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Learning Objectives
Examining…
◦ Methods for shrinking pre-existing models

◦ Methods for mimicking pre-existing models with smaller models

◦ Methods for faster/smaller finetuning of pre-existing models

◦ Methods for training new models more efficiently

Finding where to implement these methods

Recognizing when to implement them
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Efficient LLMs
Methods for shrinking pre-existing 
models

Methods for mimicking pre-existing 
models with smaller models

Methods for faster/smaller finetuning of 
pre-existing models

Methods for training new models more 
efficiently
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Model Compression

Knowledge Distillation

PEFT

Efficient Training
e.g., Sparse Mixture of Experts
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https://amatriain.net/blog/transformer-models-an-introduction-and-catalog-2d1e9039f376/
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https://venturebeat.com/ai/nvidias-new-llama-3-1-nemotron-ultra-outperforms-deepseek-
r1-at-half-the-size/

https://huggingface.co/deepseek-ai/DeepSeek-R1#4-evaluation-results

~1.8 Trillion

https://venturebeat.com/ai/nvidias-new-llama-3-1-nemotron-ultra-outperforms-deepseek-r1-at-half-the-size/
https://venturebeat.com/ai/nvidias-new-llama-3-1-nemotron-ultra-outperforms-deepseek-r1-at-half-the-size/
https://huggingface.co/deepseek-ai/DeepSeek-R1#4-evaluation-results


Model Compression
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Pruning
Remove parts of the model
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Implementation Tutorial: https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

https://pytorch.org/tutorials/intermediate/pruning_tutorial.html


Magnitude Pruning
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Slide by Dinesh Raghu

See, Abigail, Minh-Thang Luong, and Christopher D. Manning. 2016. “Compression of Neural Machine Translation Models via Pruning.” In Proceedings of the 20th SIGNLL 
Conference on Computational Natural Language Learning. Berlin, Germany: Association for Computational Linguistics, 291–301. doi:10.18653/v1/K16-1029.

https://doi.org/10.18653/v1/K16-1029


Wanda

4/29/2025 SMALL LLMS 9Sun, Mingjie, Zhuang Liu, Anna Bair, and J. Zico Kolter. 2024. “A Simple and Effective Pruning Approach for Large Language Models.” In International Conference on 
Learning Representations (ICLR), Vienna, Austria. https://iclr.cc/virtual/2024/poster/18687 

https://iclr.cc/virtual/2024/poster/18687


Quantizing Models
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Compresses weights and activations from floating point numbers to integers 
(e.g., 4-bit, 8-bit)

Then use the scaling factor to get the “original” value

Implementation:

https://pytorch.org/docs/stable/quantization.html

https://pypi.org/project/bitsandbytes/

Learn more here:
https://huggingface.co/blog/hf-bitsandbytes-integration

https://pytorch.org/docs/stable/quantization.html
https://pypi.org/project/bitsandbytes/
https://huggingface.co/blog/hf-bitsandbytes-integration


Quantizing Models
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Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. “QLoRA: Efficient Finetuning of Quantized LLMs.” Advances in Neural Information Processing Systems

where c is the quantization constant

https://huggingface.co/blog/merve/quantization

https://substack.com/home/post/p-145531349



Mapping floating point to integer
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https://substack.com/home/post/p-145531349



Quantizing → Dequantizing
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https://substack.com/home/post/p-145531349



Quantizing/Pruning 
(Model Compression)
PROS

Save space

Saving resources (energy, time)

Start with pre-trained model

CONS

Lossy

Knowing what to prune without 
damaging the model
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Knowledge Distillation
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Knowledge Distillation

4/29/2025 SMALL LLMS 16Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 2014. “Distilling the Knowledge in a Neural Network.” In NeurIPS 2014 Deep Learning Workshop, 
doi:10.48550/arXiv.1503.02531.

https://neptune.ai/blog/knowledge-distillation

Implementation Tutorial: https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html

https://doi.org/10.48550/arXiv.1503.02531
https://pytorch.org/tutorials/beginner/knowledge_distillation_tutorial.html


Training the Student Network
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Slide by Dinesh Raghu



DistilBERT
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Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter.” In Workshop on 
Energy Efficient Machine Learning and Cognitive Computing - NeurIPS 2019, Vancouver, Canada. doi:10.48550/arXiv.1910.01108.

https://www.researchgate.net/figure/The-DistilBERT-model-architecture-and-components_fig2_358239462

Removed toke-type embeddings & pooler
Number of layers is halved

https://doi.org/10.48550/arXiv.1910.01108


Knowledge Distillation
PROS

Student model is more manageable 

New model is cheaper to run

Uses less data to train

Can turn problem into supervised 
learning

CONS

Student might not be as good as the 
teacher

You have to create a new model from 
scratch (architecture, training)

Relies a lot on the quality of the 
teacher (if teacher is bad, student will 
be bad)
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PEFT
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Parameter-efficient Fine-tuning (PEFT)

4/29/2025 SMALL LLMS 21Han, Zeyu, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. 2024. “Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey.” 
doi:10.48550/arXiv.2403.14608.

https://doi.org/10.48550/arXiv.2403.14608


LoRA (Low-Rank Adaptation)
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From SLP book Chapter 10

h = xW + xAB
r << min(d, N)

Train a model using a pretrained 
LLM but give the new model fewer 
parameters → a low-rank 
decomposition of the original 
weight matrix



LoRA (Low-Rank Adaptation)

4/29/2025 SMALL LLMS 23Hu, Edward J., Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. “LoRA: Low-Rank Adaptation of Large Language 
Models.” In International Conference on Learning Representations (ICLR), Virtual. https://iclr.cc/virtual/2022/poster/6319

Implementation:
https://github.com/microsoft/LoRA
https://huggingface.co/docs/diffusers/training/lora

https://iclr.cc/virtual/2022/poster/6319
https://github.com/microsoft/LoRA
https://huggingface.co/docs/diffusers/training/lora


Review: 
Attention Mechanism
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Multi-Head
Attention

Scaled Dot-Product Attention

4/29/2025

Original LoRA was just 
applied to the attention 
weights:
WQ, WK, WV, and WO 



Guanaco: QLoRA

4/29/2025 SMALL LLMS 25Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. “QLoRA: Efficient Finetuning of Quantized LLMs.” Advances in Neural Information Processing 
Systems 36: 10088–115. https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html



Guanaco: QLoRA

4/29/2025 SMALL LLMS 26Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. “QLoRA: Efficient Finetuning of Quantized LLMs.” Advances in Neural Information Processing 
Systems 36: 10088–115. https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html

4-bit NormalFloat quantization

Uses double quantization (quantizing the quantization constants)

Dinesh Raghu



Guanaco: QLoRA

4/29/2025 SMALL LLMS 27Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. “QLoRA: Efficient Finetuning of Quantized LLMs.” Advances in Neural Information Processing 
Systems 36: 10088–115. https://proceedings.neurips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html



LoRA
PROS

Train models faster and with less 
computation

Can have domain-specific training (b/c 
it’s like finetuning)

CONS

Decent amount of good data

Picks up quickly on biases, etc.

4/29/2025 SMALL LLMS 28



Efficient Training
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Review: 
Transformer Architecture
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm

4/29/2025

Slide adapted from Daphne Ippolito

A decoder-only architecture is 
very similar to the encoder of 

the original transformer 
architecture



Sparse Mixture-of-Experts

4/29/2025 SMALL LLMS 31Shazeer, Noam, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. “Outrageously Large Neural Networks: The Sparsely-Gated 
Mixture-of-Experts Layer.” In International Conference on Learning Representations (ICLR), Toulon, France. https://openreview.net/forum?id=B1ckMDqlg

Implementations
Megablocks: https://github.com/stanford-
futuredata/megablocks
Fairseq: 
https://github.com/facebookresearch/fairse
q/tree/main/examples/moe_lm
OpenMoE: 
https://github.com/XueFuzhao/OpenMoE

https://openreview.net/forum?id=B1ckMDqlg
https://github.com/stanford-futuredata/megablocks
https://github.com/stanford-futuredata/megablocks
https://github.com/facebookresearch/fairseq/tree/main/examples/moe_lm
https://github.com/facebookresearch/fairseq/tree/main/examples/moe_lm
https://github.com/XueFuzhao/OpenMoE


Mixture-of-Experts

4/29/2025 SMALL LLMS 32

Gating Network

https://substack.com/home/post/p-148217245
Equations from https://huggingface.co/blog/moe

𝑦 =

𝑖=1

𝑛

𝐺 𝑥 𝑖𝐸𝑖(𝑥)

𝐺σ 𝑥 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥⋅𝑊𝑔)

https://substack.com/home/post/p-148217245


Sparse MoE
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https://substack.com/home/post/p-148217245



MoE Example
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https://substack.com/home/post/p-148217245

Most transformers have multiple decoder blocks



Mixtral 8x7B

4/29/2025 SMALL LLMS 35Jiang, Albert Q., Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, et al. 2024. “Mixtral of Experts.” 
doi:10.48550/arXiv.2401.04088.

8 experts considered
Top 2 experts Selected

https://doi.org/10.48550/arXiv.2401.04088


Mixtral 8x7B

4/29/2025 SMALL LLMS 36Jiang, Albert Q., Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, et al. 2024. “Mixtral of Experts.” 
doi:10.48550/arXiv.2401.04088.

Mixtral is 13B active parameters vs LLaMA 2’s 70B

https://doi.org/10.48550/arXiv.2401.04088


ELDER: Mixture-of-LoRA

4/29/2025 SMALL LLMS 37Li, Jiaang, Quan Wang, Zhongnan Wang, Yongdong Zhang, and Zhendong Mao. 2025. “ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA.” Proceedings of the 
AAAI Conference on Artificial Intelligence 39(23): 24440–48. doi:10.1609/aaai.v39i23.34622.

https://doi.org/10.1609/aaai.v39i23.34622


Mixture of Experts
PROS

Efficient training of a brand new model

Can “semantically group” ideas as it 
goes through the layers

CONS

Needs a variety of experts; how many 
experts is a good number?

Need as much data as a full LLM
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Knowledge Check
When would you want to use Knowledge Distillation (training a student), 
PEFT/LoRA, Model Compression (quantizing/pruning), or MoE? 

(Assuming they’re not combined)
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