
Dialog Systems and Chatbots
CMSC 473/673 - NATURAL LANGUAGE PROCESSING

5/13/2025 DIALOG SYSTEMS AND CHATBOTS 1

Slides modified from Chris Callison-Burch & João Sedoc



Misconception from Knowledge Check
Mixture of Experts is not to be confused with an Ensemble 
Model
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Learning Objectives
Interpret difficulties in human communication

Distinguish between chatbots and task-oriented dialog systems
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Conversational Agents aka Dialog
Systems
Digital Assistants

Answering questions on websites

Communicating with robots

Chatting for fun

Clinical uses
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Challenging properties of human
conversation
■ Turn taking

■ Speech acts

■ Grounding

■ Dialogue structure

■ Initiative

■ Implicature
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Turn taking
A conversation is a sequence of turns, where you take a turn and 
then I take a turn. A turn can be a sentence, or a single word.

A system must know when to start and stop talking.

Spoken dialogue systems must also detect whether a user is done 
speaking, so they can process the utterance and respond. This task of 
endpoint detection is tricky because people often pause mid-turn.
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Speech acts
Constatives: committing the speaker to something’s being the 
case (answering, claiming, confirming, denying, disagreeing, 
stating)

Directives: attempts by the speaker to get the addressee to do 
something (advising, asking, forbidding, inviting, ordering, 
requesting)

Commissives: committing the speaker to some future course of 
action (promising, planning, vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the
hearer with respect to some social action (apologizing, greeting,
thanking, accepting an acknowledgment)
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Conversational Implicature

Agent: And, what day in May did you want to travel?

Client: I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the agent’s question. The 
speaker expects the hearer to draw certain inferences.

Implicature means certain kinds of inferences.

Gricean maxims. The maxim of relevance means that when the client 
mentions a meeting on the 12th, the agent reasons ‘There must be some 
relevance for mentioning this meeting. What could it be?’
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Two Classes of Dialog Systems
1. Chatbots

■Systems designed for extended conversations

■Chatting for fun and entertainment

2. Task-Oriented Dialogue Agents
■Goal-Based Agents

■Siri, interface with robots, booking flights or hotels
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Part I: Chatbots
Systems designed for extended conversations. Chatbots 
mimic unstructured conversations or ‘chats’ that are 
characteristic of informal human-human interaction

Architecture include:

Rule-Based
■ Pattern-action rules

Corpus-Based
■ Information Retrieval

■ Neural network encoder-decoder
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ELIZA: Weizenbaum (1966)

Simulates a psychologist

Rogerian psychology is a rare 
type of conversation where 
“assume the pose of knowing 
almost nothing of the real 
world”

Draw the patient out by 
reflecting patient’s statements 
back at them
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ELIZA: Weizenbaum (1966)
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ELIZA: Weizenbaum (1966)
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Pattern matching rules:

.* YOU (.*) ME –> WHAT MAKES YOU THINK I $1 YOU?

This rule would transform

Youmust really hateme

into

WHATMAKES YOU THINK IMUSTREALLYHATE YOU?

ELIZA Pattern Transform Rules
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Simplified sketch of ELIZA
function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank

if w exists

Choose the highest ranked rule r for w that matches sentence 

response Apply the transform in r to sentence

if w = ’my’

future Apply a transformation from the ‘memory’ rule list to sentence 

Push future onto memory stack

else (no keyword

applies) either

response Apply the transform for the NONE keyword to sentence

or

response Pop the top response from the memory stack

return(response)
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PARRY: Colby (1971)
ELIZA like regular expressions But a much richer –

◦ Control Structure

◦ Language Understanding Capabilities

◦ Mental Model : Parry has affective variables

◦ Fear, Mistrust, Anger

◦ If Anger level is high, respond with hostility

First system to pass the Turing test (1971)
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Turing Test

• A human evaluator would judge text-
based conversations between a human 
and a machine designed to generate 
human-like responses.

• If the evaluator cannot reliably tell the
machine from the human, the machine is
said to have passed the test.
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Pages 433–460, https://doi.org/10.1093/mind/LIX.236.433

“
I propose to consider 
the question, ‘Can 
machines think?’

”
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Part I: Chatbots
Systems designed for extended conversations. Chatbots 
mimic unstructured conversations or ‘chats’ that are 
characteristic of informal human-human interaction

Architecture include:

Rule-Based
■ Pattern-action rules (Eliza)

Corpus-Based
■ Information Retrieval

■ Neural network encoder-decoder
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Conversational Data
Need: large collections of human conversations 

Conversational threads on Twitter or Weibo (微博) 

Retrieve dialog from movies, indexing subtitles

Recorded telephone conversations, collected for speech research 

Crowdsourced conversations via Mechanical Turk and ParlAI
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Information Retrieval based Chatbots
Treat the human user’s input as a query vector q

Search over a large corpus C of conversation to find the closest matching turn t’ 
in those previous conversations.

Return the response r to that conversational turn. 

t’ = arg maxt∈C cosine_similarity(q, t).

r = response(t’)

q = Have you watched Doctor Who?

t’ = Do you like Doctor Who?

r = Yes, I love SciFi shows!
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IR with Neural Network-Based Similarity 
Model
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Seq2Seq Encoder-Decoder Models
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Sample Responses: Enc-Dec RNN Model

Input tell me ... how long have you had this falling sickness ?

Vanilla-SEQ2SEQ i’m not a doctor.

Adversarial a few months, i guess .

Input so i had the doctors test sammy ’s response to conditioning .

Vanilla-SEQ2SEQ sammy wrote the test sammy wrote the test .

Adversarial so he took the pills .

Input they didn ’t have much success with this problem commander .

Vanilla-SEQ2SEQ they ’re not the only ones who have been in the system .

Adversarial can we find someone else ?

Responses that are harder to distinguish from human responses
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Two Classes of Dialog Systems
1. Chatbots

■Systems designed for extended conversations

■Chatting for fun and entertainment

2. Task-Oriented Dialogue Agents
■Goal-Based Agents

■Siri, interface with robots, booking flights or hotels
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Part II: Frame-based Dialogue Systems
■ Task-based Dialogue Agents

■ Based on “Domain Ontology”
■ A set of “Frames”

■ Frame:

■ A knowledge structure representing user intentions

■ A collection of “slots”

■ Each ”slot” having a set of “values”
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Example: Travel Domain
Slot : Origin City 

Type : City

Value : San Francisco
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Slot Type Question

ORIGIN city What city are you leaving from?

DEST city Where are you going?

DEP DATE date What day would you like to leave?

DEP TIME time What time would you like to leave?

AIRLINE line What is your preferred airline?



Frame-based Dialogue Agents
Artificial Intelligence Journal, 1977

■ Still the industrial state of the art

■ Siri/Alexa based on GUS architecture

5/13/2025 DIALOG SYSTEMS AND CHATBOTS 40



GUS system : An actual dialogue
GUS:

Client: 

GUS:

Client: 

GUS:

Client: 

GUS:

Client: 

GUS:

Client: 

GUS:

GUS:

Client: 

GUS:

Client: 

GUS:

Hello. My name is GUS. I can help you plan a simple trip by air. Where do you 

want to go ?

I want to go to San Diego on May 28 

What time do you want to leave?

I must be in San Diego before 10 am

Would you like P.S.A. flight 102 that arrives at 9.15 am ? 

What is the next flight ?

Air California flight 310 that leaves at 8.30am and arrives at 10.00am 

I’ll take the first one

In what name should I make a reservation, please? 

Dan Bobrow

I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28 

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.

What date do you want to return on ? 

On Friday in the evening.

Would you like the flight that leaves at 7.45 pm ? 

That’s fine.

I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you

for calling. Goodbye
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Slot types can be complex
The type DATE
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Control structure for frame-based dialog
Consider a trivial airline travel system:

■ Ask the user for a departure city

■ Ask for a destination city

■ Ask for a time

■ Ask whether the trip is round-trip or not
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Natural language understanding for filling
slots in GUS
1. Domain classification

Asking weather? Booking a flight? Programming alarm clock?

2. Intent Determination
Find a Movie, Show Flight, Remove Calendar Appt

3. Slot Filling
Extract the actual slots and fillers
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Natural language understanding for filling
slots in GUS

Show me morning flights from Boston to 

SF on Tuesday.

DOMAIN: 

INTENT: 

ORIGIN-CITY: 

ORIGIN-DATE: 

ORIGIN-TIME: 

DEST-CITY:

AIR-TRAVEL 

SHOW-FLIGHTS

Boston 

Tuesday 

morning

San Francisco
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Rule-based Slot-filling
■ Semantic Grammar Rules or Regular Expressions

Wake me (up) | set (the|an) alarm | get me up

A semantic grammar parse for a user sentence, using slot names as the 
internal parse tree nodes
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Rule Sets
■ Collections of rules consisting of:

■ condition

■ action

■ When user input is processed, facts added to store and

■ rule conditions are evaluated

■ relevant actions executed
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Dialogue-State Architecture
More sophisticated version of frame-based architecture

Williams et al. (2016)
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Dialogue Acts
Combining idea of speech acts and grounding into a single representation

Dialogue acts used by a restaurant recommendation system 
(Young et al. (2010))
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Dialogue Acts

Sample dialogue from the Recommender System of Young et al. (2010)
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Machine Learning for Slot Filling
■ Supervised semantic parsing

■ Model to map from input words to slot fillers, domain and intent

■ Given a set of labeled sentences
“I want to fly to San Francisco on Tuesday”

Destination: SF Depart-date: Tuesday

■ Requirements: Lots of labeled data
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Slot Filling
“I want to fly to San Francisco on Monday afternoon please”

Use 1-of-N classifier (Naive Bayes, Logistic Regression, Neural Network, etc.)
◦ Input:

features like word N-grams

◦ Output:

Domain: AIRLINE Intent: SHOWFLIGHT
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Dialogue State Tracking
■ Keep track of
■ Current state of the frame (the fillers of each slot)

■ User’s most recent dialogue act

Sample output of a dialogue state tracker after each turn
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Natural Language Generation
Modeled in two stages:

■ Content Planning (what to say)

■ Sentence Realization (how to say it)

Encoder Decoder Models : Map frames to sentences

An encoder decoder sentence realizer mapping slots/fillers to English
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Evaluation
1. Slot Error Rate for a Sentence

# of inserted/deleted/substituted slots 

# of total reference slots for sentence

2. End-to-end evaluation (Task Success)
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Evaluation

Slot Filler

PERSON Lara

TIME 11:30 a.m.

ROOM ITE 216

“Make an appointment with Lara at 10:30 in ITE 216”

Slot error rate: 1/3

Task success: At end, was the correct meeting added 
to the calendar?
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Modern Chatbots
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67

Transformer-based Architecture with Alignment

Base LLM Aligned LLM
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Instruction 
Learning

Preference 
Learning
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Transformer-based Response Evaluator for 
Open-Domain Spoken Conversation,” in 
International Workshop on Spoken Dialogue 
Systems Technology (IWSDS), Los Angeles, CA, 
2023. doi: 10.48550/arXiv.2302.04424.

Using 
transformers 
to evaluate 
dialog
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Nonsense in Dialogue with Discriminative 
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Singapore: Association for Computational 
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Model 
evaluating 
itself
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