 

Objective function: an algorithm/calculation, whose variables are the weights of 
the model, that we numerically optimize in order to learn appropriate weights 
based on the labels/scores. The model’s weights are adjusted.

Evaluation function: an algorithm/calculation that scores how “correct” the 
model’s predictions are. The model’s weights are not adjusted.
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Note: The evaluation and 
objective functions are often 

different!



(More) Helpful ML Terminology
Training / Learning: 

•  the process of adjusting the model’s weights to learn to make good predictions.

Inference / Prediction / Decoding / Classification: 

•  the process of using a model’s existing weights to make (hopefully!) good 
predictions
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instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Objective 
Function

score

ML/NLP Framework for Learning
Objective 
Function

give feedback 
to the model



instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

score

Evaluation 
Function

Evaluation 
Function

ML/NLP Framework for Prediction



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



Where does the data come from?
Corpus (plural: corpora)
◦ Literally a “body” of text

Languages with few corpora are called “low-resource languages”
◦ This might not mean the language is endangered!

We can collect corpora in a few different ways:
◦ Curation: data tagged & organized by experts

◦ Internet: data “scraped” from open-access sources (Wikipedia, Reddit)
◦ Or data collected with permission from closed sources (Facebook, texts) –  more rare

◦ Elicitation: carefully getting participants to produce language (lab studies, crowdsourcing, 
field studies)

◦ Pre-existing corpora
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Facebook has gotten into 
trouble several times for using 
data or manipulating people’s 
feeds without their 
permission 

!



Benchmarking
If you want people to work on your problem, make it easy for them to get 
started and to measure their progress. Provide:

◦ Test data, for evaluating the final systems

◦ Development data, for measuring whether a change to the system helps, and for tuning 
parameters

◦ An evaluation metric (formula for measuring how well a system does on the dev or test 
data)

◦ A program for computing the evaluation metric

◦ Labeled training data and other data resources

◦ A prize? – with clear rules on what data can be used
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Tasks!



Tokens vs Types
The film got a great opening and the film went on to become a hit .

Vocabulary: the words (items) you know

Type: an element of the vocabulary.

Token: an instance of that type in running text.
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Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



ML Term: “Featurization”
The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the 
input language x 

𝑓 𝑥 = (𝑓1 𝑥 , … , 𝑓𝐾(𝑥))

Each of these is a feature 
(/feature function)
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Overview of Featurization
Common goal: probabilistic classifier p(y | x)

Often done by defining features between x and y that are 
meaningful
◦ Denoted by a general vector of K features

𝑓 𝑥 = (𝑓1(𝑥), … , 𝑓𝐾(𝑥))

Features can be thought of as “soft” rules
◦ E.g., POSITIVE sentiments tweets may be more likely to have the word “happy”
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Representing Linguistic Information

Bag of words

/ one-hot 
encoding

Dense embedding
Let E be some embedding size (often 
100, 200, 300, etc.)

Represent each word w with an E-
dimensional real-valued vector 𝑒𝑤

Assign each word to some index i, 
where 0 ≤ 𝑖 < 𝑉

Represent each word w with a V-
dimensional binary vector 𝑒𝑤, 
where 𝑒𝑤,𝑖 = 1 and 0 otherwise

User-
defined

Model-
produced
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Bag-of-words
Bag-of-words (or bag-of-characters, bag-of-relations)

◦ Identify unique sufficient atomic sub-parts (e.g., words in a document)

◦ Define simple features over these, e.g.,
◦ Binary (0 or 1) ➔ indicating presence

◦ Natural numbers ➔ indicating number of times in a context

◦ Real-valued ➔ various other score (we’ll see examples throughout the semester)
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TECH

NOT TECH

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types

𝑓𝑖 𝑥 =# of times word 
 type i appears
 in document x

With V word types, 
define V feature 

functions 𝑓𝑖 𝑥  as
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𝑓 𝑥 = 𝑓𝑖 𝑥
𝑖

𝑉

Example: Document Classification via 
Bag-of-Words Features

Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

Adapted from https://www.nbcnews.com/pop-culture/movies/amazon-taking-control-james-bond-movie-franchise-rcna192967



TECH

NOT TECH

feature extraction

Core assumption: 
the label can be 
predicted from 

counts of individual 
word types
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Example: Document Classification via 
Bag-of-Words Features

Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

Adapted from https://www.nbcnews.com/pop-culture/movies/amazon-taking-control-james-bond-movie-franchise-rcna192967

feature 𝑓𝑖 𝑥 value

Amazon 1

acquired 1

behemoth 1

Bond 2

…

sniffle 0

…



How have we represented words?
Each word is a distinct item
◦ Bijection between the strings and unique integer ids:

◦ "cat" --> 3, "kitten" --> 792 "dog" --> 17394

◦ Are "cat" and "kitten" similar?

Equivalently: "One-hot" encoding
◦ Represent each word type w with a vector the size of the vocabulary

◦ This vector has V-1 zero entries, and 1 non-zero (one) entry
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One-Hot Encoding Example
Let our vocab be {a, cat, saw, mouse, happy}

V = # types = 5

Assign:

a 4

cat 2

saw 3

mouse 0

happy 1

𝑒cat =

0
0
1
0
0

How do we 
represent “cat?”

𝑒happy =

0
1
0
0
0

How do we 
represent 
“happy?”
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Useful Terminology: n-gram

n
Commonly 

called
History Size 

(Markov order)
Example n-gram ending in 

“furiously”

1 unigram 0 furiously

2 bigram 1 sleep furiously

3
trigram

(3-gram)
2 ideas sleep furiously

4 4-gram 3 green ideas sleep furiously

n n-gram n-1 wi-n+1 … wi-1 wi

Within a larger string (e.g., sentence), 
a contiguous sequence of n items (e.g., words)

Colorless green ideas sleep furiously
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Sometimes 
people use a 

bag of n-grams!



Representing Linguistic Information

Bag of words

/ one-hot 
encoding

Dense embedding
Let E be some embedding size (often 
100, 200, 300, etc.)

Represent each word w with an E-
dimensional real-valued vector 𝑒𝑤

Assign each word to some index i, 
where 0 ≤ 𝑖 < 𝑉

Represent each word w with a V-
dimensional binary vector 𝑒𝑤, 
where 𝑒𝑤,𝑖 = 1 and 0 otherwise

User-
defined

Model-
produced
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A Dense Representation (E=2)
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Distributional Representations
A dense, “low”-dimensional vector representation

An E-dimensional 
vector, often (but not 
always) real-valued

Up till ~2013: E could be 
any size

2013-present: E << vocab
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These are also called 
• embeddings

• Continuous representations
• (word/sentence/…) vectors

• Vector-space models

Many values 
are not 0 (or at 

least less 
sparse than 

one-hot)

[0.00315225, 0.00315225, 0.00547597, 0.00741556, 0.00912817, 0.01068435, 0.01212381, 0.01347162, 0.01474487, 0.0159558 ] 



(Some) Properties of Embeddings
Capture “like” (similar) words

Capture relationships

Mikolov et al. (2013)

vector(‘king’) – 
vector(‘man’) + 

vector(‘woman’)  ≈
 vector(‘queen’)

vector(‘Paris’) - 
vector(‘France’) + 
vector(‘Italy’) ≈ 
vector(‘Rome’)
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Shared Intuition
Model the meaning of a word by “embedding” in a vector space

The meaning of a word is a vector of numbers

Contrast: word meaning is represented in many computational linguistic 
applications by a vocabulary index (“word number 545”) or the string itself
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Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Co-occurrence Matrix

Acquire basic contextual statistics 
(often counts) for each word type v  via 

correlate.

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s
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Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v  via 
correlate: 

For example:

documents
◦ Record how often a word occurs in each 

document

  

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

# correlates =
# documents
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Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v  via 
correlate:

For example:

documents

surrounding context words
◦ Record how often v occurs with other 

word types u

  

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s

# correlates =
# word types
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Co-occurrence Matrix
Acquire basic contextual statistics 
(often counts) for each word type v  via 
correlate:

For example:

documents

surrounding context words

linguistic annotations (POS tags, 
syntax)

…

Per-correlated 
word statistics

j

i

words

co
rr

el
a

te
s
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

basic bag-of-
words 

counting
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two documents are similar if their vectors are similar
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“You shall know a word by the company 
it keeps!” Firth (1957)

battle soldier fool clown

As You Like It 1 2 37 6

Twelfth Night 1 2 58 117

Julius Caesar 8 12 1 0

Henry V 15 36 5 0

document (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar???

Issue: Count word vectors are very large, sparse, and skewed!
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

a cloud   computer stores digital data on  a remote computer

Context: those other words within a small “window” of a target word
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“You shall know a word by the company 
it keeps!” Firth (1957)

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Assumption: Two words are similar if their vectors are similar

Issue: Count word vectors are very large, sparse, and skewed!

Context: those other words within a small “window” of a target word
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Pointwise Mutual Information (PMI): 
Dealing with Problems of Raw Counts
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Raw word frequency is not a great 
measure of association between 
words

It’s very skewed: “the” and “of” are 
very frequent, but maybe not the 
most discriminative

We’d rather have a measure that asks 
whether a context word is particularly 
informative about the target word.

(Positive) Pointwise Mutual 
Information ((P)PMI)

Pointwise mutual information: 
Do events x and y co-occur more than if they 
were independent?

PMI 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

probability words x and y occur together 
(in the same context/window)

probability that 
word x occurs

probability that 
word y occurs



Three Common Kinds of Embedding 
Models

1. Co-occurrence matrices

2. Matrix Factorization: Singular value decomposition/Latent Semantic 
Analysis, Topic Models

3. Neural-network-inspired models (skip-grams, CBOW)
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Word2Vec
Mikolov et al. (2013; NeurIPS): “Distributed Representations of Words and 
Phrases and their Compositionality”

Revisits the context-word approach

Learn a model p(c | w) to predict a context word c from a target word w

Learn two types of vector representations
◦ ℎ𝑐 ∈ ℝ𝐸: vector embeddings for each context word

◦ 𝑣𝑤 ∈ ℝ𝐸: vector embeddings for each target word

𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)
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Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣



𝑐,𝑤 pairs

count 𝑐, 𝑤 log 𝑝 𝑐 𝑤)
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Word2Vec

apricot pineapple digital information

aardvark 0 0 0 0

computer 0 0 2 1

data 0 10 1 6

pinch 1 1 0 0

result 0 0 1 4

sugar 1 1 0 0

context (↓)-word (→) count matrix

Context: those other words within a small “window” of a target word

max
ℎ,𝑣



𝑐,𝑤 pairs

count 𝑐, 𝑤 ℎ𝑐
𝑇𝑣𝑤 − log(

𝑢

exp(ℎ𝑢
𝑇𝑣𝑤)))
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Example 
(Tensorflow)
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https://www.tensorflow.org/text/tutorials/word2vec



Word2Vec Vectors are Weights of a NN
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https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673

https://medium.com/@manansuri/a-dummys-guide-to-word2vec-456444f3c673


FastText
P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with 
Subword Information,” Transactions of the Association for Computational 
Linguistics, vol. 5, pp. 135–146, 2017, doi: 10.1162/tacl_a_00051.

Main idea: learn character n-gram embeddings for the target word (not context) 
and modify the word2vec model to use these

Pre-trained models in 150+ languages
◦ https://fasttext.cc
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https://doi.org/10.1162/tacl_a_00051


FastText Details
Main idea: learn character n-gram embeddings and for the target word (not the 
context) modify the word2vec model to use these

Original word2vec: 

𝑝 𝑐 𝑤) ∝ exp(ℎ𝑐
𝑇𝑣𝑤)

FastText:

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 σn−gram 𝑔 in 𝑤 𝑧𝑔
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FastText Details
Main idea: learn character n-gram embeddings and for the target word (not the 
context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 σn−gram 𝑔 in 𝑤 𝑧𝑔
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fluffy → fl flu luf uff ffy fy
decompose

Sub-word units like 
this have become an 

important part of 
today’s NLP work!



FastText Details
Main idea: learn character n-gram embeddings and for the target 
word (not the context) modify the word2vec model to use these

𝑝 𝑐 𝑤) ∝ exp ℎ𝑐
𝑇 

n−gram 𝑔 in 𝑤

𝑧𝑔

fluffy → fl flu luf uff ffy fy
decompose

Learn n-gram 
embeddings

To deterministically 
compute word embeddings
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Contextual Word Embeddings
Word2vec-based models are not context-dependent

Single word type → single word embedding

If a single word type can have different meanings…
bank, bass, plant,…

… why should we only have one embedding?

Entire task devoted to classifying these meanings:

Word Sense Disambiguation
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Contextual Word Embeddings
Growing interest in this

Off-the-shelf is a bit more difficult
◦ Download and run a model

◦ Can’t just download a file of embeddings

Two to know about (with code):
◦ ELMo: “Deep contextualized word representations” Peters et al. (2018; 

NAACL)

◦  https://allennlp.org/elmo 

◦ BERT: “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding” Devlin et al. (2019; NAACL)
◦ https://github.com/google-research/bert 
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https://allennlp.org/elmo
https://github.com/google-research/bert


Evaluating Vector Embeddings
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Cosine: Measuring Similarity
Given 2 target words v and w how similar are their vectors?

Dot product or inner product from linear algebra

◦ High when two vectors have large values in same dimensions, low for orthogonal vectors with 
zeros in complementary distribution

Correct for high magnitude vectors
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Cosine Similarity
Divide the dot product by the length of the two vectors

This is the cosine of the angle between them
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Cosine Similarity
Divide the dot product by the length of 
the two vectors

This is the cosine of the angle between 
them
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https://upload.wikimedia.org/wikipedia/commons/2/23/CosineSimilarity.png



Example: Word Similarity

cosine(apricot,information) = 

cosine(digital,information) =

cosine(apricot,digital) =

cos 𝑥, 𝑦 =
σ𝑖 𝑥𝑖𝑦𝑖

σ𝑖 𝑥𝑖
2 σ𝑖 𝑦𝑖

2

Dim. 1 Dim. 2 Dim. 3

apricot 2 0 0

digital 0 1 2

information 1 6 1

2 + 0 + 0

4 + 0 + 0 1 + 36 + 1
= 0.1622

0 + 6 + 2

0 + 1 + 4 1 + 36 + 1
= 0.5804

0 + 0 + 0

4 + 0 + 0 0 + 1 + 4
= 0.0
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Cosine Similarity Range
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https://www.learndatasci.com/glossary/cosine-similarity/



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



Helpful ML Terminology
Model: the (computable) way to go from features (input) to labels/scores 
(output)

Weights/parameters (θ): vectors of numbers that control how the model 
produces labels/scores from inputs. These are learned through training.
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ModelInput Output

1.352
36.26
262.4
925
…

θ



Types of models

CLASSIFICATION

Model outputs comes from a 
finite set of values

Discrete result

Examples:
◦ What type of animal is this a picture of?

◦ Predicting the weather (sunny, cloudy, or 
rainy?)

◦ Ranking: Is this result better than this 
result?

REGRESSION

Model outputs are continuous 
values

Continuous result

Examples:
◦ How far will I move if I drive my motors at 

this speed for 1 second?

◦ Predicting the weather (temperature)

◦ Ranking: how good is this result?
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Types of models

NLP REVIEW 65
https://medium.com/unpackai/classification-regression-in-machine-learning-7cf3b13b0b09
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What are some other examples of these?

CLASSIFICATION

Tone tagging

Sentiment classification

Named entity recognition

REGRESSION

Quantity/scale of how much it sounds 
like a specific author

Numerical sentiment value

Political “score” from document

Likelihoods

Predicted Goodreads score
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Classification
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Modeling
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𝑃(𝑦 | 𝑥)Classification/
Text Processing

𝑃 𝑤𝑡 𝑤𝑡−1, 𝑤𝑡−2 … )Language 
Model (LM) /
Generation

A language model is used to generate the next word(s) 
given a history of words.



Classification Types (Terminology)
Name Number of 

Tasks 
(Domains) 
Labels are 

Associated with

# Label Types Example

(Binary) Classification 1 2
Sentiment: Choose one of 

{positive or negative}

Multi-class 
Classification

1 > 2
Part-of-speech: Choose one 

of {Noun, Verb, Det, Prep, …}

Multi-label 
Classification

1 > 2
Sentiment: Choose multiple 

of {positive, angry, sad, 
excited, …}

Multi-task 
Classification

> 1
Per task: 2 or > 2 

(can apply to binary 
or multi-class)

Task 1: part-of-speech
Task 2: named entity tagging

…
----------------------

Task 1: document labeling
Task 2: sentiment
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Maxent Models for Classification: 
Discriminatively or …
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𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)
Discriminatively trained classifier

Directly model 
the posterior

“Discriminative classifiers like logistic 
regression instead learn what features from 

the input are most useful to discriminate 
between the different possible classes.”

SLP, ch. 4



Bayes’ Rule
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𝑃 𝑌 𝑋 =
𝑃(𝑋|𝑌)∙𝑃(𝑌)

𝑃(𝑋)

PriorLikelihood

Posterior

Posterior:
probability of event Y  
with knowledge that X 

has occurred

NLP pg. 478

Likelihood:
probability of event X  

given that Y has occurred
NLP pg. 478

Prior:
probability of event X  

occurring (regardless of 
what other events 

happen)
NLP pg. 478



Bayes’ Rule
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𝑃 𝑐 𝑑 =
𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

=
𝑃  )∙𝑃( )

𝑃( )

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

P(     | )ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.

ENTAILED ENTAILED

s: Michael Jordan, coach Phil Jackson and the star 
cast, including Scottie Pippen, took the Chicago 
Bulls to six National Basketball Association 
championships.
h: The Bulls basketball team is based in Chicago.



Maxent Models for Classification: 
Discriminatively or Generatively Trained

3/25/2025 NLP REVIEW 73

Discriminatively trained classifier

Generatively trained classifier with 
maxent-based language model

Directly model 
the posterior

Model the 
posterior with 

Bayes rule

𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)

𝑝 𝑌 𝑋) ∝ 𝑝 𝑋 𝑌)𝑝(𝑌)



Maximum Entropy (Log-linear) Models 
For Discriminatively Trained Classifiers
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𝑝 𝑦 𝑥) = maxent 𝑥, 𝑦

Modeled 
jointly!



Core Aspects to Maxent Classifier p(y|x)
We need to define:

• features 𝑓 𝑥  from x that are meaningful;

•weights 𝜃 (at least one per feature, often one per feature/label 
combination) to say how important each feature is; and

• a way to form probabilities from 𝑓 and 𝜃
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TECH

NOT TECH

3/25/2025 NLP REVIEW 76

Example: Document Classification via 
Bag-of-Words Features

feature weight

Amazon .43

acquired 0.025

behemoth 0.008

Bond -0.0001

…

w: weights

f(x): “bag of words”

Adapted from https://www.nbcnews.com/pop-culture/movies/amazon-taking-control-james-bond-movie-franchise-rcna192967

Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

feature 𝑓𝑖 𝑥 value

Amazon 1

acquired 1

behemoth 1

Bond 2

…

sniffle 0

…



exp( ))
weight1, Tech * applies1(🗎)

weight2, Tech * applies2(🗎)

weight3, Tech * applies3(🗎)
…

3/25/2025 NLP REVIEW 77

Maxent Modeling
Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

p(       | )∝ TECH

K different 
weights…

for K different 
features

multiplied and then summed



exp( )𝜃TECH
𝑇 𝑓(🗎)
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Maxent Modeling

K different 
weights…

for K different 
features

multiplied and 
then summed

1
1
1
2
0
…

.31 -.5 .1 .002 .522 … ×

Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

p(       | )∝ TECH
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Maxent Classifier, schematically
𝑓(𝑥) 𝑦

𝑝 𝑦 = Tech 𝑥)∝
exp(𝜃Tech𝑓(𝑥))

𝜃Tech

𝑦1

1
1
1
2
0
…

.31
-.5
.1
.002
.522
…

𝑓(𝑥)

𝜃Tech



exp( )𝜃TECH
𝑇 𝑓(🗎)
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Maxent Modeling
Amazon acquired MGM in 2022, taking 
over a sprawling library that includes 
more than 4,000 feature films and 
17,000 television shows. The tech 
behemoth also earned the rights to 
distribute all the Bond movies, but the 
new deal solidifies the company's 
oversight of Bond's big-screen future.

p(       | )∝ TECH

1

Z



exp( )Σ
label j

Z =
Normalization for Classification

𝑝 𝑦 𝑥) ∝ exp(𝜃𝑦
𝑇𝑓(𝑥)) classify doc x with label y in one go

𝜃J
𝑇𝑓(🗎)
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exp( )
…

Σ
label j

Normalization for Classification 
(long form)

weight1, j * applies1(🗎)

weight2, j * applies2(🗎)

weight3, j * applies3(🗎)

Z =
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𝑝 𝑦 𝑥) ∝ exp(𝜃𝑦
𝑇𝑓(𝑥)) classify doc x with label y in one go



Multi-label Maxent Classifier, schematically

𝜃contra

𝑦

𝑝 𝑦 = entailed 𝑥)∝
exp(𝜃entailed𝑓(𝑥))

𝜃entailed

𝑦2

𝑦1

𝜃neutral

𝑦3

𝑝 𝑦 = contra 𝑥)∝
exp(𝜃contra𝑓(𝑥))

𝑝 𝑦 = neutral 𝑥)∝
exp(𝜃neutral𝑓(𝑥))

𝑓(𝑥)

output:
i = argmax scorei

class i
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Final Equation for Logistic Regression
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𝑝 𝑦 𝑥) =
exp(𝜃𝑦

𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

𝑝 𝑌 𝑥) = softmax(𝜃𝑓(𝑥))



Maxent Models for Classification: 
Discriminatively or Generatively Trained
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𝑝 𝑌 𝑋) ∝ 𝑝 𝑋 𝑌)𝑝(𝑌)

Discriminatively trained classifier

Generatively trained classifier with 
maxent-based language model

Directly model 
the posterior

Model the 
posterior with 

Bayes rule

𝑝 𝑌 𝑋) = 𝐦𝐚𝐱𝐞𝐧𝐭(𝑋; 𝑌)



Bayes’ Rule
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𝑃 𝑌 𝑋 =
𝑃(𝑋|𝑌)∙𝑃(𝑌)

𝑃(𝑋)

PriorLikelihood

Posterior

It’s harder to model P(Y|X) directly 
since it might be that we only see 
that set of features once!



Bayes’ Rule → Naïve Bayes Assumption
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Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 ≈ argmax
𝑐∈𝐶

 𝑃(𝑑|𝑐) ∙ 𝑃(𝑐)

Bayes

Naïve 
Bayes

We can make this assumption because P(d) stays the same 
regardless of the class!

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)



Bayes’ Rule → Naïve Bayes Assumption
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Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)∙𝑃(𝑐)

𝑃(𝑑)

Ƹ𝑐 = argmax
𝑐∈𝐶

 𝑃 𝑐 𝑑 ≈ argmax
𝑐∈𝐶

 𝑃(𝑑|𝑐) ∙ 𝑃(𝑐)

Bayes

Naïve 
Bayes

Naïve bayes is generative because we are sort of assuming 
this is how the data point is generated: pick a class c and 
then generate the words by sampling from P(d|c)
SLP 4.1



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



Modeling

3/25/2025 NLP REVIEW 90

𝑃(𝑦 | 𝑥)Classification/
Text Processing

𝑃 𝑤𝑡 𝑤𝑡−1, 𝑤𝑡−2 … )Language 
Model (LM) /
Generation

A language model is used to generate the next word(s) 
given a history of words.



Language Models
Maximum likelihood (MLE): simple counting

Other count-based models
◦ E.g., Laplace smoothing (add-1, add-λ)

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Transformers

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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Modern LMs



Language Models
Maximum likelihood (MLE): simple counting

Other count-based models
◦ E.g., Laplace smoothing (add-1, add-λ)

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Transformers

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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Modern LMs



Key Idea: Probability Chain Rule

𝑝 𝑤1, 𝑤2, … , 𝑤𝑆 =
𝑝 𝑤1 𝑝 𝑤2 𝑤1)𝑝 𝑤3 𝑤1, 𝑤2) ⋯ 𝑝 𝑤𝑆 𝑤1, … , 𝑤𝑆−1 =

ෑ

𝑖

𝑆

𝑝 𝑤𝑖 𝑤1, … , 𝑤𝑖−1)
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N-Grams
Maintaining an entire joint inventory over sentences could be too much 
to ask

Store “smaller” pieces?

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)

3/25/2025 NLP REVIEW 94



N-Grams
p(furiously | Colorless green ideas sleep)

How much does “Colorless” influence the choice of “furiously?”

Remove history and contextual info

p(furiously | Colorless green ideas sleep) ≈

p(furiously | ideas sleep)
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N-Grams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | Colorless green ideas) *
p(furiously | Colorless green ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless) *

p(green | Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
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Trigrams

p(Colorless green ideas sleep furiously) =
p(Colorless | <BOS> <BOS>) *
p(green | <BOS> Colorless) *
p(ideas | Colorless green) *

p(sleep | green ideas) *
p(furiously | ideas sleep) *
p(<EOS> | sleep furiously)

Consistent notation: Pad the left with <BOS> (beginning of sentence) symbols
Fully proper distribution: Pad the right with a single <EOS> symbol
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N-Gram Terminology

n
Commonly 

called
History Size 

(Markov order)
Example

1 unigram 0 p(furiously)

2 bigram 1 p(furiously | sleep)

3
trigram

(3-gram)
2 p(furiously | ideas sleep)

4 4-gram 3 p(furiously | green ideas sleep)

n n-gram n-1 p(wi | wi-n+1 … wi-1)
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Count-Based N-Grams (Unigrams)

𝑝 z =
𝑐𝑜𝑢𝑛𝑡 z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(v)

word type

word type
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Count-Based N-Grams (Unigrams)

𝑝 z ∝
𝑐𝑜𝑢𝑛𝑡 z

𝑊

word type

number of tokens observed
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104NLP REVIEW

Count-Based N-Grams (Unigrams)
The film got a great 
opening and the film 
went on to become a 
hit .

Word (Type) z Raw Count count(z) Normalization Probability p(z)

The 1

16

1/16

film 2 1/8

got 1 1/16

a 2 1/8

great 1 1/16

opening 1 1/16

and 1 1/16

the 1 1/16

went 1 1/16

on 1 1/16

to 1 1/16

become 1 1/16

hit 1 1/16

. 1 1/163/25/2025



Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in 
conditioning

order matters in 
count

Count of the 
sequence of items

“x y z”
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Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡(x, y, z)

order matters in 
conditioning

order matters in 
count

count(x, y, z) ≠ count(x, z, y) ≠ count(y, x, z) ≠ …
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Count-Based N-Grams (Trigrams)

𝑝 z|x, y ∝ 𝑐𝑜𝑢𝑛𝑡 x, y, z

=
𝑐𝑜𝑢𝑛𝑡 x, y, z

σ𝑣 𝑐𝑜𝑢𝑛𝑡(x, y, v)
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Context: x y Word (Type): z Raw Count Normalization Probability: p(z | x y)

the film the 0

2

0/2

the film film 0 0/2

the film got 1 1/2

the film went 1 1/2

…

a great great 0

1

0/1

a great opening 1 1/1

a great and 0 0/1

a great the 0 0/1

…

the film got a great opening and the film went on to become a hit .
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Count-Based N-Grams (Lowercased Trigrams)



Language Models
Maximum likelihood (MLE): simple counting

Other count-based models
◦ E.g., Laplace smoothing (add-1, add-λ)

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Transformers

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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Modern LMs



0s Are Not Your (Language Model’s) 
Friend

0 probability → item is impossible

 0s annihilate: x*y*z*0 = 0

Language is creative:

 new words keep appearing

 existing words could appear in known contexts

How much do you trust your data?

𝑝 item ∝ 𝑐𝑜𝑢𝑛𝑡 item = 0 →
𝑝 item = 0
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Add-λ estimation
Other names: Laplace 
smoothing, Lidstone 

smoothing

Pretend we saw each word λ 
more times than we did

Add λ to all the counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆
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Add-λ estimation
Other names: Laplace 
smoothing, Lidstone 

smoothing

Pretend we saw each word λ 
more times than we did

Add λ to all the counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆

σ𝑣(𝑐𝑜𝑢𝑛𝑡 v + 𝜆)
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Add-λ estimation
Other names: Laplace 
smoothing, Lidstone 

smoothing

Pretend we saw each word λ 
more times than we did

Add λ to all the counts

𝑝 z ∝ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆

𝑊 + 𝑉𝜆

# tokens # types
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What are the tri-grams for
“The film , a hit !”

Trigrams MLE p(trigram) UNK-ed trigrams
Smoothed 
p(trigram)

<BOS> <BOS> The 1 <BOS> <BOS> The 2/17

<BOS> The film 1 <BOS> The film 2/17

The film , 0 The film <UNK> 1/17

film , a 0 film <UNK> a 1/16

, a hit 0 <UNK> a hit 1/16

a hit ! 0 a hit <UNK> 1/17

hit ! <EOS> 0 hit <UNK> <EOS> 1/16
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Language Models
Maximum likelihood (MLE): simple counting

Other count-based models
◦ E.g., Laplace smoothing (add-1, add-λ)

Maxent n-gram models

Neural n-gram models

Recurrent/autoregressive NNs

Transformers

Featureful LMs

Feedforward LMs

Precursor to 
modern LMs
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Modern LMs



Text Generation 
as Classification Problem?

I could eat so many juicy _________
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Types Probability

apples .03

sandwiches .02

pineapples .004

houses .00002

… …

I could eat so many delicious _________
?



Maxent Models as Featureful n-gram 
Language Models

generatively trained:
learn to model (class-specific) language

𝑝 𝑥𝑖 𝑦, 𝑥𝑖−𝑁+1:𝑖−1) =
maxent(𝑦, 𝑥𝑖−𝑁+1:𝑖−1, 𝑥𝑖)

p(Colorless green ideas sleep furiously | Label) =
p(Colorless | Label, <BOS>) * … * p(<EOS> | Label , furiously)

Model each n-gram term with 
a maxent model
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Language Model with Maxent n-grams

𝑝𝑛 🗎 𝑦) = ෑ

𝑖=1

𝑀

maxent(𝑦, 𝑥𝑖−𝑛+1:𝑖−1, 𝑥𝑖)

= ෑ

𝑖=1

𝑀
exp(𝜃𝑥𝑖

𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

σ𝑥′ exp(𝜃𝑥′
𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

n-gram

label

Iterate through all 
possible output vocab 
types 𝑥′---just like in 
count-based LMs
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Count-based Language Models
given some context…

wi-3 wi-2 wi-1

compute beliefs about 
what is likely…
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predict the next word wi

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)



Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))
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ML/NLP Framework for Learning

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

θ

Objective 
Function

score

give feedback 
to the model

Objective 
Function

output “Gold” 
(correct) 

labels

output



Types of Learning
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hamster
dog

cat

dog

3/25/2025

SUPERVISED LEARNING UNSUPERVISED LEARNING



Types of Learning

SUPERVISED LEARNING

Data has feedback (labels)

Data consists of input-output pairs

Learn mapping from input to 
output

Examples:
◦ Dataset classification
◦ How likely is it that this person will get 

into a car accident?

UNSUPERVISED LEARNING

No explicit feedback in data

Learn patterns directly from data

Examples:
◦ Clustering

◦ Do these people fall under multiple 
groups?
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What are some other examples of these?

SUPERVISED LEARNING

◦ Machine translation

◦ Object segmentation (vision)

◦ Document classification

UNSUPERVISED LEARNING

oClustering

oLanguage modeling
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Types of Algorithms
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instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Objective 
Function

score

ML/NLP Framework for Learning
Objective 
Function

give feedback 
to the model



pθ(y | x ) probabilistic model

objective𝐹(𝜃; 𝑥, 𝑦)
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Primary Objective: Likelihood

Goal: maximize the score your model gives to the training data it observes

This is called the likelihood of your data

In classification, this is p(label | 🗎)

For language modeling, this is p(word | history of words)

3/25/2025 NLP REVIEW 128



Objective = Full Likelihood? 
(Classification)

These values can have very 
small magnitude ➔ underflow

Differentiating this 
product could be a pain

ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 ∝ ෑ

𝑖

exp(𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 )
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Our maxent equationOur goal probability



Logarithms

(0, 1] ➔ (-∞, 0]

Products ➔ Sums

 log(ab) = log(a) + log(b)

 log(a/b) = log(a) – log(b)

Inverse of exp

 log(exp(x)) = x
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How might you find the 
log of this?

ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖



Log-Likelihood (Classification)
Wide range of (negative) numbers
Sums are more stable

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

Products ➔ Sums

 log(ab) = log(a) + log(b)

 log(a/b) = log(a) – log(b)
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Maximize Log-Likelihood (Classification)

Inverse of exp
 log(exp(x)) = x

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

= 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)
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Differentiating this 
becomes nicer (even 

though Z depends on θ)

exp(𝜃𝑦
𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

Original maxent equation



Log-Likelihood (Classification)

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = 

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

= 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

= 𝐹 𝜃

3/25/2025 NLP REVIEW 133

Wide range of (negative) numbers
Sums are more stable



Equivalent Version 2: 
Minimize Cross Entropy Loss

ℓxent 𝑦∗, 𝑦 = − 

𝑘

𝑦∗ 𝑘 log 𝑝(𝑦 = 𝑘|𝑥)

0
0
…
1
…
0

one-hot 
vector

index of “1” 
indicates 

correct value

ℓxent 𝑦∗, 𝑝(𝑦|𝑥)

loss uses y (random 
variable), or model’s 
probabilities
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Cross entropy:
How much ො𝑦 differs from 

the true 𝑦



Classification Log-likelihood ≅
Cross Entropy Loss

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)
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ℓxent 𝑦∗, 𝑦 = − 

𝑘

𝑦∗ 𝑘 log 𝑝(𝑦 = 𝑘|𝑥)

Log Likelihood

objective is 
convex

objective is 
concave

Cross Entropy Loss



Preventing Extreme Values
Likelihood on its own can lead to overfitting and/or extreme values in the 
probability computation

𝐹(𝜃) = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

Learn the parameters based on 
some (fixed) data/examples
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Regularization:
Preventing Extreme Values

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍 𝑥𝑖 − 𝑅(𝜃)

With fixed/predefined 
features, the values of 𝜃 
determine how “good” 
or “bad” our objective 

learning is

• Augment the objective with a regularizer
• This regularizer places an inductive bias 

(or, prior) on the general “shape” and 
values of 𝜃
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(Squared) L2 Regularization
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https://explained.ai/regularization/



Regularization:
Preventing Extreme Values

𝐹 𝜃 = 

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍 𝑥𝑖 − 

𝑘

𝜃𝑘
2
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instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Objective 
Function

score

ML/NLP Framework for Learning
Objective 
Function

give feedback 
to the model

𝑭 𝜽



F(θ)

θ
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Optimizing F(θ)



F(θ)

θ
θ*
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Optimizing F(θ)



F(θ)

θ

F’(θ)
derivative of F 

wrt θ

θ*
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Optimizing F(θ)



F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)

θ0

z0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)

θ0

z0

g0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

g0
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

z1

θ2

g0
g1
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F(θ)

θ

F’(θ)
derivative 
of F wrt θ

θ*

What if you can’t find the roots? Follow 
the derivative

Set t = 0
Pick a starting value θt

Until converged:
1. Get value z t = F(θ t)
2. Get derivative g t = F’(θ t)
3. Get scaling factor 

(learning rate) ρ t

4. Set θ t+1 = θ t + ρ t *g t

5. Set t += 1 θ0

z0

θ1

z1

θ2

z2

z3

θ3

g0
g1 g2
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Gradient = Multi-variable derivative

K-dimensional input

K-dimensional output
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Gradient Ascent



instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

score

Evaluation 
Function

Evaluation 
Function

ML/NLP Framework for Prediction



Getting Labels from the Classifier

Given X, our classifier produces a score for each possible label

p(       |X) vs. p(       |X)
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Can turn a 
probability 

(“regression”) model 
into a classification 

model



Example of argmax 
POLITICS      .002

MOVIES               .48

SPORTS                  .0001

TECH                      .39

HEALTH                  .0001

FINANCE                .05

…

Amazon acquired MGM in 2022, 
taking over a sprawling library that 
includes more than 4,000 feature 
films and 17,000 television shows. 
The tech behemoth also earned the 
rights to distribute all the Bond 
movies, but the new deal solidifies 
the company's oversight of Bond's 
big-screen future.
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Adapted from https://www.nbcnews.com/pop-culture/movies/amazon-taking-control-james-bond-movie-franchise-rcna192967



instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

score

Evaluation 
Function

Evaluation 
Function

ML/NLP Framework for Prediction



Determining how good a model is: 
Baselines
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Our
Model

Output
Evaluation 
Function

Baseline
Model 1

Input

Output
Evaluation 
Function

52.6%

3.6%

Baseline
Model 2

Output
Evaluation 
Function 68.2%



Central Question: How Well Are We 
Doing?

Classification

Regression

Clustering

the task: what kind of 
problem are you solving?

• Precision, 
Recall, F1

• Accuracy
• Log-loss
• ROC-AUC
• …

• (Root) Mean Square Error
• Mean Absolute Error
• …

• Mutual Information
• V-score
• …

This does 
not have to 
be the same 
thing as the 

loss 
function 

you 
optimize
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Evaluating Classification
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Classification Evaluation:
the 2-by-2 contingency table

Assumption 1: There are two classes/labels

Assumption 2:              is the “positive” label
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Classification Evaluation:
the 2-by-2 contingency table

What is the actual label?

What label does our 
system predict? (↓)

Actual Target Class 
(“⬤”)

Not Target Class 
(“◯”)

Selected/
Guessed (“⬤”)

True Positive 
(TP)

False Positive 
(FP)

Not selected/
not guessed 

(“◯”)

False Negative 
(FN)

True Negative 
(TN)

Classes/Choices

Actual Guessed Actual Guessed

Actual Guessed Actual Guessed
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Contingency Table (out of table form)
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TP

FN TN

FP
Query: 
Articles about 
dogs

Simple model 
classifies based 
on presence of 
“dog” or “dogs”

Meme from: https://www.reddit.com/r/AdviceAnimals/comments/ck8xh0/yo_dawg_i_heard_you_like_old_memes/

10 Tips for 
Grooming 
your Dog

Why Huskies 
Howl

When Cats 
Rule the 
World

15 Weird Animals 
You Can Find in 
North America

Adopting an 
Animal at the 
Pound

Who’s a 
good boy?

It’s raining 
cats and 
dogs

What Foods to Hide 
from Your Dog 
During the Holidays
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What is the actual label?

What label does our 
system predict? (↓)

Actual Target Class 
(“⬤”)

Not Target Class 
(“◯”)

Selected/
Guessed (“⬤”)

True Positive 
(TP)

False Positive 
(FP)

Not selected/
not guessed 

(“◯”)

False Negative 
(FN)

True Negative 
(TN)

Predicted:

Actual:

Contingency Table Example
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What is the actual label?

What label does our 
system predict? (↓)

Actual Target Class 
(“⬤”)

Not Target Class 
(“◯”)

Selected/
Guessed (“⬤”)

True Positive 
(TP) = 2

False Positive 
(FP) = 2

Not selected/
not guessed 

(“◯”)

False Negative 
(FN) = 1

True Negative 
(TN) = 1

Predicted:

Actual:

Contingency Table Example
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Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

TP + TN

TP + FP + FN + TN

Accuracy: % of items correct

Classification Evaluation:
Accuracy, Precision, and Recall



3/25/2025 NLP REVIEW 165

Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

TP

TP + FP

TP + TN

TP + FP + FN + TN

“Precision measures the 
percentage of the items 
that precision the system 
detected (i.e., the system 
labeled as positive) that are 
in fact positive (i.e., are 
positive according to the 
human gold labels”
SLP, ch. 4

Accuracy: % of items correct

Precision: % of selected items that are correct

Classification Evaluation:
Accuracy, Precision, and Recall
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Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

“Recall measures the 
percentage of items 
actually present in the 
input that were correctly 
identified by the system.”
SLP, ch. 4

Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct

Precision: % of selected items that are correct

Recall: % of correct items that are selected

TP

TP + FP

TP

TP + FN

TP + TN

TP + FP + FN + TN
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Classification Evaluation:
Accuracy, Precision, and Recall

Accuracy: % of items correct

Precision: % of selected items that are correct

Recall: % of correct items that are selected

Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

TP

TP + FP

TP

TP + FN

TP + TN

TP + FP + FN + TN

Min: 0  
Max: 1 
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Comparing Accuracy & F1
Accuracy: % of items correct

Precision: % of selected items that are correct

Recall: % of correct items that are selected

TP

TP + FP

TP

TP + FN

TP + TN

TP + FP + FN + TN

Accuracy takes 
everything in 
consideration

F-Score is 
focused on TP

When would you want to use 
accuracy vs F1?

Accuracy works better if 
the dataset is balanced

Actually Target Actually Not Target

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)



P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency 
table, evaluate.

Sec. 15.2.4

microprecision =
σc TPc

σc TPc + σc FPc

macroprecision =
1

𝐶


𝑐

TPc

TPc + FPc
=

1

𝐶


𝑐

precision𝑐

macrorecall =
1

𝐶


𝑐

TPc

TPc + FNc
=

1

𝐶


𝑐

recallc

microrecall =
σc TPc

σc TPc + σc FNc
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Macro/Micro Example
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https://www.evidentlyai.com/classification-metrics/multi-class-metrics



Macro-Average
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https://www.evidentlyai.com/classification-metrics/multi-class-metrics

Each class has equal weight



Micro-Average

3/25/2025 NLP REVIEW 172

https://www.evidentlyai.com/classification-metrics/multi-class-metrics

Each instance has equal weight



But how do we compute stats for 
multiple classes?
We already saw how the “polarity” affects the stats we compute…

Two main approaches. Either:

1. Compute “one-vs-all” 2x2 tables. OR

2. Generalize the 2x2 tables and compute per-class TP / FP / FN based on the 
diagonals and off-diagonals
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1. Compute “one-vs-all” 2x2 tables

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

True 
Positive (TP)

False 
Positive (FP)

Not 
select/not 

guessed

False 
Negative 

(FN)

True 
Negative 

(TN)

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

True 
Positive (TP)

False 
Positive (FP)

Not 
select/not 

guessed

False 
Negative 

(FN)

True 
Negative 

(TN)

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

True 
Positive (TP)

False 
Positive (FP)

Not 
select/not 

guessed

False 
Negative 

(FN)

True 
Negative 

(TN)

Predicted

Actual
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1. Compute “one-vs-all” 2x2 tables

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

2 1

Not 
select/not 

guessed

2 4

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

2 1

Not 
select/not 

guessed

1 5

Look for Actually 
Target

Actually 
Not Target

Selected/G
uessed

1 2

Not 
select/not 

guessed

1 5

Predicted

Actual
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2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed 
Value

# # #

# # #

# # #

3/25/2025 NLP REVIEW 176

This is also called a Confusion Matrix 



2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed 
Value

2 0 1

1 2 0

1 1 1

Predicted

Actual
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This is also called a Confusion Matrix 



2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed 
Value

2 0 1

1 2 0

1 1 1

Predicted

Actual
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A B C

D E F

G H I

How do you compute 𝑇𝑃 ? 



2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed 
Value

2 0 1

1 2 0

1 1 1

Predicted

Actual

How do you compute 𝐹𝑁 ? 
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A B C

D E F

G H I



2. Generalizing the 2-by-2 contingency table

Correct Value

Guessed 
Value

2 0 1

1 2 0

1 1 1

Predicted

Actual
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A B C

D E F

G H I

How do you compute 𝐹𝑃 ? 



Evaluating Generation
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Evaluating Language Models
What is “correct?”

What is working “well?”

Extrinsic: Evaluate LM in downstream task

 Test an MT, ASR, etc. system and see which LM does better

 Issue: Propagate & conflate errors

Intrinsic: Treat LM as its own downstream task

 Use perplexity (from information theory)
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Perplexity: Average “Surprisal”

Lower is better : lower perplexity ➔ less surprised

Less certain ➔
More surprised ➔
Higher perplexity

More certain ➔
Less surprised ➔
Lower perplexity

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)
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Perplexity
Lower is better : lower perplexity ➔ less surprised
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perplexity = exp(avg crossentropy)



Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
log 𝑝(𝑤1, … , 𝑤𝑀) )
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Perplexity
Lower is better : lower perplexity ➔ less surprised

perplexity = exp(
−1

𝑀
 σ𝑖=1

𝑀 log 𝑝 𝑤𝑖 ℎ𝑖))
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e.g., n-gram history
(n-1 items)



Example perplexity for trigram model

Trigrams MLE p(trigram)

<BOS> <BOS> The 1

<BOS> The film 1

The film , 0

film , a 0

, a hit 0

a hit ! 0

hit ! <EOS> 0

Perplexity Infinity

perplexity =

exp(
−1

𝑀
 

𝑖=1

𝑀

log 𝑝 𝑤𝑖  ℎ𝑖))

3/25/2025 NLP REVIEW 187

“The film , a hit !”



Example perplexity for trigram model
Trigrams MLE p(trigram)

Smoothed 
p(trigram)

<BOS> <BOS> The 1 2/17

<BOS> The film 1 2/17

The film , 0 1/17

film , a 0 1/16

, a hit 0 1/16

a hit ! 0 1/17

hit ! <EOS> 0 1/16

Perplexity Infinity 13.59
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“The film , a hit !”

perplexity =

exp(
−1

𝑀
 

𝑖=1

𝑀

log 𝑝 𝑤𝑖  ℎ𝑖))



Objective / Eval 
Function

instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Evaluation 
Function

score

Objective 
Function

score



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



Document Classification
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

…
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Document Classification
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

…

3/25/2025 NLP REVIEW 193

features F1 
extracted from 
document d1

predicted 
class c1 from 
C

actual class c1 



Document Classification
Assigning subject categories, topics, or 
genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

…
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Naïve Bayes
Logistic regression

Neural network
Support-vector machines

k-Nearest Neighbors
…

features F1 
extracted from 
document d1

predicted 
class c1 from 
C

actual class c1 



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



(WSD)

Build a special classifier just for “plant” tokens
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slide courtesy of D. Yarowsky (modified)

p(class | token in context) 
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p(class | token in context) 

slide courtesy of D. Yarowsky (modified)



What features?  Example: “word to 
[the] left [of correction]”
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slide courtesy of D. Yarowsky (modified)
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p(class | token in context) 

slide courtesy of D. Yarowsky (modified)



generates a whole bunch of potential 
cues – use data to find out which 

ones work best
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An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)



merged ranking
of all cues 

of all these types

This feature is 
relatively weak, but 

weak features are still 
useful, especially since 
very few features will 
fire in a given context.
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An assortment of possible cues ...

slide courtesy of D. Yarowsky (modified)



Final decision list for lead   (abbreviated)

List of all features,
 ranked by their weight.

(These weights are for a simple 
“decision list” model where the single 

highest-weighted feature that fires 
gets to make the decision all by itself.

  However, a log-linear model, which 
adds up the weights of all features 
that fire, would be roughly similar.)
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slide courtesy of D. Yarowsky (modified)

What are the input/output?
What are the features?
What types of applications?



Token Classification
Word pronunciation

Word sense disambiguation (WSD) 
within or across languages

Accent restoration
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features F1 extracted from 
word w1 and its surrounding 
words (context)

predicted class ෝcj

Other examples?

actual class cj 

C = {c1, c2,…, cJ}F1 = [f1,1 , f1,2 , … f1,m]



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence (i.e., order matters)

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation

3/25/2025 NLP REVIEW 204

Slide courtesy Jason Eisner, with mild edits



Part of Speech Tagging
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predicted class ෝcj

actual class cj 

C = {c1, c2,…, cJ}F1 = [f1,1 , f1,2 , … f1,m]

John saw the  saw  and  decided  to  take  it     to   the   table    .<BOS>

NNP     VBD     DT      NN     CC          VBD        TO      VB    PRP    IN       DT       NN     PUNCT

<BOS> John saw

John saw the

saw the saw

Sliding 
window



Machine Translation: Word Alignment
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https://towardsdatascience.com/machine-translation-a-short-overview-91343ff39c9f



Token Classification in a Sequence
Part of speech tagging

Word alignment
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features F1 extracted from 
word w1 and its surrounding 
words (context)

predicted class ෝcj

actual class cj 

C = {c1, c2,…, cJ}F1 = [f1,1 , f1,2 , … f1,m]

Sliding 
window



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



Named Entity Recognition
CHICAGO (AP) — Citing high fuel prices, United 
Airlines said Friday it has increased fares by $6 per 
round trip on flights to some cities also served by 
lower-cost carriers. American Airlines, a unit AMR, 
immediately matched the move, spokesman Tim 
Wagner said. United, a unit of UAL, said the increase 
took effect Thursday night and applies to most routes 
where it competes against discount carriers, such as 
Chicago to Dallas and Atlanta and Denver to San 
Francisco, Los Angeles and New York.
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Slide courtesy Jim Martin



Slide from Chris Brew, adapted from slide by William Cohen

Example Use: Information Extraction
Filling slots in a database from sub-segments of text.As a task:

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill 

Gates railed against the economic philosophy 

of open-source software with Orwellian fervor, 

denouncing its communal licensing as a 

"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-

source concept, by which software code is 

made public to encourage improvement and 

development by outside programmers. Gates 

himself says Microsoft will gladly disclose its 

crown jewels--the coveted code behind the 

Windows operating system--to select 

customers.

"We can be open source. We love the concept 

of shared source," said Bill Veghte, a 

Microsoft VP. "That's a super-important shift 

for us in terms of code access.“

Richard Stallman, founder of the Free 

Software Foundation, countered saying…

NAME              TITLE   ORGANIZATION

Bill Gates        CEO      Microsoft

Bill Veghte       VP       Microsoft

Richard Stallman  founder  Free Soft..

IE
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Note:
IE is a task on its 

own but it can be 
an application of 

NER



Chunking
Named entity recognition

Information extraction

Identifying idioms
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features F1 extracted from 
phrase p1 and its surrounding 
context

predicted class ෝcj

actual class cj 

C = {c1, c2,…, cJ}F1 = [f1,1 , f1,2 , … f1,m]



Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (syntax parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



Syntax Parsing
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features F1 extracted from 
phrase/sentence s1

predicted parsed sentence ෝp1

actual parsed sentence p1 

F1 = [f1,1 , f1,2 , … f1,m]

?



Assign Structure (Parse) with a
Context Free Grammar

S → NP VP
NP → Det Noun

NP → Noun
NP → Det AdjP

NP → NP PP

PP → P NP
AdjP → Adj Noun

VP → V NP
Noun → Baltimore

…

Baltimore is a great city
S

NP VP

Noun

Baltimore

Verb NP

is a great city

[S [NP [Noun Baltimore] ] [VP [Verb is] [NP a great city]]]

bracket notation

(S (NP (Noun Baltimore))
     (VP (V is)
            (NP a great city)))

S-expression
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Text Annotation Tasks 
(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2.Classify word tokens individually

3.Classify word tokens in a sequence

4.Identify phrases (“chunking”)

5.Syntactic annotation (syntax parsing)

6.Semantic annotation
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Slide courtesy Jason Eisner, with mild edits



Semantic Parsing
Semantic role labeling (SRL)
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features F1 extracted from 
phrase/sentence s1 and its 
surrounding context

predicted semantic parse ෝp1

actual semantic parse p1 

F1 = [f1,1 , f1,2 , … f1,m]

What is a semantic 
parse?



Semantic Role Labeling (SRL)
For each predicate (e.g., verb)
1. find its arguments (e.g., NPs) 
2. determine their semantic roles

John drove Mary from Austin to Dallas in his Toyota Prius.

◦ agent: Actor of an action
◦ patient: Entity affected by the action
◦ source: Origin of the affected entity
◦ destination: Destination of the affected entity
◦ instrument: Tool used in performing action.
◦ beneficiary: Entity for whom action is performed

Slide thanks to Ray Mooney (modified)
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Semantic Role Labeling (SRL)
For each predicate (e.g., verb)
1. find its arguments (e.g., NPs) 
2. determine their semantic roles

John drove Mary from Austin to Dallas in his Toyota Prius.

The hammer broke the window.

◦ agent: Actor of an action
◦ patient: Entity affected by the action
◦ source: Origin of the affected entity
◦ destination: Destination of the affected entity
◦ instrument: Tool used in performing action.
◦ beneficiary: Entity for whom action is performed

Slide thanks to Ray Mooney (modified)
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agent patient source destination instrument
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