
Attention & Transformers
CMSC 473/673 - NATURAL LANGUAGE PROCESSING

4/3/2025 ATTENTION & TRANSFORMERS 1

Slides modified from Dr. Daphne Ippolito

Learning Objectives
Review RNN architecture with an end-to-end diagram

Compare sequence-to-sequence RNNs to simple NNs & non-neural LMs

Compare sequence-to-sequence RNNs to transformers

Compare and contrast all LM types so far

4/3/2025 ATTENTION & TRANSFORMERS 2

decoding

encoding

wiwi-1

hi-1 hi

wi+1wi

Review:
A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)

4/3/2025 ATTENTION & TRANSFORMERS 3

decoding

encoding

wiwi-1

hi-1 hi

wi+1wi

Review:
A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)
𝜎 𝑥 =

1

1 + exp(−𝑥)
ෝ𝑤𝑖+1 = softmax(𝑆ℎ𝑖)

4/3/2025 ATTENTION & TRANSFORMERS 4

decoding

encoding

wiwi-1

h(1)
i-1 h (1)

i

wi+1
wi

4/3/2025 ATTENTION & TRANSFORMERS 5

Feedforward
Network

decoding

encoding

wiwi-1

h(1)
i-1 h (1)

i

wi+1
wi

4/3/2025 ATTENTION & TRANSFORMERS 6

Tri-gram
Feedforward
Neural
Network

decoding

encoding

wiwi-1

h(1)
i-1 h (1)

i

wi+1
wi

4/3/2025 ATTENTION & TRANSFORMERS 7

Recurrent
Neural
Network

decoding

encoding

wiwi-1

h(1)
i-1 h (1)

i

wi+1wi

Review: A Multi-Layer Simple Recurrent Neural Network Cell

W W

U U

S S

h(2)
i-1 h (2)

i

W W

… …

h(L)
i-1 h (L)

i

W W

4/3/2025 ATTENTION & TRANSFORMERS 8

Another way of illustrating it

4/3/2025 ATTENTION & TRANSFORMERS 9

https://towardsdatascience.com/introducing-recurrent-neural-networks-f359653d7020

Review:
Defining A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

wi-2

wi-1

wi-1

wi

wi

wi+1

hi-2 hi-1 hi

4/3/2025 10ATTENTION & TRANSFORMERS

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Review:
Training A Simple RNN in Python

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

get predictions

eval predictions

4/3/2025 ATTENTION & TRANSFORMERS 11

perform SGD

compute gradient

http://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

ATTENTION & TRANSFORMERS 124/3/2025

Review: Sequence-to-Sequence

4/3/2025 ATTENTION & TRANSFORMERS 13

https://colab.research.google.com/github/bentrevett/pytorch-seq2seq/blob/main/1%20-
%20Sequence%20to%20Sequence%20Learning%20with%20Neural%20Networks.ipynb#scrollTo=k6sRrL4wKsmi

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS),
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Encoder

Decoder

Can be LSTM,
GRU, etc.

Encoder
State

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the
sequence.

ATTENTION & TRANSFORMERS 154/3/2025

Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of
the encoder.

ATTENTION & TRANSFORMERS 164/3/2025

Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

ATTENTION & TRANSFORMERS 17

ෝ𝒚𝒕

4/3/2025

Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as
close as possible to the embedding of the true next token.

ATTENTION & TRANSFORMERS 184/3/2025

ෝ𝒚𝒕

Turning ෞ𝒚𝒕 into a Probability Distribution
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding
matric to get a score for each vocabulary word. These scores are referred to as
logits.

The softmax function then lets us turn the logits into probabilities.

ATTENTION & TRANSFORMERS 19

Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

4/3/2025

Generating Text
To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

ATTENTION & TRANSFORMERS 204/3/2025

Also sometimes called decoding

More on this
in the next

lecture!

RNNs - Single Layer Decoder
The current hidden state is computed as a function
of the previous hidden state and the embedding of
the current word in the target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ)

The current hidden state is used to predict an
embedding for the next word in the target
sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss
function:

ATTENTION & TRANSFORMERS 26

Usually the
zero-vector

4/3/2025

ℎ𝑖 = 𝜎(𝑊ℎ𝑖−1 + 𝑈𝑤𝑖)

Same as we saw before

What is the “RNN” unit?

ATTENTION & TRANSFORMERS 27

?

4/3/2025

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

GRU: Gated Recurrent Unit (Cho et al., 2014)

Review: LSTMs/GRUs

4/3/2025 ATTENTION & TRANSFORMERS 28

https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep
around information for longer in the hidden
state as it gets repeatedly updated.

RNN Multi-Layer Decoder
Architecture

Computing the next hidden state:

For the first layer:

𝐡𝑡
1 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1)

For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡

𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1
𝑙 + 𝐛ℎ

𝑙)

Predicting an embedding for the next token in the sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + σ𝑙=1
𝐿 𝐖ℎ 𝑒

𝐡𝑡
𝑙

Each of the b and W are learned bias and weight matrices.

ATTENTION & TRANSFORMERS 29

𝑙 − 1 𝑙𝑙 𝑙𝑙

1 1 1

𝑙

4/3/2025

No history

Linear
layer

RNN Encoder-Decoder
Architectures

How do we implement an encoder-decoder model?

ATTENTION & TRANSFORMERS 304/3/2025

RNN Encoder-Decoder
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the
first hidden state of the decoder.

ATTENTION & TRANSFORMERS 314/3/2025

RNN Encoder-Decoder
Architectures

ATTENTION & TRANSFORMERS 32

When predicting the next English
word, how much weight should the
model put on each French word in
the source sequence?

T
ra

n
sl

a
te

 F
r

to
 E

n

4/3/2025

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

ATTENTION & TRANSFORMERS 33

T
ra

n
sl

a
te

 F
r

to
 E

n

4/3/2025

RNN Encoder-Decoder
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score:

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) =

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh(𝐖𝑎𝟐[𝐡𝑡

dec, 𝐡𝒊
enc])

ATTENTION & TRANSFORMERS 34

dot product

bilinear function

MLP

4/3/2025

Attention

4/3/2025 ATTENTION & TRANSFORMERS 35

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Think-Pair-Share
What are some of the strengths of seq2seq models (compared to some of the
earlier LMs we talked about)?

What are some of its weaknesses?

4/3/2025 ATTENTION & TRANSFORMERS 36

Limitations of Recurrent
architecture
Slow to train.
◦ Can’t be easily parallelized.

◦ The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
◦ If two tokens are K positions apart, there are K opportunities for knowledge of the first token

to be erased from the hidden state before a prediction is made at the position of the second
token.

ATTENTION & TRANSFORMERS 374/3/2025

Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture

ATTENTION & TRANSFORMERS 384/3/2025

Transformers
The Transformer is a non-recurrent non-convolutional
(feed-forward) neural network designed for language
understanding

• introduces self-attention in addition to encoder-
decoder attention

ATTENTION & TRANSFORMERS 394/3/2025

Transformers

ATTENTION & TRANSFORMERS 40

Encoder

4/3/2025

Transformers

ATTENTION & TRANSFORMERS 41

Decoder

4/3/2025

Transformers

ATTENTION & TRANSFORMERS 424/3/2025

Attention Mechanism

ATTENTION & TRANSFORMERS 43

Multi-Head
Attention

4/3/2025

Multi-Head Attention

ATTENTION & TRANSFORMERS 44

Self-attention between a sequence of
hidden states and that same sequence
of hidden states.

Multi-Head
Attention

4/3/2025

Multi-Head Attention

ATTENTION & TRANSFORMERS 45

Encoder-decoder attention, like what has been
standard in recurrent seq2seq models.Multi-Head

Attention

4/3/2025

Attention Mechanism

ATTENTION & TRANSFORMERS 46

Multi-Head
Attention

Scaled Dot-Product Attention

4/3/2025

Scaled Dot-Product
 Attention

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

ATTENTION & TRANSFORMERS 47

Scaled Dot-Product
Attention

This is the α vector we
learned about before.

4/3/2025

Query, Key, Value
These attributes make more sense as a metaphor for a search engine
◦ (The original transformer paper was written by Google Brain/Google Research

people)

Query: The search query

Keys: The webpages retrieved

Values: The answer to the query

4/3/2025 ATTENTION & TRANSFORMERS 48

Scaled Dot-Product
Attention

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
 Attention

ATTENTION & TRANSFORMERS 49

Scaled Dot-Product
Attention

4/3/2025

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

Scaled Dot-Product
 Attention

ATTENTION & TRANSFORMERS 50

Scaled Dot-Product
Attention

This is the dot-product
scoring function from
previous slides

4/3/2025

Scaled Dot-Product
 Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take
the linear sum of the vectors in V (value
matrix)

• The amount to weigh each vector in V is
dependent on how “similar” that vector is
to the query vector

• “Similarity” is measured in terms of the
dot product between the vectors

ATTENTION & TRANSFORMERS 51

Scaled Dot-Product
Attention

4/3/2025

Scaled Dot-Product
 Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final
output. Queries come from the previous
decoder layer’s outputs.

ATTENTION & TRANSFORMERS 52

Scaled Dot-Product
Attention

4/3/2025

Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕

ATTENTION & TRANSFORMERS 53

Multi-Head
Attention

MultiHeadAtt(Q,K,V) =
 Concat head1, … headℎ WO

4/3/2025

Instead of operating on Q, K, and V mechanism
projects each input into a smaller dimension. This is
done h times.

The attention operation is performed on each of
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.

Multi-Head Attention

ATTENTION & TRANSFORMERS 54

Two different self-attention heads:Multi-Head
Attention

4/3/2025

Inputs to the Encoder
The input into the encoder looks like:

ATTENTION & TRANSFORMERS 55

= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:

4/3/2025

The Encoder

ATTENTION & TRANSFORMERS 56

Multi-Head

Attention

4/3/2025

The Encoder

ATTENTION & TRANSFORMERS 57

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

4/3/2025

The Encoder

ATTENTION & TRANSFORMERS 58

Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm

4/3/2025

The Encoder

ATTENTION & TRANSFORMERS 59

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 60

= token embeddings + position embeddings

+

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 61

Masked Multi-

Head Attention

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 62

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 63

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 64

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

4/3/2025

The Decoder

ATTENTION & TRANSFORMERS 65

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(+)
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)

4/3/2025

Strengths of the Transformer
Architecture
Training is easily parallelizable
◦ Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
◦ Any position can attend to any position.

ATTENTION & TRANSFORMERS 664/3/2025

What are some of its weaknesses?

Knowledge Check
Draw a “map” or table comparing & contrasting the following LMs that we
talked about:

Count-based LMs

Maxent/Logistic Regression LMs

Simple (Forward) NNs

Simple RNNs

Seq2Seq RNNs

Transformers

4/3/2025 ATTENTION & TRANSFORMERS 69

Submit on
Blackboard after

class

	Slide 1: Attention & Transformers
	Slide 2: Learning Objectives
	Slide 3: Review: A Simple Recurrent Neural Network Cell
	Slide 4: Review: A Simple Recurrent Neural Network Cell
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Review: A Multi-Layer Simple Recurrent Neural Network Cell
	Slide 9: Another way of illustrating it
	Slide 10: Review: Defining A Simple RNN in Python
	Slide 11: Review: Training A Simple RNN in Python
	Slide 12: Sequence-to-Sequence RNNs
	Slide 13: Review: Sequence-to-Sequence
	Slide 15: Inputs to the Encoder
	Slide 16: Outputs from the Encoder
	Slide 17: Inputs to the Decoder
	Slide 18: Outputs from the Decoder
	Slide 19: Turning open paren bold italic y bold italic t close paren hat into a Probability Distribution
	Slide 20: Generating Text
	Slide 26: RNNs - Single Layer Decoder
	Slide 27: What is the “RNN” unit?
	Slide 28: Review: LSTMs/GRUs
	Slide 29: RNN Multi-Layer Decoder Architecture
	Slide 30: RNN Encoder-Decoder Architectures
	Slide 31: RNN Encoder-Decoder Architectures
	Slide 32: RNN Encoder-Decoder Architectures
	Slide 33: Attention
	Slide 34: RNN Encoder-Decoder Architectures
	Slide 35: Attention
	Slide 36: Think-Pair-Share
	Slide 37: Limitations of Recurrent architecture
	Slide 38: Transformers
	Slide 39: Transformers
	Slide 40: Transformers
	Slide 41: Transformers
	Slide 42: Transformers
	Slide 43: Attention Mechanism
	Slide 44: Multi-Head Attention
	Slide 45: Multi-Head Attention
	Slide 46: Attention Mechanism
	Slide 47: Scaled Dot-Product Attention
	Slide 48: Query, Key, Value
	Slide 49: Scaled Dot-Product Attention
	Slide 50: Scaled Dot-Product Attention
	Slide 51: Scaled Dot-Product Attention
	Slide 52: Scaled Dot-Product Attention
	Slide 53: Multi-Head Attention
	Slide 54: Multi-Head Attention
	Slide 55: Inputs to the Encoder
	Slide 56: The Encoder
	Slide 57: The Encoder
	Slide 58: The Encoder
	Slide 59: The Encoder
	Slide 60: The Decoder
	Slide 61: The Decoder
	Slide 62: The Decoder
	Slide 63: The Decoder
	Slide 64: The Decoder
	Slide 65: The Decoder
	Slide 66: Strengths of the Transformer Architecture
	Slide 69: Knowledge Check

