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Learning Objectives
Review RNN architecture with an end-to-end diagram

Compare sequence-to-sequence RNNs to simple NNs & non-neural LMs

Compare sequence-to-sequence RNNs to transformers

Compare and contrast all LM types so far

4/3/2025 ATTENTION & TRANSFORMERS 2



decoding

encoding

wiwi-1

hi-1 hi

wi+1wi

Review: 
A Simple Recurrent Neural Network Cell
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ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =
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1 + exp(−𝑥)
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Review: 
A Simple Recurrent Neural Network Cell
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ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)
ෝ𝑤𝑖+1 = softmax(𝑆ℎ𝑖)
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Feedforward 
Network
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Tri-gram 
Feedforward 
Neural 
Network
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Recurrent 
Neural 
Network
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Review: A Multi-Layer Simple Recurrent Neural Network Cell
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Another way of illustrating it
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https://towardsdatascience.com/introducing-recurrent-neural-networks-f359653d7020



Review:
Defining A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
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https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Review:
Training A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

get predictions

eval predictions
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perform SGD

compute gradient

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html


Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent 
neural networks.
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Review: Sequence-to-Sequence
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https://colab.research.google.com/github/bentrevett/pytorch-seq2seq/blob/main/1%20-
%20Sequence%20to%20Sequence%20Learning%20with%20Neural%20Networks.ipynb#scrollTo=k6sRrL4wKsmi

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Encoder

Decoder

Can be LSTM, 
GRU, etc.

Encoder
State

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of 
the encoder.
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Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.
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ෝ𝒚𝒕
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Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as 
close as possible to the embedding of the true next token.
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ෝ𝒚𝒕



Turning ෞ𝒚𝒕 into a Probability Distribution 
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding 
matric to get a score for each vocabulary word. These scores are referred to as 
logits.

The softmax function then lets us turn the logits into probabilities.
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Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.

ATTENTION & TRANSFORMERS 204/3/2025

Also sometimes called decoding

More on this 
in the next 

lecture!



RNNs - Single Layer Decoder
The current hidden state is computed as a function 
of the previous hidden state and the embedding of 
the current word in the target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ )

The current hidden state is used to predict an 
embedding for the next word in the target 
sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss 
function:
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Usually the 
zero-vector
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ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)

Same as we saw before



What is the “RNN” unit?
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?
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LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

 

GRU: Gated Recurrent Unit (Cho et al., 2014)

Review: LSTMs/GRUs
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https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep 
around information for longer in the hidden 
state as it gets repeatedly updated.



RNN Multi-Layer Decoder 
Architecture

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1 )

For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡

𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙 )

Predicting an embedding for the next token in the sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + σ𝑙=1
𝐿 𝐖ℎ 𝑒

𝐡𝑡
𝑙

Each of the b and W are learned bias and weight matrices.
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𝑙 − 1 𝑙𝑙 𝑙𝑙

1 1 1

𝑙
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No history

Linear 
layer



RNN Encoder-Decoder 
Architectures

How do we implement an encoder-decoder model?
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RNN Encoder-Decoder 
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the 
first hidden state of the decoder.
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RNN Encoder-Decoder 
Architectures
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When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence?
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[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]



Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]
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RNN Encoder-Decoder 
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score: 

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) = 

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh( 𝐖𝑎𝟐[𝐡𝑡

dec,  𝐡𝒊
enc ])
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dot product

bilinear function

MLP
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Attention
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Think-Pair-Share
What are some of the strengths of seq2seq models (compared to some of the 
earlier LMs we talked about)?

What are some of its weaknesses?
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Limitations of Recurrent 
architecture
Slow to train.
◦ Can’t be easily parallelized.

◦ The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
◦ If two tokens are K positions apart, there are K opportunities for knowledge of the first token 

to be erased from the hidden state before a prediction is made at the position of the second 
token.
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Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture
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Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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Transformers
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Encoder
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Transformers
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Decoder
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Transformers
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Attention Mechanism
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Multi-Head
Attention
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Multi-Head Attention
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Self-attention between a sequence of 
hidden states and that same sequence 
of hidden states.

Multi-Head
Attention
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Multi-Head Attention

ATTENTION & TRANSFORMERS 45

Encoder-decoder attention, like what has been 
standard in recurrent seq2seq models.Multi-Head

Attention
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Attention Mechanism
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Multi-Head
Attention

Scaled Dot-Product Attention
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Scaled Dot-Product
 Attention

The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Scaled Dot-Product 
Attention

This is the α vector we 
learned about before.
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Query, Key, Value
These attributes make more sense as a metaphor for a search engine
◦ (The original transformer paper was written by Google Brain/Google Research 

people) 

Query: The search query

Keys: The webpages retrieved

Values: The answer to the query
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Scaled Dot-Product 
Attention



The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
 Attention
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Scaled Dot-Product 
Attention
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The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
 Attention
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Scaled Dot-Product 
Attention

This is the dot-product 
scoring function from 
previous slides
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Scaled Dot-Product
 Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take 
the linear sum of the vectors in V (value 
matrix)

• The amount to weigh each vector in V is 
dependent on how “similar” that vector is 
to the query vector

• “Similarity” is measured in terms of the 
dot product between the vectors

ATTENTION & TRANSFORMERS 51

Scaled Dot-Product 
Attention
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Scaled Dot-Product
 Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the 
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final 
output. Queries come from the previous 
decoder layer’s outputs.
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Scaled Dot-Product 
Attention
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Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Multi-Head
Attention

MultiHeadAtt(Q,K,V) = 
      Concat head1, … headℎ WO

4/3/2025

Instead of operating on Q, K, and V mechanism 
projects each input into a smaller dimension. This is 
done h times.
 
The attention operation is performed on each of 
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly 
attend to information from different representation 
subspaces at different positions.



Multi-Head Attention
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Two different self-attention heads:Multi-Head
Attention
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Inputs to the Encoder
The input into the encoder looks like:
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= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:
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The Encoder
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Multi-Head

Attention
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention
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The Encoder
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Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm
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The Decoder
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= token embeddings + position embeddings

+
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The Decoder
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Masked Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm
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The Decoder

ATTENTION & TRANSFORMERS 65

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(                    +                       )
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)
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Strengths of the Transformer 
Architecture
Training is easily parallelizable
◦ Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
◦ Any position can attend to any position.
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What are some of its weaknesses?



Knowledge Check
Draw a “map” or table comparing & contrasting the following LMs that we 
talked about:

Count-based LMs

Maxent/Logistic Regression LMs

Simple (Forward) NNs

Simple RNNs

Seq2Seq RNNs

Transformers
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Submit on 
Blackboard after 

class
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