Machine Translation

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Yulia Tsvetkov & Dr. Diyi Yang

Learning Objectives

Compare the Noisy Channel Model to Direct Modeling

Consider what to do about uneven parallel corpora

Discover issues with word alignment

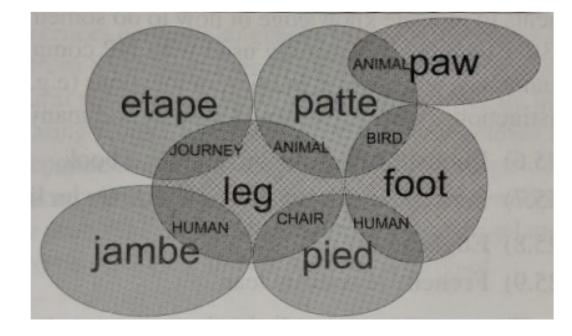
Machine Translation

\equiv	Good	e Trans	ate
			0100

Text ☐ Documents								
	XA Text Documents							
DETECT LANGUAGE ENGLISH SPANISH FRENCH ∧ ← ENGLISH SPANISH ARABIC ∨								
← Search languages								
✓ Detect language ++ Danish Hmong Lithuanian Romanian Telugu								
Afrikaans Dutch Hungarian Luxembourgish Russian Thai								
Albanian English Icelandic Macedonian Samoan Turkish								
AmharicEsperantoIgboMalagasyScots GaelicTurkmen								
Arabic Estonian Indonesian Malay Serbian Ukrainian								
Armenian Filipino Irish Malayalam Sesotho Urdu								
Azerbaijani Finnish Italian Maltese Shona Uyghur								
Basque French Japanese Maori Sindhi Uzbek								
Belarusian Frisian Javanese Marathi Sinhala Vietnamese								
Bengali Galician Kannada Mongolian Slovak Welsh								
Bosnian Georgian Kazakh Myanmar (Burmese) Slovenian Xhosa								
Bulgarian German Khmer Nepali Somali Yiddish								
Catalan Greek Kinyarwanda Norwegian Spanish Yoruba								
Cebuano Gujarati Korean Odia (Oriya) Sundanese Zulu								

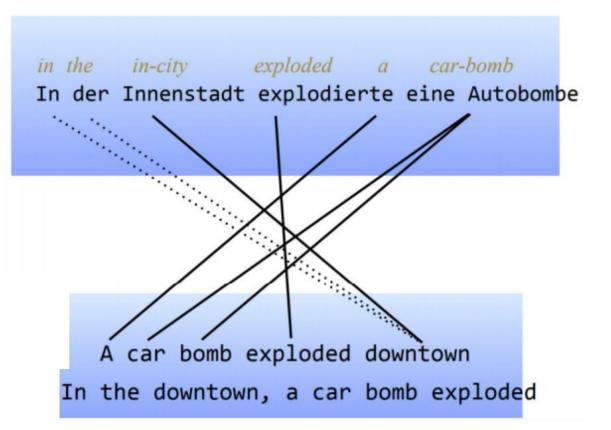
Dictionaries

English: leg, foot, paw French: jambe, pied, patte, etape



Challenges

- Ambiguities
 - Words
 - Morphology
 - Syntax
 - Semantics
 - Pragmatics
- Gaps in data
 - Availability of corpus
 - Commonsense knowledge
- Understanding of context, connotation, social norms, etc



Research Problems

- How can we formalize the process of learning to translate from examples?
- How can we formalize the process of finding translations for new inputs?
- If our model produces many outputs, how do we find the best one?
- If we have a gold standard translation, how can we tell if our output is good or bad?

Two Views Of MT

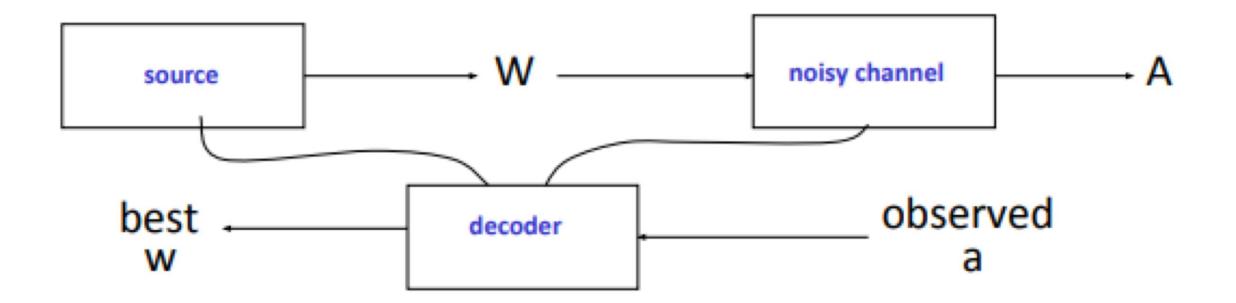
MT as Code Breaking

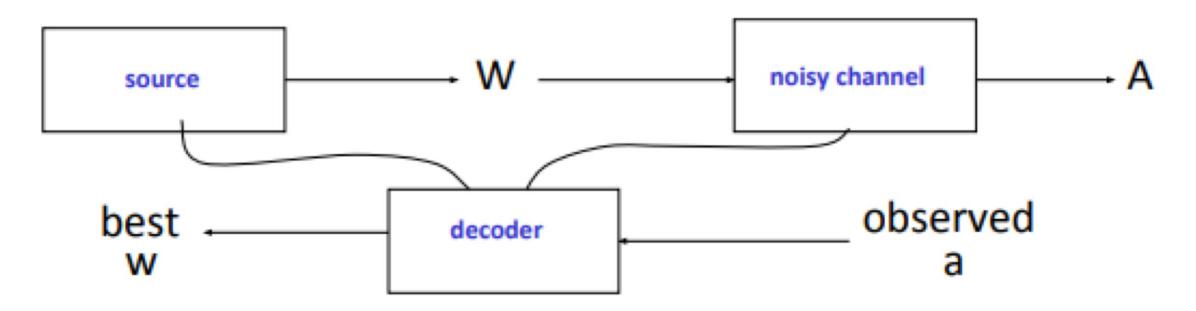
One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I

say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'

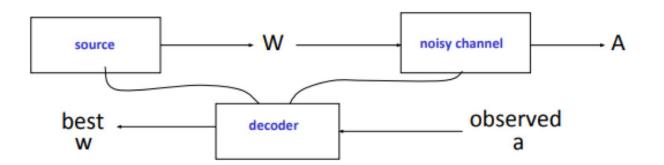
Warren Weaver to Norbert Wiener, March, 1947

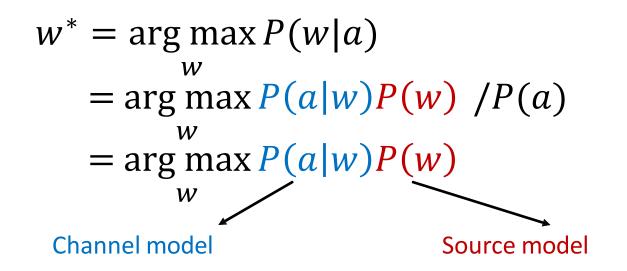
Claude Shannon."A Mathematical Theory of Communication" 1948.

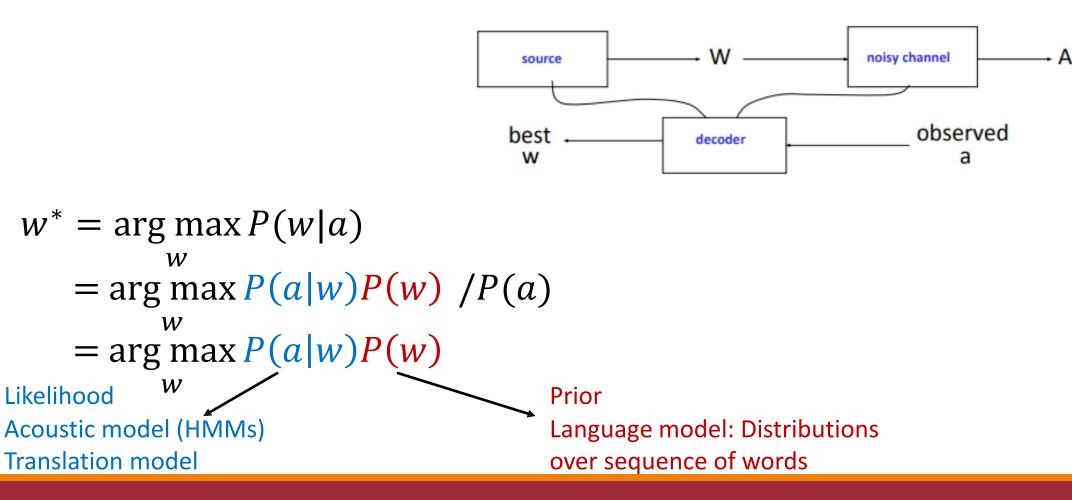


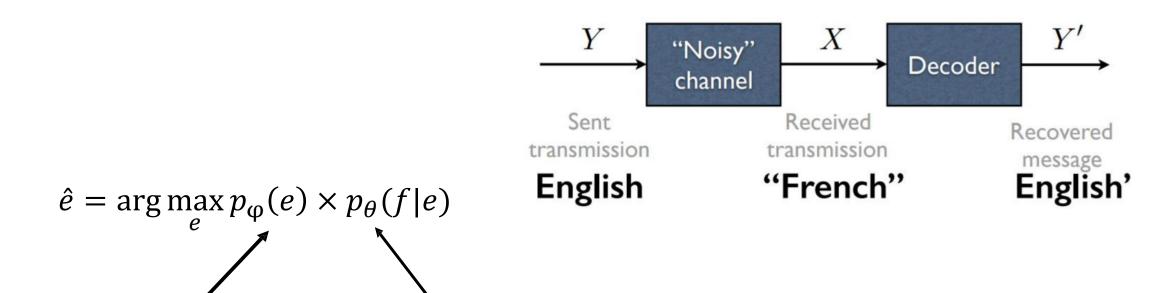


We want to predict a sentence given acoustics: $w^* = \underset{w}{\operatorname{arg max}} P(w|a)$





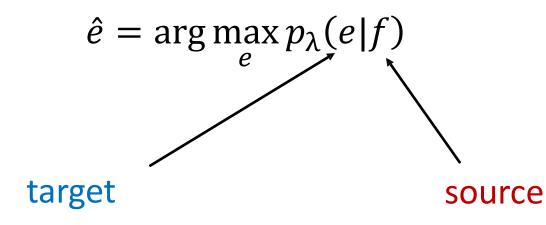




Language model

Translation model

MT as Direct Modeling



One model does everything

Trained to reproduce a corpus of translations

Two Views of MT

- Code breaking (aka the noisy channel, Bayes rule)
 - I know the target language
 - I have example translations texts (example enciphered data)
- **Direct modeling** (aka pattern matching)
 - I have really good learning algorithms and a bunch of example inputs (source language sentences) and outputs (target language translations)

Which is better?

Code breaking (aka the noisy channel, Bayes rule)

More versatile

When there's no direct translation for the phrase/concept

Direct modeling (aka pattern matching)

Stronger with lots of data

Which is Better?

Noisy channel - $p_{\phi}(e) \times p_{\theta}(f|e)$

Easy to use monolingual target language data

Search happens under a product of two models (individual models can be simple, product can be powerful)

Direct Model - $p_{\lambda}(e|f)$

Directly model the process you care about

Model must be very powerful

Where are we in 2025?

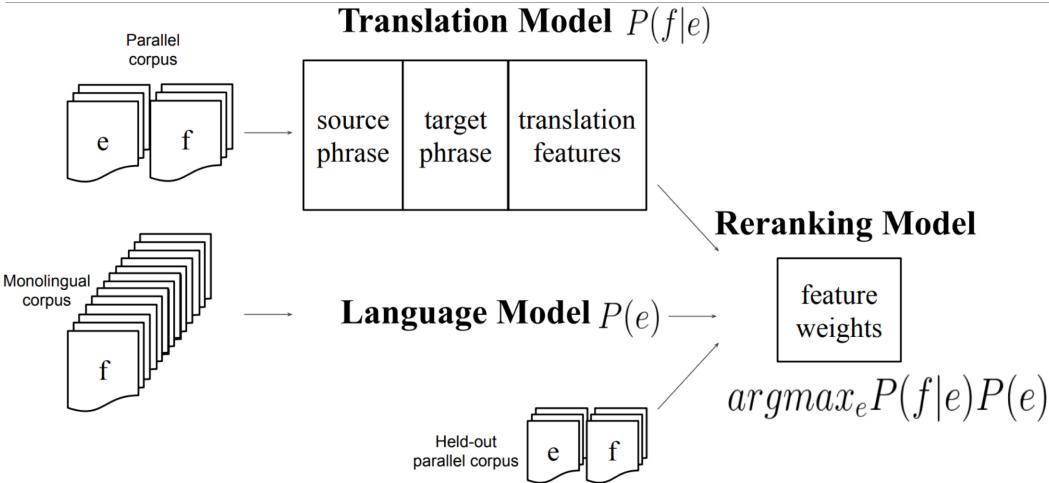
Direct modeling is where most of the action is

- Neural networks (e.g., transformers) are very good at generalizing and conceptually very simple
- Inference in "product of two models" is hard

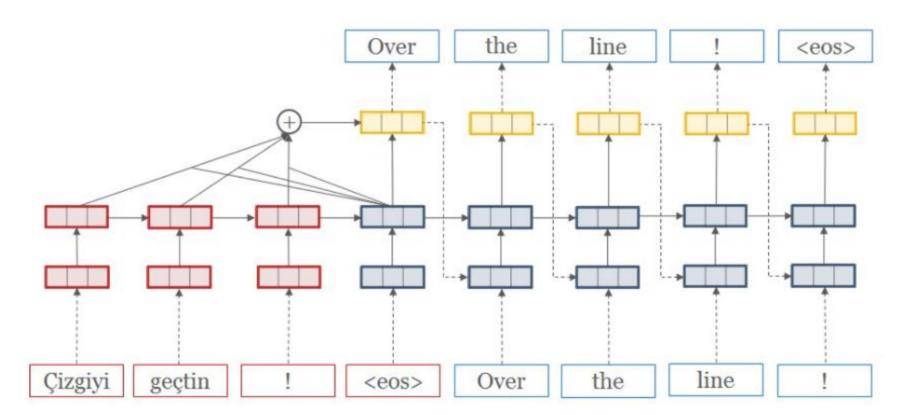
Noisy channel ideas are incredibly important and still play a big role in how we think about translation

Two Views of MT

Noisy channel
$$\hat{e} = \arg \max_{e} p_{\varphi}(e) \times p_{\theta}(f|e)$$
Direct $\hat{e} = \arg \max_{e} p_{\lambda}(e|f)$



Neural MT: Conditional Language Modeling



http://opennmt.net/

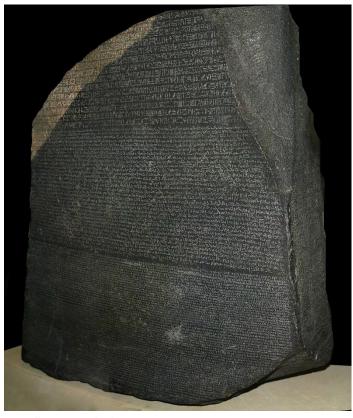
A Common Problem

Noisy channel
$$\hat{e} = \arg \max_{e} p_{\varphi}(e) \times p_{\theta}(f|e)$$
Direct $\hat{e} = \arg \max_{e} p_{\lambda}(e|f)$

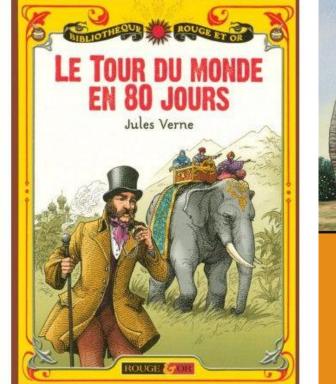
Both models must assign probabilities to how a sentence in one language translates into a sentence in another language

Learning From Data

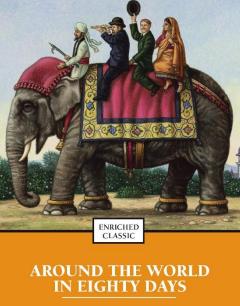
Parallel Corpora



https://en.wikipedia.org/wiki/Rosetta_Stone



https://www.maarifculture.com



JULES VERNE

Includes detailed explanatory notes, an overview of key themes, and more

https://www.simonandschuster.co.in/books/Around-the-World-in-Eighty-Days/Jules-Verne/Enriched-Classics/9781416534723

Parallel Corpora

				CLASSIC SOUPS Sm.	Lg.
*	燉雞	*	57.	House Chicken Soup (Chicken, Celery,	
				Potato, Onion, Carrot)1.50	2.75
雞	飯	:	58.	Chicken Rice Soup 1.85	3.25
雞	麵	湯	59.	Chicken Noodle Soup1.85	3.25
廣	東雲	呑	60.	Cantonese Wonton Soup1.50	2.75
壬	茄香	*	61.	Tomato Clear Egg Drop Soup 1.65	2.95
雪	呑	湯	62.	Regular Wonton Soup 1.10	2.10
酿	辣	**	63. 20	Hot & Sour Soup	2.10
좋	祀		64.	Egg Drop Soup1.10	2.10
李	吾	*	65.	Egg Drop Wonton Mix 1.10	2.10
豆	腐菜	*	66.	Tofu Vegetable Soup NA	3.50
雞	玉米	湯	67.	Chicken Corn Cream Soup NA	3.50
N# .	肉玉米	**	68.	Crab Meat Corn Cream SoupNA	3.50
海	单关	*	69.	Seafood SoupNA	3.50

Parallel Corpora (mining parallel data from microblogs Ling et al., 2013)

	ENGLISH	MANDARIN
1	i wanna live in a wes anderson world	我想要生活在Wes Anderson的世界里
2	Chicken soup, corn never truly digests. TMI.	鸡汤吧,玉米神马的从来没有真正消化过.恶心
3	To DanielVeuleman yea iknw imma work on that	对DanielVeuleman说,是的我知道,我正在向那方面努力
4	msg 4 Warren G his cday is today 1 yr older.	发信息给Warren G, 今天是他的生日, 又老了一岁了。
5	Where the hell have you been all these years?	这些年你TMD到哪去了
	ENGLISH	ARABIC
6	It's gonna be a warm week!	الاسبوع الياي حر
7	onni this gift only 4 u	أونى هذة الهدية فقط لك
8	sunset in aqaba :)	غروب الشمس في العقبة:)
9	RT @MARYAMALKHAWAJA: there is a call for widespread protests in #bahrain tmrw	هناك نداء لمظاهرات في عدة مناطق غدا

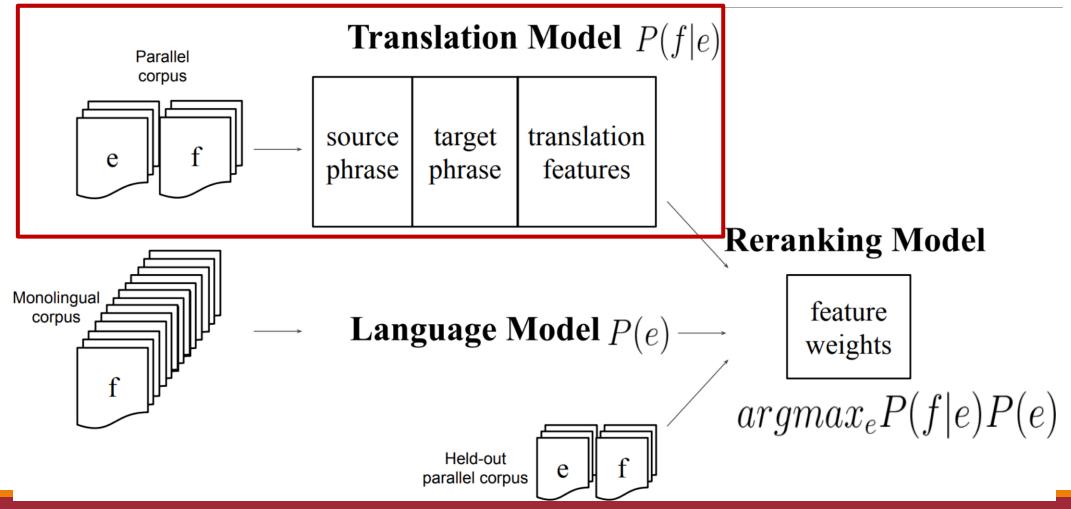
Table 2: Examples of English-Mandarin and English-Arabic sentence pairs. The English-Mandarin sentences were extracted from Sina Weibo and the English-Arabic sentences were extracted from Twitter. Some messages have been shorted to fit into the table. Some interesting aspects of these sentence pairs are marked in bold.

Discussion

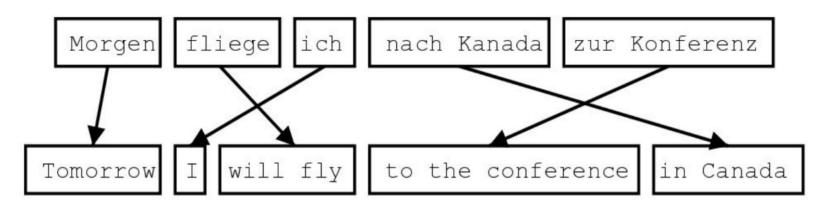
- There is a lot more monolingual data in the world than translated data
- Easy to get about 1 trillion words of English by crawling the web
- With some work, you can get 1 billion translated words of English-French
 - What about Japanese-Turkish?

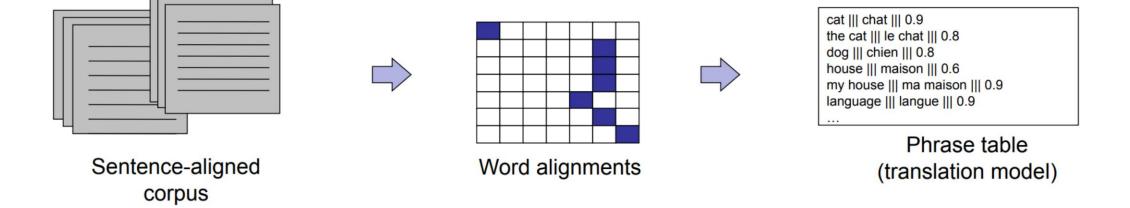
How can you get around uneven amounts of data?

Phrase-Based MT



Construction of t-table





Word Alignment Models

Lexical Translation

How do we translate a word? Look it up in the dictionary

Haus – house, building, home, household, shell

Multiple translations

Some more frequent than others

Different word senses, different registers, different functions

House, home are common

Shell is specialized (the Haus of a snail is a shell)

How Common is Each?

Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8000
building	1600
home	200
household	150
shell	50

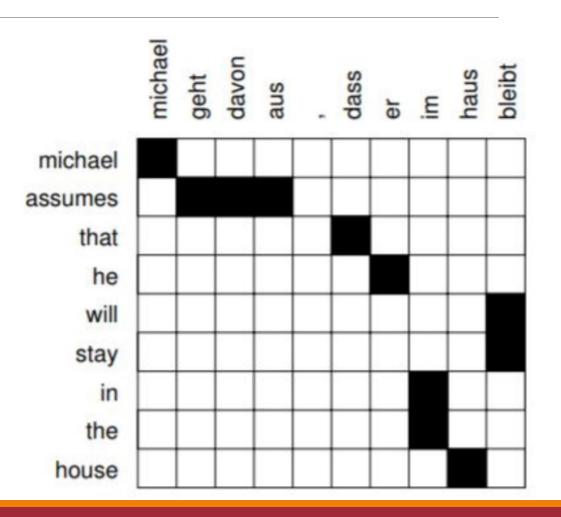
Estimate Translation Probabilities

Maximum likelihood estimation

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathrm{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathrm{house}, \\ 0.16 & \text{if } e = \mathrm{building}, \\ 0.02 & \text{if } e = \mathrm{home}, \\ 0.015 & \text{if } e = \mathrm{household}, \\ 0.005 & \text{if } e = \mathrm{shell}. \end{cases}$$

Word Alignment:

Given a sentence pair, which words correspond to each other?



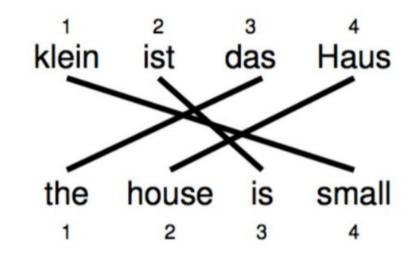
Word Alignment

Alignment can be visualized by drawing links between two sentences, and they are represented as vectors of positions

$$\mathbf{f} = \langle f_1, f_2, \dots, f_n \rangle \quad \overset{1}{\operatorname{das}} \begin{array}{ccc} & & & 1 & & 2 & & 3 & & 4 \\ \operatorname{Haus} & & & \operatorname{ist} & & \operatorname{klein} \\ & & & & & & \\ & & & & & \\ \mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle \quad & \underset{1}{\operatorname{the}} \quad & \underset{2}{\operatorname{house}} \quad & \underset{3}{\operatorname{iss}} \quad & \underset{4}{\operatorname{small}} \\ \mathbf{a} = (1, 2, 3, 4)^\top$$

Reordering

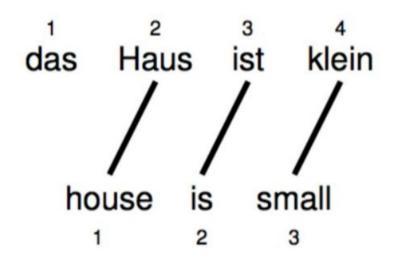
Words may be reordered during translation



$$\mathbf{a} = (3, 4, 2, 1)^{\mathsf{T}}$$

Word Dropping

A source word may not be translated at all



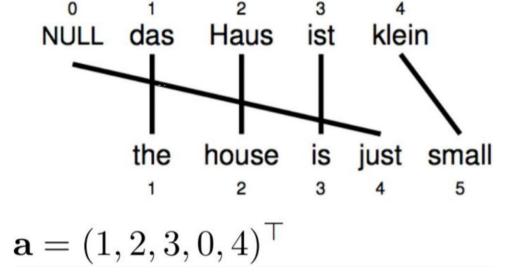
$$\mathbf{a} = (2, 3, 4)^{\mathsf{T}}$$

Word Insertion

Words may be inserted during translation

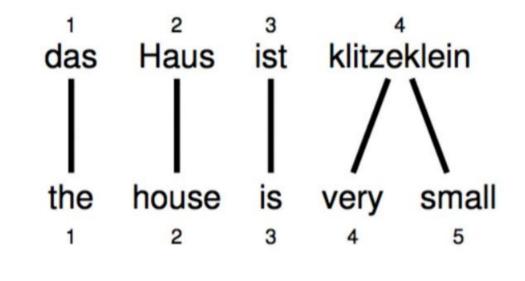
English just does not have an equivalent

But it must be explained – we typically assume every source sentence contains a NULL token



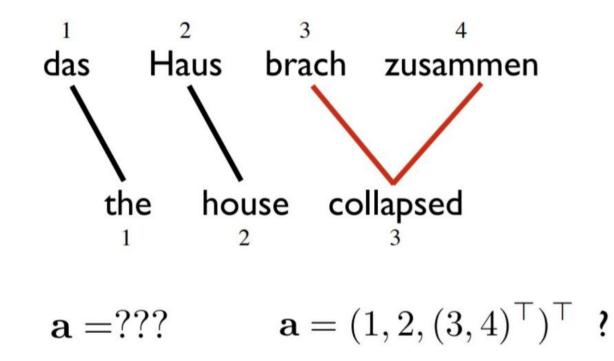
One-to-many Translation

A source word may translate into more than one target word



$$\mathbf{a} = (1, 2, 3, 4, 4)^{\top}$$

More than one source word may not translate as a unit in lexical translation



Computing Word Alignments

- Word alignments are the basis for most translation algorithms
- Given two sentences F and E, find a good alignment
- But a word-alignment algorithm can also be part of a mini-translation model itself
- One the most basic alignment models is also a simplistic translation model

IBM Model 1

- Generative model: break up translation process into smaller steps
- Simplest possible lexical translation model
- Additional assumptions
 - All alignment decisions are independent
 - The alignment distribution for each *a_i* is uniform over all source words and NULL

Lexical Translation

Goal: a model $p(\boldsymbol{e}|\boldsymbol{f}, m)$

Where *e* and *f* are complete English and Foreign sentences

$$e = \langle e_1, e_2, ..., e_m \rangle$$

$$f = \langle f_1, f_2, ..., f_n \rangle$$

Lexical Translation

Goal: a model $p(\boldsymbol{e}|\boldsymbol{f}, m)$

Where *e* and *f* are complete English and Foreign sentences

Lexical translation makes the following assumptions

Each word e_i in **e** is generated from exactly one word in **f**

- Thus, we have an alignment a_i that indicates which word e_i "came from", specifically it came from f_{a_i}
- Given the alignments \boldsymbol{a} , translation decisions are conditionally independent of each other and depend only on the aligned source word f_{a_i}

Lexical Translation

Putting our assumptions together, we have:

$$p(\boldsymbol{e}|\boldsymbol{f},m) = \sum_{\boldsymbol{a} \in [0,n]^m} p(\boldsymbol{a}|\boldsymbol{f},m) \times \prod_{i=1}^m p(e_i|f_{a_i})$$

Alignment × Translation | Alignment

IBM Model 1: P(E|F)

Translation probability

For a foreign sentence $\mathbf{f} = (f_1, \dots, f_{l_f})$ of length I_f

- To an English sentence $e = (e_1, \dots, e_{l_e})$ of length I_e
- With an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow I$

$$p(e, a | f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Parameter ϵ is a normalization constant

Computing P(E|F) in IBM Model 1

p(a|f)

$$p(e, a | f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

A normalization factor, since there are $(l_f + 1)^{l_e}$ possible alignments

Parameter ϵ is a normalization constant

The probability of an alignment given the foreign sentence

46

Computing P(E|F) in IBM Model 1 p(a|f)p(e|f,a) $p(e, a | f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{i=1}^{l_e} t(e_i | f_{a(i)})$ $p(\boldsymbol{e}|\boldsymbol{f}) = \sum_{\boldsymbol{a}} p(\boldsymbol{e}, \boldsymbol{a}|\boldsymbol{f}) = \sum_{\boldsymbol{a}} p(\boldsymbol{a}|\boldsymbol{f}) \times \prod_{i=1}^{c} p(\boldsymbol{e}_{i}|f_{a_{j}})$

Example

das		Haus	Haus		ist			klein		
e	t(e f)	e	t(e f)		e	t(e f)		е	t(e f)	
the	0.7	house	0.8		is	0.8	1	small	0.4	
that	0.15	building	0.16		's	0.16	1	little	0.4	
which	0.075	home	0.02		exists	0.02	1	short	0.1	
who	0.05	household	0.015		has	0.015	1	minor	0.06	
this	0.025	shell	0.005		are	0.005		petty	0.04	

 $p(e, a|f) = \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein})$ $= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4$ $= 0.0028\epsilon$

Estimate Translation Probabilities

Maximum likelihood estimation

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathrm{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathrm{house}, \\ 0.16 & \text{if } e = \mathrm{building}, \\ 0.02 & \text{if } e = \mathrm{home}, \\ 0.015 & \text{if } e = \mathrm{household}, \\ 0.005 & \text{if } e = \mathrm{shell}. \end{cases}$$

Estimate Alignments Given t-table

If we have translation probabilities...

das		Haus		ist			klein		
е	t(e f)	e	t(e f)	е	t(e f)		е	t(e f)	
the	0.7	house	0.8	is	0.8		small	0.4	
that	0.15	building	0.16	's	0.16		little	0.4	
which	0.075	home	0.02	exists	0.02		short	0.1	
who	0.05	household	0.015	has	0.015		minor	0.06	
this	0.025	shell	0.005	are	0.005		petty	0.04	

The goal is to find the most probable alignment given a parameterized model

$$p(e, a | f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Estimating the Alignment

$$a^* = \arg \max_{a} p(e, a | f)$$
$$= \arg \max_{a} x \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$
$$= \arg \max_{a} x \prod_{j=1}^{l_e} t(e_j | f_{a(j)})$$

Since translation choice for each position is independent, the product is maximized by maximizing each term:

$$a_i^* = \arg \max_{a_i=0}^n t(e_i \mid f_{a_i})$$

corpus but we do not have the alignments

Chick and egg problem

If we had the alignments, we could estimate the parameters of our generative model (MLE)

If we had the parameters, we could estimate the alignments

klein

е	t(e f)
small	0.4
little	0.4
short	0.1
minor	0.06
petty	0.04

Incomplete data

If we had **complete data**, we could estimate the model

If we had the model, we could fill in the gaps in the data

Expectation Maximization (EM) in a nutshell

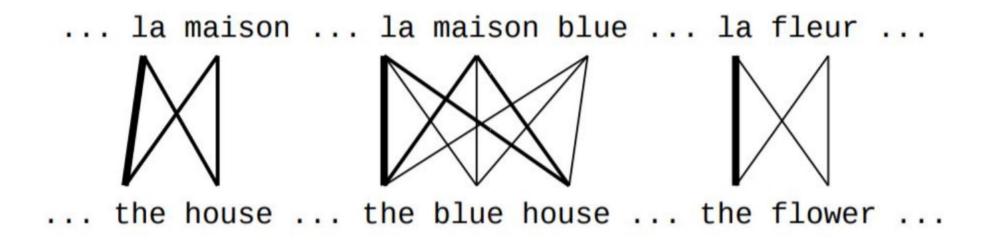
- 1. Initialize model parameters (e.g., uniform, random)
- 2. Assign probabilities to the missing data (expectation)
- 3. Estimate model parameters from completed data (maximization)
- 4. Iterate steps 2-3 until convergence

Kevin Knight's example

... la maison ... la maison blue ... la fleur ...

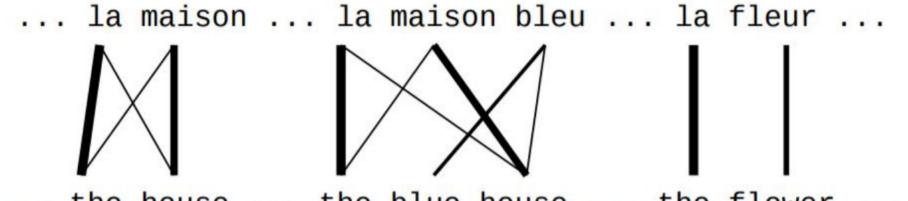
Initial step: all word alignments equally likely

Model learns that: e.g., *la* is often aligned with *the*



After one iteration

Alignments, e.g., between *la* and *the* are more likely



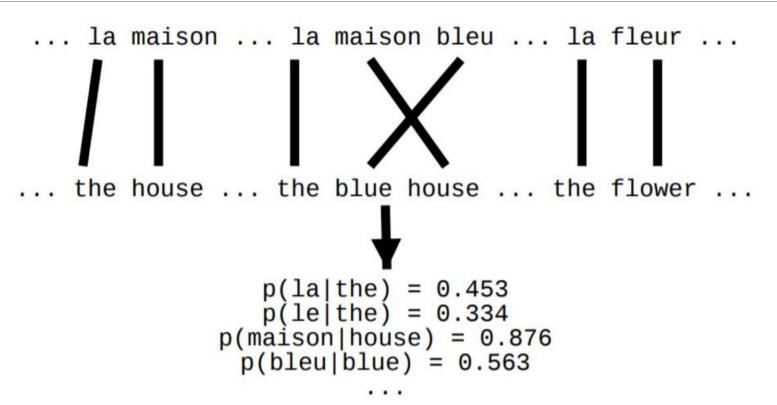
... the house ... the blue house ... the flower ...

It becomes apparent that alignments, e.g., between *fleur* and *flower* are more likely

After another iteration

Convergence

Inherent hidden structure revealed by EM !



Parameter estimation from the aligned corpus

Problems with Lexical Translation

- Context-dependent probabilities for P(e|f)
- Error propagation (if any model is weak, the whole calculation is weak)
- Weak reordering (not fluent)
- Doesn't scale with longer sentences

Evaluation Metrics

Manual evaluation is most accurate, but expensive

Automated evaluation metrics:

Compare system hypothesis with reference translations

BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002):

Modified n-gram precision

 $p_n = \frac{\text{number of } n \text{-grams appearing in both reference and hypothesis translations}}{\text{number of } n \text{-grams appearing in the hypothesis translation}}$

BLEU

$$\mathsf{BLEU} = \exp\frac{1}{N}\sum_{n=1}^{N}\log p_n$$

Two modifications:

To avoid log 0, all precisions are smoothed

Each n-gram in reference can be used at most once

Ex. Hypothesis: to to to to to vs Reference: to be or not to be should not get a unigram precision of 1

Precision-based metrics favor short translations

Solution: Multiply score with a brevity penalty (BP) for translations shorter than reference, $e^{1-r/h}$

BLEU Scores

	Translation	p_1	p_2	p_3	p_4	BP	BLEU
Reference	Vinay likes programming in Python						
Sys1	To Vinay it like to program Python	$\frac{2}{7}$	0	0	0	1	.21
Sys2	Vinay likes Python	$\frac{3}{3}$	$\frac{1}{2}$	0	0	.51	.33
Sys3	Vinay likes programming in his pajamas	$\frac{4}{6}$	$\frac{3}{5}$	$\frac{2}{4}$	$\frac{1}{3}$	1	.76

Sample BLEU scores for various system outputs

Alternatives have been proposed:

- METEOR: weighted F-measure
- Translation Error Rate (TER): Edit distance between hypothesis and reference

Other Issues?

BLEU

Correlates somewhat well with human judgments

