
Neural Language Models
CMSC 473/673 - NATURAL LANGUAGE PROCESSING

3/27/2025 NEURAL LMS 1

Slides modified from Dr. Frank Ferraro, Dr. Cynthia Matuszek, Dr. Cassandra Kent

Learning Objectives
Define the basic architecture of a neural network

Distinguish between count-based, logistic regression, and neural LMs

3/27/2025 NEURAL LMS 2

Review: Add-λ estimation
Other names: Laplace
smoothing, Lidstone

smoothing

Pretend we saw each word λ
more times than we did

Add λ to all the counts

𝑝 z ≅ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆

σ𝑣(𝑐𝑜𝑢𝑛𝑡 v + 𝜆)

3/27/2025 NEURAL LMS 3

The film got a great opening and the film went on to become a hit .
Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0 1

17
(=1+16*1)

1/17

The film film 0 1 1/17

The film got 1 2 2/17

The film went 0 1 1/17

… …

The film OOV 0 1 1/17

The film EOS 0 1 1/17

…

a great great 0 1

17

1/17

a great opening 1 2 2/17

a great and 0 1 1/17

a great the 0 1 1/17

…

Review: An Extended Trigram Example

3/27/2025 NEURAL LMS 4

Text Generation
as Classification Problem?

I could eat so many juicy _________

3/27/2025 NEURAL LMS 5

Types Probability

apples .03

sandwiches .02

pineapples .004

houses .00002

… …

I could eat so many delicious _________
?

Maxent Models as Featureful n-gram
Language Models

generatively trained:
learn to model (class-specific) language

𝑝 𝑥𝑖 𝑦, 𝑥𝑖−𝑁+1:𝑖−1) =
maxent(𝑦, 𝑥𝑖−𝑁+1:𝑖−1, 𝑥𝑖)

p(Colorless green ideas sleep furiously | Label) =
p(Colorless | Label, <BOS>) * … * p(<EOS> | Label , furiously)

Model each n-gram term with
a maxent model

3/27/2025 NEURAL LMS 6

Language Model with Maxent n-grams

𝑝𝑛 🗎 𝑦) = ෑ

𝑖=1

𝑀

maxent(𝑦, 𝑥𝑖−𝑛+1:𝑖−1, 𝑥𝑖)

= ෑ

𝑖=1

𝑀
exp(𝜃𝑥𝑖

𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

σ𝑥′ exp(𝜃𝑥′
𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

n-gram

label

Iterate through all
possible output vocab
types 𝑥′---just like in
count-based LMs

3/27/2025 NEURAL LMS 7

Count-based Language Models
given some context…

wi-3 wi-2 wi-1

compute beliefs about
what is likely…

3/27/2025 NEURAL LMS 8

predict the next word wi

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)

Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

3/27/2025 NEURAL LMS 9

Review: Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

3/27/2025 NEURAL LMS 10

Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

can we learn word-specific weights
(by type)?

3/27/2025 NEURAL LMS 11

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝒘𝒊
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

can we learn the feature function(s) for just
the context?

can we learn word-specific weights
(by type)?

predict the next word

given some context…

compute beliefs about
what is likely…

3/27/2025 NEURAL LMS 12

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about
what is likely…

3/27/2025 NEURAL LMS 13

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about
what is likely…

combine these
representations… C = f

matrix-vector
product

3/27/2025 NEURAL LMS 14

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about
what is likely…

combine these
representations… C = f

matrix-vector
product

θwi

3/27/2025 NEURAL LMS 15

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about
what is likely…

combine these
representations… C = f

matrix-vector
product

θwi

3/27/2025 NEURAL LMS 16

Biologically-Inspired Learning Models:
Neuron Unit

𝑖𝑛𝑗 = 𝑤0𝑗 + 𝑤1𝑗𝑎1 + 𝑤2𝑗𝑎2 + ⋯ + 𝑤𝑖𝑗𝑎𝑖

NEURAL LMS 17

activations
0 ≤ 𝑎𝑖 ≤ 1

weights
−∞ < 𝑤𝑖𝑗 < ∞

3/27/2025

Multi-layer Networks:
General Structure Example

NEURAL LMS 18

Note that the layers don’t have
to be the same size

Fully connected

3/27/2025

Multi-layer Networks:
General Structure

Multi-layer perceptrons (aka neural networks) will have inputs, one or more
hidden layers, and an output layer:

NEURAL LMS 193/27/2025

Multi-layer Networks:
General Structure

Multi-layer perceptrons (aka neural networks) will have inputs, one or more
hidden layers, and an output layer:

Number of inputs, outputs, and number and size of hidden layers can vary

Combination of different weights and different structures represent different
functions

We will treat each layer as fully-connected
◦ Each unit in one layer connects to every unit in the next layer

NEURAL LMS 203/27/2025

Computing Values:
Forward Propagation

Forward propagation calculates the output values for a given set of input values

Algorithm

For each layer:

1. Calculate the weighted sum of inputs to each neuron unit

2. Evaluate the activation function to determine the output of each neuron unit

3. Use outputs as inputs for the next layer

NEURAL LMS 213/27/2025

Forward Propagation Example
Calculate the output of the network below, assuming each neuron uses a
sigmoid activation function, given 0.05 and 0.1 as inputs.

NEURAL LMS 22

For each layer:
1. Calculate the weighted sum of

inputs to each neuron unit
2. Evaluate the activation

function to determine the
output of each neuron unit

3. Use outputs as inputs for the
next layer

3/27/2025

Forward Propagation Example
Calculate inputs to the hidden layer (units h1 and h2):

NEURAL LMS 23

For each layer:
1. Calculate the weighted sum of

inputs to each neuron unit
2. Evaluate the activation

function to determine the
output of each neuron unit

3. Use outputs as inputs for the
next layer

inh1 = w1i1 + w2i2 + b1

 = .15(.05)+.2(.1)–.35

 = .0075+.02–.35

 = –.3225

inh2 = w3i1 + w4i2 + b2

 = .25(.05)+.3(.1)–.35

 = .0125+.03–.35

 = –.3075

3/27/2025

Forward Propagation Example
Calculate outputs to the hidden layer (units h1 and h2):

NEURAL LMS 24

For each layer:
1. Calculate the weighted sum of

inputs to each neuron unit
2. Evaluate the activation

function to determine the
output of each neuron unit

3. Use outputs as inputs for the
next layer

outh1 = g(inh1)

 =
1

1+𝑒−𝑖𝑛
ℎ1

 =
1

1+𝑒−(−.3275)

 = .4188

How do we do this?
Use our activation function!

𝑔 𝑥 =
1

1 + 𝑒−𝑥

What will be our x?

inh1 =–.3225
inh2 = –.3075

outh2 = g(inh2)

 =
1

1+𝑒−𝑖𝑛
ℎ2

 =
1

1+𝑒−(−.3075)

 = .4237

3/27/2025

How are Neural Networks used?
Are neural networks supervised or unsupervised learning?
◦ Inputs to the network are features of our data set

◦ Outputs to the network are our labels

Can they be used for classification or regression?
◦ Either!

NEURAL LMS 253/27/2025

Network Types: Flat Input, Flat Output

x

h

y

1. Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model

3/27/2025 NEURAL LMS 26

Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about
what is likely…

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

3/27/2025 NEURAL LMS 27

x

y

no learned
representation h

Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖 𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use
“distributed
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about
what is likely…

combine these
representations… C = f

matrix-vector
product

θwi

3/27/2025 NEURAL LMS 28

x

y

h

Common Types of
Flat Input, Flat Output
Feed forward networks

Multilayer perceptrons (MLPs)

General Formulation:

Input: x
Compute:

h0 = x
for layer l = 1 to L:
 hl = fl(Wl hl-1 + bl)

return argmax
𝑦

softmax 𝜃ℎ𝐿

hidden state
at layer l

(non-linear)
activation

function at l

linear layer

3/27/2025 NEURAL LMS 29

In Pytorch (torch.nn):

Activation functions:
https://pytorch.org/docs/stable/nn.html?highlight
=activation#non-linear-activations-weighted-sum-
nonlinearity

Linear layer:
https://pytorch.org/docs/stable/nn.html#linear-
layers
torch.nn.Linear(
 in_features=<dim of hl-1 >,
 out_features=<dim of hl >,
 bias=<Boolean: include bias bl >)

https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#linear-layers
https://pytorch.org/docs/stable/nn.html#linear-layers

A Neural N-Gram Model
The fluffy gray cat meowed very loudly

loudly

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-2 wi-1 wi+1wi

grayThe EOS

3/27/2025 NEURAL LMS 30

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 31

fluffy gray

The fluffy gray cat meowed very loudly

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 32

fluffy gray

The fluffy gray cat meowed very loudly

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 33

fluffy gray

The fluffy gray cat meowed very loudly

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 34

fluffy gray

The fluffy gray cat meowed very loudly

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 35

fluffy gray

The fluffy gray cat meowed very loudly

A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe

3/27/2025 NEURAL LMS 36

fluffy gray

The fluffy gray cat meowed very loudly

instances features:
K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold”
(correct)

labels

output

3/27/2025 NEURAL LMS 37

θ

Objective
Function

score

ML/NLP Framework for Learning
Objective
Function

give feedback
to the model

Review:
Maximize Log-Likelihood (Classification)

Differentiating this
becomes nicer (even

though Z depends on θ)

Inverse of exp
 log(exp(x)) = x

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = ෍

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)

3/27/2025 NEURAL LMS 38

= ෍

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

exp(𝜃𝑦
𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

Original maxent equation

= 𝐹 𝜃

Review:
Minimize Cross Entropy Loss

𝐿xent ො𝑦, 𝑦 = − ෍

𝑙𝑎𝑏𝑒𝑙 𝑘

ො𝑦 𝑘 log 𝑝(𝑦 = 𝑘|𝑥)

0
0
…
1
…
0

one-hot
vector

index of “1”
indicates

correct value

objective is convex
(when f(x) is not learned)

3/27/2025 NEURAL LMS 39

Classifier
output

True probability (i.e.,
correct output)

SLP3, ch. 5, pg. 12

Cross entropy:
How much ො𝑦 differs from

the true 𝑦

instances features:
K-dimensional vector
representations (one

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold”
(correct)

labels

output

3/27/2025 NEURAL LMS 40

θ

score

Evaluation
Function

Evaluation
Function

ML/NLP Framework for Prediction

Perplexity: Average “Surprisal”

Lower is better : lower perplexity ➔ less surprised

Less certain ➔
More surprised ➔
Higher perplexity

More certain ➔
Less surprised ➔
Lower perplexity

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

3/27/2025 NEURAL LMS 41

“A Neural Probabilistic Language Model,”
Bengio et al. (2003)

BASELINES

LM Name
N-

gram
Params.

Test
PPL

Interpolation 3 --- 336

Kneser-Ney
backoff

3 --- 323

Kneser-Ney
backoff

5 --- 321

Class-based
backoff

3
500

classes
312

Class-based
backoff

5
500

classes
312

3/27/2025 NEURAL LMS 42

“A Neural Probabilistic Language Model,”
Bengio et al. (2003)

BASELINES

LM Name
N-

gram
Params.

Test
PPL

Interpolation 3 --- 336

Kneser-Ney
backoff

3 --- 323

Kneser-Ney
backoff

5 --- 321

Class-based
backoff

3
500

classes
312

Class-based
backoff

5
500

classes
312

NPLM

N-gram
Word
Vector
Dim.

Hidden
Dim.

Mix with
non-

neural
LM

PPL

5 60 50 No 268

5 60 50 Yes 257

5 30 100 No 276

5 30 100 Yes 252

3/27/2025 NEURAL LMS 43

“we were not able to see signs of over- fitting (on the validation set), possibly
because we ran only 5 epochs (over 3 weeks using 40 CPUs)” (Sect. 4.2)

A Closer Look at Neural 𝑝)

This is a class-based language model, but incorporate the label into
the embedding representation

To learn 𝑝):

Define an embedding method that makes use of the specific label
Class

Unlike count-based models, you don’t need “separate” models here

Primary

Won’t you
please

donate?

Class

Won’t you
please

donate?

3/27/2025 NEURAL LMS 44

N-GRAM/COUNT-BASED

Class-specific

MAXENT/LR

Class-based

Uses features

3/27/2025 NEURAL LMS 45

LM Comparison for 𝑝) Primary

Won’t you
please

donate?

NEURAL

Class-based

Uses embedded features

	Slide 1: Neural Language Models
	Slide 2: Learning Objectives
	Slide 3: Review: Add-λ estimation
	Slide 4
	Slide 5: Text Generation as Classification Problem?
	Slide 6: Maxent Models as Featureful n-gram Language Models
	Slide 7: Language Model with Maxent n-grams
	Slide 8: Count-based Language Models
	Slide 9: Maxent Language Models
	Slide 10: Review: Maxent Language Models
	Slide 11: Maxent Language Models
	Slide 12: Neural Language Models
	Slide 13: Neural Language Models
	Slide 14: Neural Language Models
	Slide 15: Neural Language Models
	Slide 16: Neural Language Models
	Slide 17: Biologically-Inspired Learning Models: Neuron Unit
	Slide 18: Multi-layer Networks: General Structure Example
	Slide 19: Multi-layer Networks: General Structure
	Slide 20: Multi-layer Networks: General Structure
	Slide 21: Computing Values: Forward Propagation
	Slide 22: Forward Propagation Example
	Slide 23: Forward Propagation Example
	Slide 24: Forward Propagation Example
	Slide 25: How are Neural Networks used?
	Slide 26: Network Types: Flat Input, Flat Output
	Slide 27: Maxent Language Models
	Slide 28: Neural Language Models
	Slide 29: Common Types of Flat Input, Flat Output
	Slide 30: A Neural N-Gram Model
	Slide 31: A Neural N-Gram Model (N=3)
	Slide 32: A Neural N-Gram Model (N=3)
	Slide 33: A Neural N-Gram Model (N=3)
	Slide 34: A Neural N-Gram Model (N=3)
	Slide 35: A Neural N-Gram Model (N=3)
	Slide 36: A Neural N-Gram Model (N=3)
	Slide 37
	Slide 38: Review: Maximize Log-Likelihood (Classification)
	Slide 39: Review: Minimize Cross Entropy Loss
	Slide 40
	Slide 41: Perplexity: Average “Surprisal”
	Slide 42: “A Neural Probabilistic Language Model,” Bengio et al. (2003)
	Slide 43: “A Neural Probabilistic Language Model,” Bengio et al. (2003)
	Slide 44: A Closer Look at Neural p open paren , , , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , , , , , close paren
	Slide 45: LM Comparison for p open paren , , , , , , , , , , , , ┤ , end absolute value , , , , , , , , , , , , , , , close paren

