
Neural Language Models
CMSC 473/673 - NATURAL LANGUAGE PROCESSING
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Slides modified from Dr. Frank Ferraro, Dr. Cynthia Matuszek, Dr. Cassandra Kent



Learning Objectives
Define the basic architecture of a neural network

Distinguish between count-based, logistic regression, and neural LMs
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Review: Add-λ estimation
Other names: Laplace 
smoothing, Lidstone 

smoothing

Pretend we saw each word λ 
more times than we did

Add λ to all the counts

𝑝 z  ≅ 𝑐𝑜𝑢𝑛𝑡 z + 𝜆

=
𝑐𝑜𝑢𝑛𝑡 z + 𝜆

σ𝑣(𝑐𝑜𝑢𝑛𝑡 v + 𝜆)
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The film got a great opening and the film went on to become a hit .
Context: x y Word (Type): z Raw Count Add-1 count Norm. Probability p(z | x y)

The film The 0 1

17 
(=1+16*1)

1/17

The film film 0 1 1/17

The film got 1 2 2/17

The film went 0 1 1/17

… …

The film OOV 0 1 1/17

The film EOS 0 1 1/17

…

a great great 0 1

17

1/17

a great opening 1 2 2/17

a great and 0 1 1/17

a great the 0 1 1/17

…

Review: An Extended Trigram Example
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Text Generation 
as Classification Problem?

I could eat so many juicy _________
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Types Probability

apples .03

sandwiches .02

pineapples .004

houses .00002

… …

I could eat so many delicious _________
?



Maxent Models as Featureful n-gram 
Language Models

generatively trained:
learn to model (class-specific) language

𝑝 𝑥𝑖 𝑦, 𝑥𝑖−𝑁+1:𝑖−1) =
maxent(𝑦, 𝑥𝑖−𝑁+1:𝑖−1, 𝑥𝑖)

p(Colorless green ideas sleep furiously | Label) =
p(Colorless | Label, <BOS>) * … * p(<EOS> | Label , furiously)

Model each n-gram term with 
a maxent model
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Language Model with Maxent n-grams

𝑝𝑛 🗎 𝑦) = ෑ

𝑖=1

𝑀

maxent(𝑦, 𝑥𝑖−𝑛+1:𝑖−1, 𝑥𝑖)

= ෑ

𝑖=1

𝑀
exp(𝜃𝑥𝑖

𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

σ𝑥′ exp(𝜃𝑥′
𝑇 𝑓(𝑦, 𝑥𝑖−𝑛+1:𝑖−1))

n-gram

label

Iterate through all 
possible output vocab 
types 𝑥′---just like in 
count-based LMs
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Count-based Language Models
given some context…

wi-3 wi-2 wi-1

compute beliefs about 
what is likely…
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predict the next word wi

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) ∝ 𝑐𝑜𝑢𝑛𝑡(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1, 𝑤𝑖)



Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))
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Review: Maxent Language Models

predict the next word

given some context…
wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))
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Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

can we learn word-specific weights 
(by type)?
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Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝒘𝒊
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

can we learn the feature function(s) for just 
the context?

can we learn word-specific weights 
(by type)?

predict the next word

given some context…

compute beliefs about 
what is likely…
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Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about 
what is likely…
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Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about 
what is likely…

combine these 
representations… C = f

matrix-vector 
product
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Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about 
what is likely…

combine these 
representations… C = f

matrix-vector 
product

θwi
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Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about 
what is likely…

combine these 
representations… C = f

matrix-vector 
product

θwi
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Biologically-Inspired Learning Models: 
Neuron Unit

𝑖𝑛𝑗 = 𝑤0𝑗 + 𝑤1𝑗𝑎1 + 𝑤2𝑗𝑎2 + ⋯ + 𝑤𝑖𝑗𝑎𝑖

NEURAL LMS 17

activations
0 ≤ 𝑎𝑖 ≤ 1

weights
−∞ < 𝑤𝑖𝑗 < ∞
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Multi-layer Networks: 
General Structure Example

NEURAL LMS 18

Note that the layers don’t have 
to be the same size

Fully connected
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Multi-layer Networks: 
General Structure

Multi-layer perceptrons (aka neural networks) will have inputs, one or more 
hidden layers, and an output layer:
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Multi-layer Networks: 
General Structure

Multi-layer perceptrons (aka neural networks) will have inputs, one or more 
hidden layers, and an output layer:

Number of inputs, outputs, and number and size of hidden layers can vary

Combination of different weights and different structures represent different 
functions

We will treat each layer as fully-connected
◦ Each unit in one layer connects to every unit in the next layer
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Computing Values:
Forward Propagation

Forward propagation calculates the output values for a given set of input values

Algorithm

For each layer:

1. Calculate the weighted sum of inputs to each neuron unit

2. Evaluate the activation function to determine the output of each neuron unit

3. Use outputs as inputs for the next layer
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Forward Propagation Example
Calculate the output of the network below, assuming each neuron uses a 
sigmoid activation function, given 0.05 and 0.1 as inputs.

NEURAL LMS 22

For each layer:
1. Calculate the weighted sum of 

inputs to each neuron unit
2. Evaluate the activation 

function to determine the 
output of each neuron unit

3. Use outputs as inputs for the 
next layer
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Forward Propagation Example
Calculate inputs to the hidden layer (units h1 and h2):
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For each layer:
1. Calculate the weighted sum of 

inputs to each neuron unit
2. Evaluate the activation 

function to determine the 
output of each neuron unit

3. Use outputs as inputs for the 
next layer

inh1 = w1i1 + w2i2 + b1

           = .15(.05)+.2(.1)–.35

           = .0075+.02–.35

           = –.3225

inh2 = w3i1 + w4i2 + b2

           = .25(.05)+.3(.1)–.35

           = .0125+.03–.35

           = –.3075
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Forward Propagation Example
Calculate outputs to the hidden layer (units h1 and h2):
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For each layer:
1. Calculate the weighted sum of 

inputs to each neuron unit
2. Evaluate the activation 

function to determine the 
output of each neuron unit

3. Use outputs as inputs for the 
next layer

outh1 = g(inh1)

         = 
1

1+𝑒−𝑖𝑛
ℎ1

 =  
1

1+𝑒−(−.3275)

         = .4188

How do we do this? 
Use our activation function!

𝑔 𝑥 =
1

1 + 𝑒−𝑥

What will be our x?

inh1 =–.3225
inh2 = –.3075

outh2 = g(inh2)

         = 
1

1+𝑒−𝑖𝑛
ℎ2

 =  
1

1+𝑒−(−.3075)

         = .4237
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How are Neural Networks used?
Are neural networks supervised or unsupervised learning?
◦ Inputs to the network are features of our data set

◦ Outputs to the network are our labels

Can they be used for classification or regression?
◦ Either!

NEURAL LMS 253/27/2025



Network Types: Flat Input, Flat Output

x

h

y

1. Feed forward

Linearizable feature input
Bag-of-items classification/regression
Basic non-linear model
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Maxent Language Models

predict the next word

given some context… wi-3 wi-2

wi

wi-1

compute beliefs about 
what is likely…

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝑓(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

3/27/2025 NEURAL LMS 27

x

y

no learned 
representation h



Neural Language Models
wi-3 wi-2

wi

wi-1

𝑝 𝑤𝑖  𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1) = softmax(𝜃𝑤𝑖
⋅ 𝒇(𝑤𝑖−3, 𝑤𝑖−2, 𝑤𝑖−1))

create/use 
“distributed 
representations”… ei-3 ei-2 ei-1ew

predict the next word

given some context…

compute beliefs about 
what is likely…

combine these 
representations… C = f

matrix-vector 
product

θwi
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x
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h



Common Types of
Flat Input, Flat Output 
Feed forward networks

Multilayer perceptrons (MLPs)

General Formulation:

Input: x
Compute:

h0 = x
for layer l = 1 to L:
  hl = fl(Wl hl-1 + bl)

return argmax
𝑦

softmax 𝜃ℎ𝐿

hidden state 
at layer l

(non-linear) 
activation 

function at l

linear layer
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In Pytorch (torch.nn):

Activation functions: 
https://pytorch.org/docs/stable/nn.html?highlight
=activation#non-linear-activations-weighted-sum-
nonlinearity 

Linear layer:
https://pytorch.org/docs/stable/nn.html#linear-
layers 
torch.nn.Linear(
 in_features=<dim of hl-1 >,
 out_features=<dim of hl >,
 bias=<Boolean: include bias bl >)

https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html?highlight=activation#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#linear-layers
https://pytorch.org/docs/stable/nn.html#linear-layers


A Neural N-Gram Model
The fluffy gray cat meowed very loudly

loudly

wi-2 wi-1 wi+1wi

verymeowedfluffy cat

wi-2 wi-1 wi+1wi

grayThe EOS
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A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



A Neural N-Gram Model (N=3)

loudly EOS

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

verymeowedcat

wi-3 wi-2 wiwi-1

hi-3 hi-2 hi-1 hi

wi-2 wi-1 wi+1wi

The

loudlyBOS verymeowedfluffy catgrayThe
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fluffy gray

The fluffy gray cat meowed very loudly



instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

Objective 
Function

score

ML/NLP Framework for Learning
Objective 
Function

give feedback 
to the model



Review: 
Maximize Log-Likelihood (Classification)

Differentiating this 
becomes nicer (even 

though Z depends on θ)

Inverse of exp
 log(exp(x)) = x

log ෑ

𝑖

𝑝𝜃 𝑦𝑖 𝑥𝑖 = ෍

𝑖

log 𝑝𝜃(𝑦𝑖|𝑥𝑖)
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= ෍

𝑖

𝜃𝑦𝑖
𝑇 𝑓 𝑥𝑖 − log 𝑍(𝑥𝑖)

exp(𝜃𝑦
𝑇𝑓(𝑥))

σ𝑦′ exp(𝜃𝑦′
𝑇 𝑓(𝑥))

Original maxent equation

= 𝐹 𝜃



Review:
Minimize Cross Entropy Loss

𝐿xent ො𝑦, 𝑦 = − ෍

𝑙𝑎𝑏𝑒𝑙 𝑘

ො𝑦 𝑘 log 𝑝(𝑦 = 𝑘|𝑥)

0
0
…
1
…
0

one-hot 
vector

index of “1” 
indicates 

correct value

objective is convex
(when f(x) is not learned)
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Classifier 
output

True probability (i.e., 
correct output)

SLP3, ch. 5, pg. 12

Cross entropy:
How much ො𝑦 differs from 

the true 𝑦



instances features: 
K-dimensional vector 
representations (one 

per instance)

ML model:
• take in featurized input
• output scores/labels
• contains weights θ

“Gold” 
(correct) 

labels

output
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θ

score

Evaluation 
Function

Evaluation 
Function

ML/NLP Framework for Prediction



Perplexity: Average “Surprisal”

Lower is better : lower perplexity ➔ less surprised

Less certain ➔
More surprised ➔
Higher perplexity

More certain ➔
Less surprised ➔
Lower perplexity

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)

word type

p
(w

o
rd

 t
yp

e
 |

 c
o

n
te

xt
)
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“A Neural Probabilistic Language Model,” 
Bengio et al. (2003)

BASELINES

LM Name
N-

gram
Params.

Test 
PPL

Interpolation 3 --- 336

Kneser-Ney 
backoff

3 --- 323

Kneser-Ney 
backoff

5 --- 321

Class-based 
backoff

3
500 

classes
312

Class-based 
backoff

5
500 

classes
312
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“A Neural Probabilistic Language Model,” 
Bengio et al. (2003)

BASELINES

LM Name
N-

gram
Params.

Test 
PPL

Interpolation 3 --- 336

Kneser-Ney 
backoff

3 --- 323

Kneser-Ney 
backoff

5 --- 321

Class-based 
backoff

3
500 

classes
312

Class-based 
backoff

5
500 

classes
312

NPLM

N-gram
Word 
Vector 
Dim.

Hidden 
Dim.

Mix with 
non-

neural 
LM

PPL

5 60 50 No 268

5 60 50 Yes 257

5 30 100 No 276

5 30 100 Yes 252

3/27/2025 NEURAL LMS 43

“we were not able to see signs of over- fitting (on the validation set), possibly 
because we ran only 5 epochs (over 3 weeks using 40 CPUs)” (Sect. 4.2)



A Closer Look at Neural 𝑝  ) 

This is a class-based language model, but incorporate the label into 
the embedding representation

To learn 𝑝  ):

Define an embedding method that makes use of the specific label 
Class

Unlike count-based models, you don’t need “separate” models here

Primary

Won’t you 
please 

donate?

Class

Won’t you 
please 

donate?
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N-GRAM/COUNT-BASED

Class-specific

MAXENT/LR

Class-based

Uses features

3/27/2025 NEURAL LMS 45

LM Comparison for 𝑝  ) Primary

Won’t you 
please 

donate?

NEURAL

Class-based

Uses embedded features
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