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HW 3
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Learning Objectives
Recognize useful encoder-only, encoder-decoder, and decoder-only models

Distinguish between few-shot and zero-shot prompting

Try common prompting techniques like chain-of-thought
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Review: “Temperature”
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https://www.bighummingbird.com/blogs/llm-hyperparameter



Temperature in Action
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Review: Difference between Common 
Sampling Algorithms

4/10/2025 PRETRAINED MODELS AND PROMPTING 6

Greedy Beam 
Search

Random 
Sampling

Top-K

Top-P / 
Nucleus 

Sampling



Review: Finetuning
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Pre-trained model (GPT) New model (GPT+Stories)Your dataset

Update weights to 
adapt model to your 

data

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…
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What types of things can go wrong with 
finetuning?
Underfitting – finetuning data is too different from what the foundational model 
was train on → model can’t learn it

Overfitting – overwrites what the model learned originally
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Review: What is a foundation model?
A model that captures “foundation” or core information about a modality (e.g., 
text, speech, images)

Pretrained on a large amount of data & able to be finetuned on a particular task

Self-supervised

All non-finetuned large language models (LLMs) are foundation models
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Review: BERT (Devlin et al. 2019)
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http://jalammar.github.io/illustrated-bert/

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language 
understanding. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language 
Technologies (NAACL), Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423
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BERT Family of Models
• Encoder-only

• Input: “Corrupted” version of text sequence

• Goal: Produce an uncorrupted version of text sequence

• How to use:
• Finetune for a classification task

• Extract word/sentence embeddings
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Some important BERT family members 
(in my opinion)

• RoBERTa (better version of the original BERT) – Liu et al. 2019 (Facebook)

• Sentence-BERT (BERT fine-tuned to give good sentence embeddings) – 
Reimers & Gurevych 2019 (Technische Universität Darmstadt)

• DistilBERT (lite BERT) – Sanh et al. 2019 

• ALBERT (lite BERT) – Lan et al. 2020

• HuBERT (BERT for speech embeddings) – Hsu et al. 2021
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Decoder-Only Models
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Decoder
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GPT Family
•Decoder-only
• Input: Text sequence

• Goal: Generate the next word given the previous ones

•How to use:
• Ask GPT* to continue from a prompt.

• Finetune smaller GPTs for more customized generation tasks.
• ChatGPT cannot be finetuned since it is already finetuned

• Use OpenAI’s API to get them to fine-tune GPT* for you.

•Around GPT-2 was when pre-trained models became popular

•Around GPT-3 was when just prompting became reasonable to do
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Other Decoder-Only Models
LLaMA 3/4 (Meta)

Claude 3 (Anthropic)

Gemma (Google)

OLMo 2 (AI2)
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Encoder-Decoder Models
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Enc-Dec Family of Models
• Encoder-decoder
• Input: Text sequence with random word spans deleted

• Goal: Generate the deleted word spans

Or

• Input: Text sequence from “language 1”

• Goal: Text sequence from “language 2”

• How to use:
• Finetune smaller ones for either generation or classification tasks.

• Prompt tuning (train a sequence of embedding which get prefixed to the input)
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Some Enc-Dec family members
• T5 (Google)

• BART (combo of GPT and BERT) – (Facebook)

• DALL-E 2 (for caption prediction)
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https://amatriain.net/blog/transformer-models-an-introduction-and-catalog-2d1e9039f376/



Prompting
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Stories

Pre-trained model (GPT)

Your dataset

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…

Facts
Prompt
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Zero-shot Prompting
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Model
Instructions

Task
Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.



Few-shot Prompting
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Model

Instructions

Task
Example Output

Task
Example Output

Task

Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.

Instructions Task Example Output

“shot”

2-shot

The dog ate the giant fish.
 D      N     V    D    Adj    N

prompt



Prompt Engineering

26

"A child playing on a sunny happy beach, their laughter as 

they build a simple sandcastle, emulate Nikon D6 high shutter 

speed action shot, soft yellow lighting." 

Generated with Midjourney. 
via https://zapier.com/blog/ai-art-prompts/

Need to be really specific
(also match the training data)
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Chain-of-Thought Prompting

Q: The cafeteria had 23 apples. If they used 20 to make lunch 
and bought 6 more, how many apples do they have?

Part of Figure 1 from J. Wei et al., “Chain of Thought Prompting Elicits Reasoning in Large Language Models,”
in International Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA & Online, Jun. 2022. doi: 10.48550/arXiv.2201.11903.
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CoRRPUS comparison to GPT-3
CoRRPUS (Code Representations to Reason & Prompt over for Understanding in Stories)

Original Story

Amy’s laptop is in the library.
Amy is carrying her laptop.

Amy goes to the dorm.
Then, Amy goes to the cafeteria.

Query 
GPT-3

Where is Amy’s laptop? Dorm

CoRRPUS Prompting

Generated 
Python 
Representation

Amy.laptop.location = library
Amy.carry = [laptop]

Amy.go(location=“dorm”)
Amy.go(location=“cafeteria”)

Query 
GPT-3

Where is Amy’s laptop? Cafeteria

28
Dong, Y. R., Martin, L. J., & Callison-Burch, C.
“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.
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CoRRPUS Chain-of-Thought Prompting
Three versions that are initialized the same:

Comment
def story(self):

## Mary moved to the bathroom.
self.Mary.location = “bathroom”
## Mary got the football there.
self.Mary.inventory.append(“football”)
…

Specific Functions

self.Mary_moved_to_the_bathroom()
self.Mary_got_the_football_there()
self.John_went_to_the_kitchen()
self.Mary_went_back_to_the_garden()

def Mary_moved_to_the_bathroom()
self.Mary.location=“bathroom”

def Mary_got_the_football_there():
…

Abstract Functions

def go(self, character, location):
 character.location = location
 for item in character.inventory:
  item.location = location
def pick_up(): …

def story(self):
## Mary moved to the bathroom.
self.go(character=self.Mary, 
location = “bathroom”)
…

29
Dong, Y. R., Martin, L. J., & Callison-Burch, C.
“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.
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Tested On 2 Tasks
bAbI (Weston et al. 2015)
◦ Task 2: Stories tracking objects that characters carry

Re3 (Yang et al. 2022)
◦ Identifying inconsistencies in stories (e.g., descriptions of characters’ appearances, 

relationships)

◦ Stories were generated from a list of facts (the premise). They also generated premises with 
a contradiction.

30
Dong, Y. R., Martin, L. J., & Callison-Burch, C.
“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.
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bAbI (Weston et al. 2015)

Method # Shot Accuracy ↑

Random - 25%

GPT-3 1 56.5%

Chain of Thought (Creswell et al. 2022) 1 46.4%

Selection-Inference (Creswell et al. 2022) 1 29.3%

Dual-System (Nye et al. 2021) 10 100%

CoRRPUS (comment) 1 67.0%

CoRRPUS (specific) 1 78.7%

CoRRPUS (abstract) 1 99.1%

31
Dong, Y. R., Martin, L. J., & Callison-Burch, C.
“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.
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Re3 

The task is to see what stories match what premises based on the 
facts extracted from both.

Joan Westfall premise Joan Westfall in story
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Re3 (Yang et al. 2022)

Method ROC-AUC ↑

Random 0.5

GPT-3 0.52

Entailment (Yang et al. 2022) 0.528

Entailment with Dense Passage Retrieval (Yang et al. 2022) 0.610

Attribute Dictionary → Sentence (Yang et al. 2022) 0.684

CoRRPUS (comment) 0.751

CoRRPUS (specific) 0.794

CoRRPUS (abstract) 0.704

Probably because functions like set_age(self, character, age)complicate more than they help. 

33
Dong, Y. R., Martin, L. J., & Callison-Burch, C.
“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.
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Takeaway: structured representations help!
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Tricks of the Trade
Instruction-tuned models like GPT-3.5 and Mistral-7B-Instruct like to be given a 
“role” first (e.g., “You are a helpful writing assistant.”)

The more defined the task, the better
◦ More details

◦ One thing to do at a time

LLMs are overly confident (like people on the internet)
◦ To “objectively” have the model evaluate something, you should create a new instance and 

ask it

Chain-of-thought prompting helps models come up with better answers

They will “Yes and…” your prompt

4/10/2025 PRETRAINED MODELS AND PROMPTING 34



Your Turn
Think of something you’re an expert in. It can be anything!

Ask your LLM to give you information about that topic. Ask in different ways 
about different things.

What does it do well with?

What does it not do well with?

4/10/2025 PRETRAINED MODELS AND PROMPTING 35

Note that this is very 
similar to HW 3!



Dealing with any language models
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Likelihoods →    Not cause & effect

What is probable might not be possible.



Lara’s Language Model Tradeoff

Coherence Originality

https://thenounproject.com/icon/tug-of-war-1016981/
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For next lecture…
Read the Bender et al. paper on Stochastic Parrots!
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