

CMSC 473/673

Introduction to Natural

Language Processing

Instructor: Lara J. Martin (she/they)

TA: Omkar Kulkarni (he)

<https://laramartin.net/NLP-class/>

Learning Objectives

By the end of the course, you will be able to...

1. Recall common tasks in NLP and formulate problems for them. (HW1)
2. Diagnose and setup appropriate evaluation metrics for a given problem, including determining what an appropriate baseline might be. (HW2)
3. Compare and contrast language models and other NLP methods. (HW2, Exam)
4. Implement AI systems that use popular NLP toolkits and libraries. (Grad Assignment, Project)
5. Construct a literature review from state-of-the-art research. (Grad Assignment, Project)
6. Plan and create an NLP system for a particular task. (HW3, Project)
7. Identify ethical issues in NLP systems and consider how they might be mitigated. (HW3)

Knowledge Checks

Grades

Assignment	473 (undergrad)	673 (grad)
Class Knowledge Checks	15%	10%
Homework 1	10%	5%
Homework 2	15%	15%
Homework 3	15%	15%
Exam	15%	15%
Project	30%	30%
Grad Assignment	-	10%

Late days!

Everyone has 5 free late days that they can use for homework assignments or project milestones (except the last milestone)
Max use of 3 per assignment

- In-class checks so that I can see how you're doing with the material
- Not graded for accuracy
- Can be made up by the end of the semester
- 3 homework assignments
- NLP tasks, evaluation & neural networks, prompt engineering & NLP ethics
- First homework is worth less than the other two
- Can be worked on alone or in pairs

Grades

Assignment	473 (undergrad)	673 (grad)
Class Knowledge Checks	15%	10%
Homework 1	10%	5%
Homework 2	15%	15%
Homework 3	15%	15%
Exam	15%	15%
Project	30%	30%
Grad Assignment	-	10%

- New for this semester
- I want to test your knowledge of NLP concepts
- Group project (around 3-5 people)
- You will come up with your own topic with my help
- Implementation or literature review

The lecture schedule will be updated as the term progresses.

Date	Lecture Topic	Readings for this Lesson	Homework Due
Tue, Jan 27, 2026	No Class - Snow Day		
Thu, Jan 29, 2026	No Class - Snow Day		
Fri, Jan 30, 2026	Waitlist Deadline		
Tue, Feb 3, 2026	What is NLP? [slides]	<ul style="list-style-type: none">Jacob Eisenstein, NLP Chapter 1	
Thu, Feb 5, 2026	Examples of NLP Tasks	<ul style="list-style-type: none">Dan Jurafsky and James H. Martin, SLP Chapter 2Jacob Eisenstein, NLP Chapter 2.2 & 4.5	
Mon, Feb 9, 2026	Waitlists Deactivated		
Tue, Feb 10, 2026	Examples of NLP Tasks		
Thu, Feb 12, 2026	Machine Learning Basics	<ul style="list-style-type: none">Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning Chapter 5.1-5.3 (ML Basics)	
Fri, Feb 13, 2026	Last Day to Change Schedule		

Academic Integrity

- If you feel the need to cheat on the assignment to do well on it, please talk to me or Omkar first. We can work it out ahead of time, but once you cheat it's hard to do anything.

If you cheat or plagiarize, you...

- aren't learning anything
- wasting money paying for tuition
- can get an F on the assignment or even for the entire class

More details on course website

If you want to use ChatGPT

- Make sure you're saying that you used it
- Provide your prompt and the original generation (along with how you edited it)
- Make sure that you're not avoiding the learning objectives by using it

- If you do not say you're using it and I notice, that is an academic integrity violation
- It's okay to use grammar tools (e.g., spell check or Grammarly) or small-scale prediction (e.g., next word prediction, tab completion), provided that they don't change the **substance** of your work

Learning Objectives

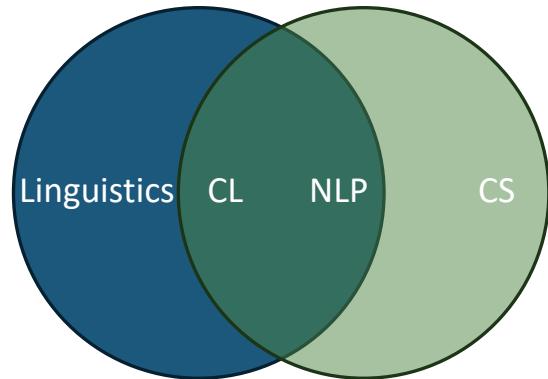
Develop a working vocabulary of terms in the field of NLP

Recognize NLP systems in your daily life

Define sub areas of linguistics

Distinguish between types and tokens

Define featurization & other ML terminology


Define some “classification” terminology

Distinguish between different text classification tasks

Computational Linguistics

=?

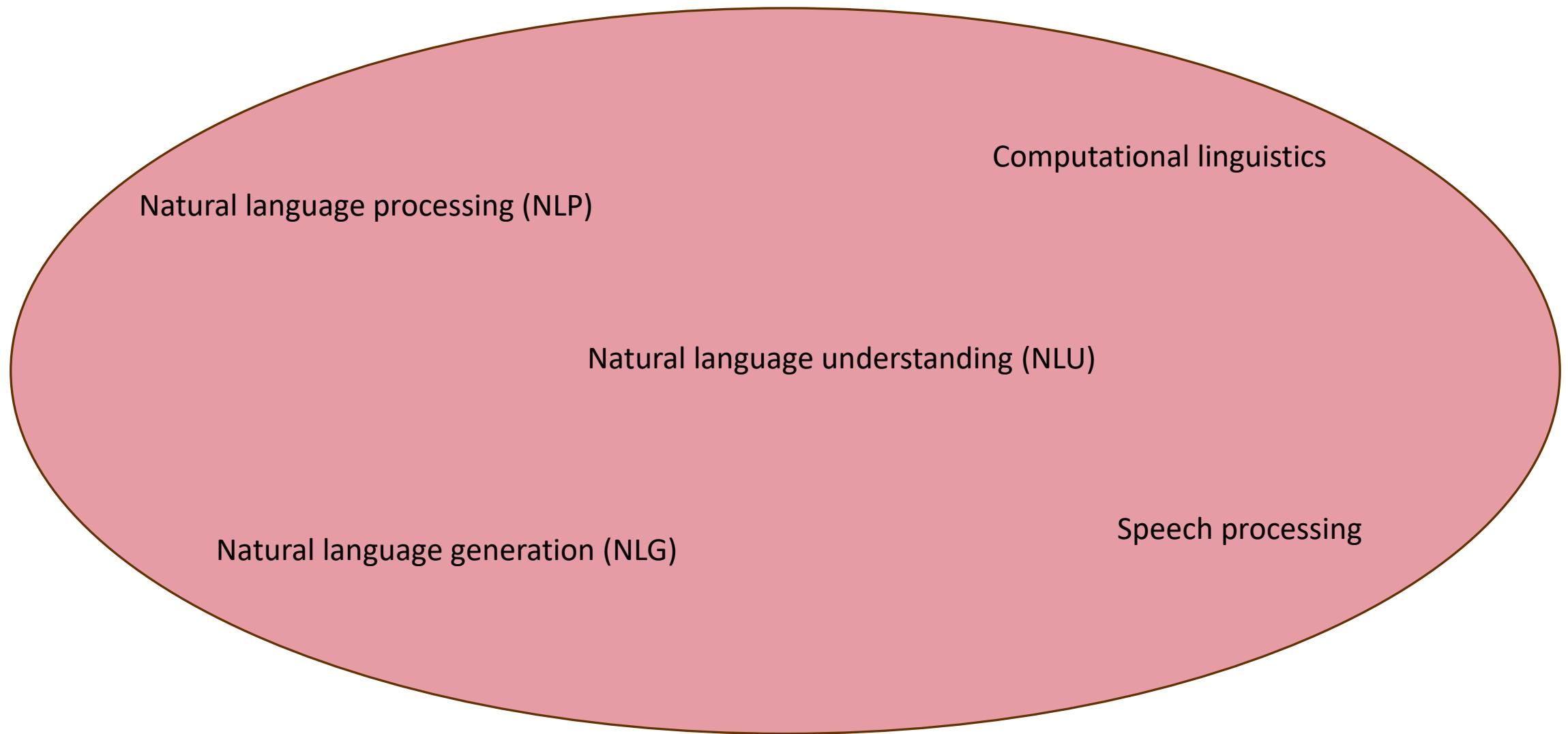
Natural Language Processing

The computational **study** of language

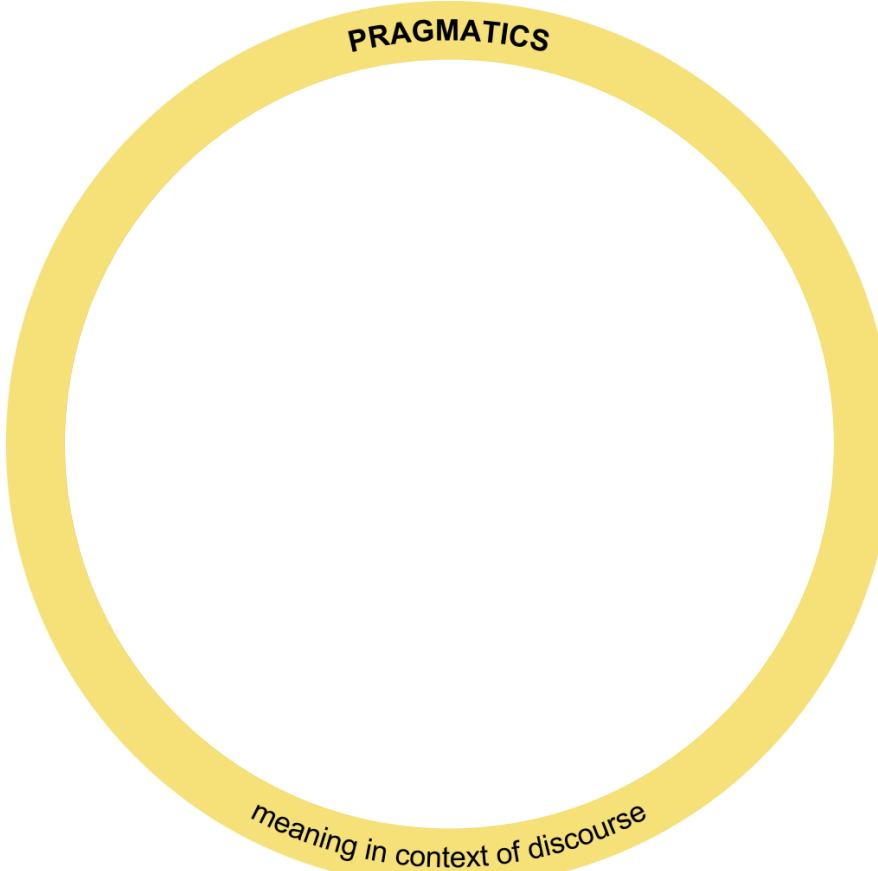
Computational Linguistics

≈

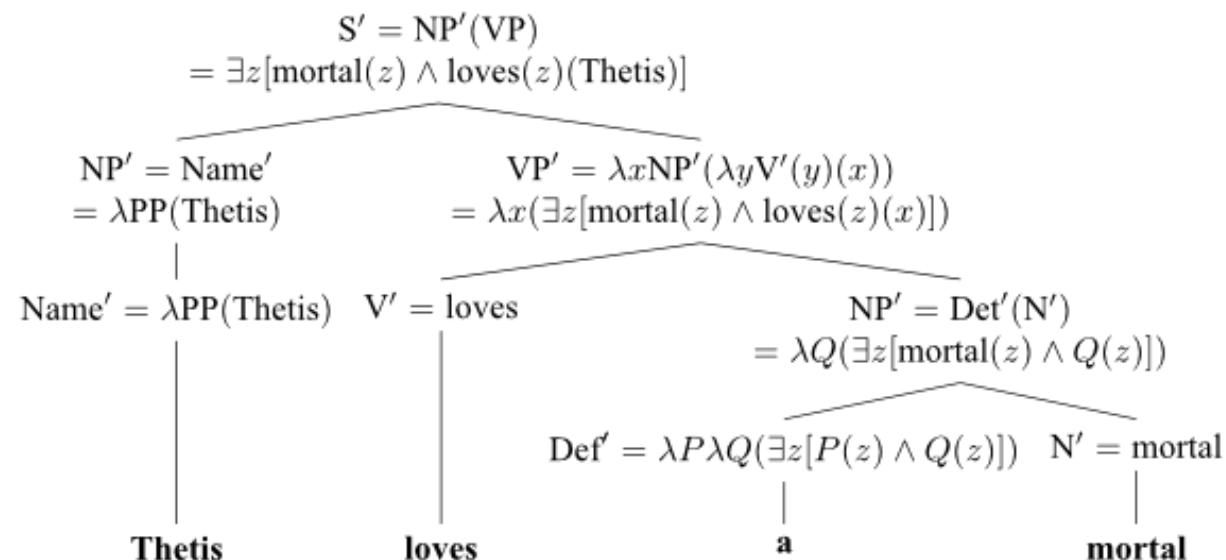
Natural Language Processing


The computational **use** of language

Association for
Computational Linguistics


Language technologies

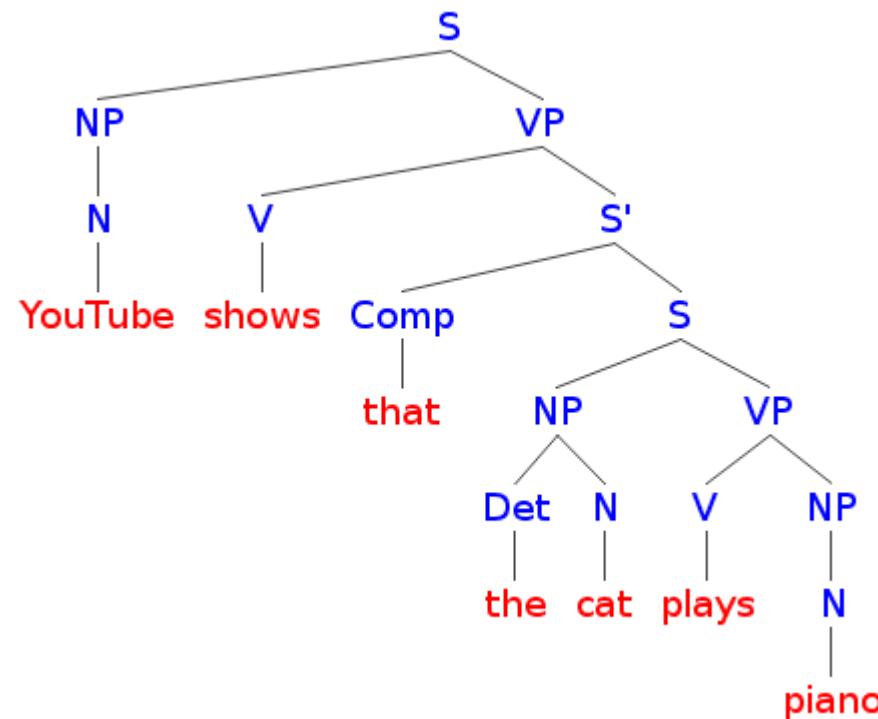
Linguistics


The study of language

[https://en.wikipedia.org/wiki/Morphology_\(linguistics\)#/media/File:Major_levels_of_linguistic_structure.svg](https://en.wikipedia.org/wiki/Morphology_(linguistics)#/media/File:Major_levels_of_linguistic_structure.svg)

Semantics

Meaning



<https://plato.stanford.edu/entries/computational-linguistics/>

Syntax

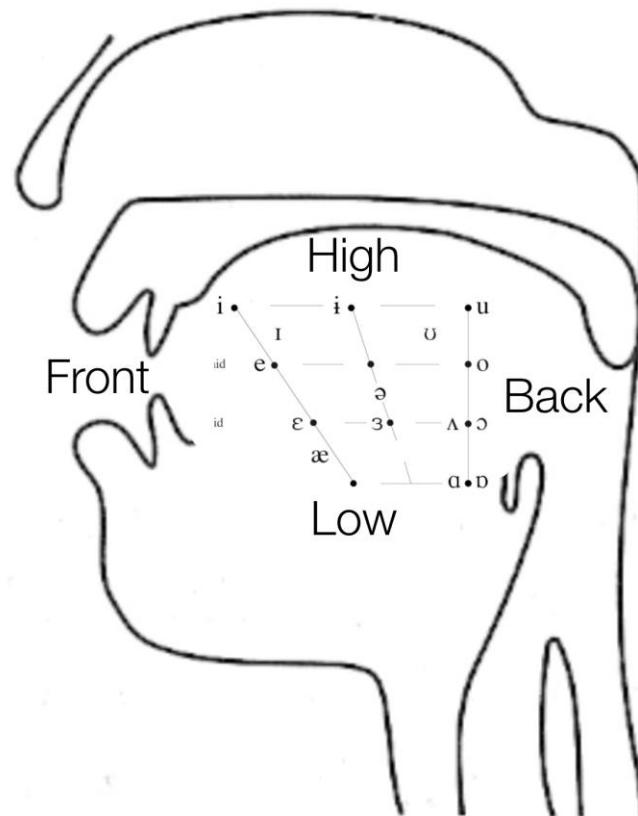
Grammar

<https://allthingslinguistic.com/post/100617668093/how-to-draw-syntactic-trees-part-3-type-1-a>

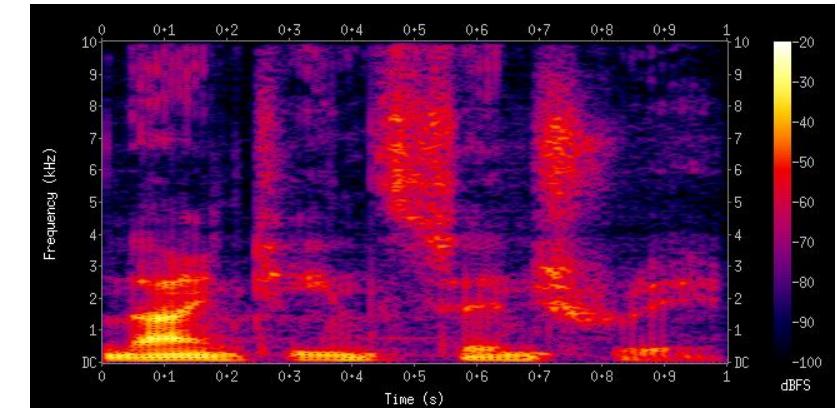
Phonology

Processing of sounds

https://upload.wikimedia.org/wikipedia/commons/a/a5/Tsunami_by_hokusai_19th_century.jpg


tsunami
↓
sunami

	/ðɪs/ <i>this</i>	DEP	*CODA	MAX
a.	☞ [dɪs]		*	
b.	☞ [dɪ]			*
c.	[dɪ.sə]	*!		


<https://pubs.asha.org/doi/10.1044/0161-1461%282001/022%29>

Phonetics

Physical production/understanding of sounds

https://wstyler.ucsd.edu/talks/l111_3_phonetics_review_handout.html

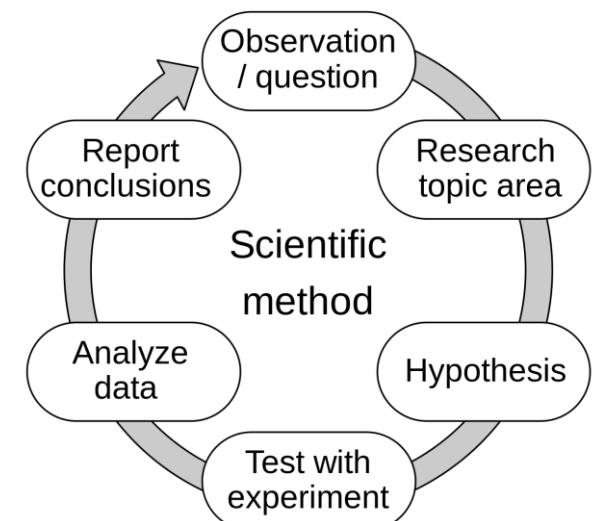
<https://en.wikipedia.org/wiki/Spectrogram#/media/File:Spectrogram-19thC.png>

Back to CL vs NLP

Computational linguistics: Using computers to solve linguistic questions

- E.g., How does language X order their sentences? SVO, SOV, VOS...?

And this can inform NLP work


- E.g., How can we create a system that generates text in language X?

Or not...

- E.g., Let's feed a model a bunch of text so that it can generate text in language X.

How do we solve any of these problems?

Data!

https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/The_Scientific_Method.svg/1200px-The_Scientific_Method.svg.png

Where does the data come from?

Corpus (plural: corpora)

- Literally a “body” of text

Languages with few corpora are called “low-resource languages”

- This might not mean the language is endangered!

We can collect corpora in a few different ways:

- Curation: data tagged & organized by experts
- Internet: data “scraped” from open-access sources (Wikipedia, Reddit)
 - Or data collected with permission from closed sources (Facebook, texts) – more rare
- Elicitation: carefully getting participants to produce language (lab studies, crowdsourcing, field studies)
- Pre-existing corpora

!

Facebook has gotten into trouble several times for using data or manipulating people’s feeds without their permission

Benchmarking

Collecting & publishing corpora is helpful for...

- Replication
- Improving performance

Benchmarking

Your task

If you want people to work on your problem, make it easy for them to get started and to measure their progress. Provide:

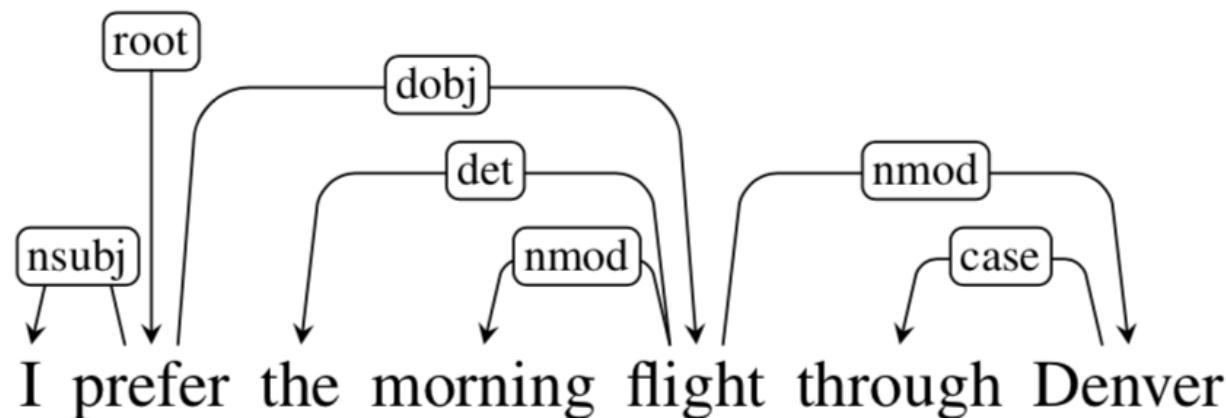
- **Test data**, for evaluating the final systems
- **Development data**, for measuring whether a change to the system helps, and for tuning parameters
- An **evaluation metric** (formula for measuring how well a system does on the dev or test data)
- A **program** for computing the evaluation metric
- **Labeled training data** and other data resources
- A **prize**? – with clear **rules** on what data can be used

What does the data look like?

Curated data (and some collected data) are usually labeled, especially when made for a particular **task**

- E.g., Universal dependencies (<https://universaldependencies.org/>)

Current UD Languages


Information about language families (and genera for families with multiple branches) is mostly taken from [WALS Online](#) (IE = Indo-European).

▶ Abaza	1	<1K		Northwest Caucasian
▶ Abkhaz	1	6K		Northwest Caucasian
▶ Afrikaans	1	49K		IE, Germanic
▶ Akkadian	2	25K		Afro-Asiatic, Semitic
▶ Akuntsu	1	1K		Tupian, Tupari
▶ Albanian	2	4K		IE, Albanian
▶ Amharic	1	10K		Afro-Asiatic, Semitic
▶ Ancient Greek	3	456K		IE, Greek
▶ Ancient Hebrew	1	39K		Afro-Asiatic, Semitic
▶ Apurina	1	<1K		Arawakan
▶ Arabic	3	1,042K		Afro-Asiatic, Semitic
▶ Armenian	2	94K		IE, Armenian
▶ Assyrian	1	<1K		Afro-Asiatic, Semitic
▶ Azerbaijani	1	<1K		Turkic, Southwestern
▶ Bambara	1	13K		Mande
▶ Basque	1	121K		Basque
▶ Bavarian	1	15K		IE, Germanic
▶ Beja	1	11K		Afro-Asiatic, Cushitic
▶ Belarusian	1	305K		IE, Slavic
▶ Bengali	1	<1K		IE, Indic
▶ Bhojpuri	1	6K		IE, Indic
▶ Bororo	1	6K		Bororoan
▶ Breton	1	10K		IE, Celtic
▶ Bulgarian	1	156K		IE, Slavic
▶ Buryat	1	10K		Mongolic
▶ Cantonese	1	13K		Sino-Tibetan, Chinese
▶ Cappadocian	2	4K		IE, Greek
▶ Catalan	1	553K		IE, Romance
▶ Cebuano	1	1K		Austronesian, Central Philippine
▶ Chinese	7	309K		Sino-Tibetan, Chinese
▶ Chukchi	1	6K		Chukotko-Kamchatkan
▶ Classical Armenian	1	88K		IE, Armenian
▶ Classical Chinese	2	433K		Sino-Tibetan, Chinese
▶ Coptic	1	57K		Afro-Asiatic, Egyptian
▶ Croatian	1	199K		IE, Slavic
▶ Czech	6	2,252K		IE, Slavic
▶ Danish	1	100K		IE, Germanic
▶ Dutch	2	506K		IE, Germanic
▶ Egyptian	1	14K		Afro-Asiatic, Egyptian
▶ English	11	760K		IE, Germanic
▶ Erzya	1	20K		Uralic, Mordvin

What does the data look like?

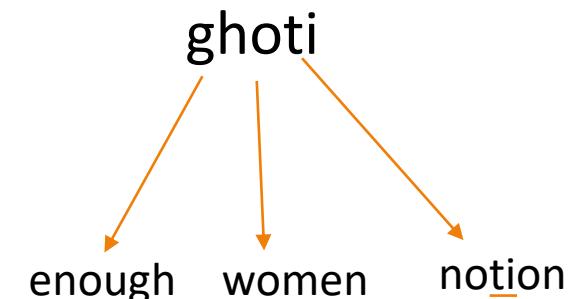
Curated data (and some collected data) are usually labeled, especially when made for a particular **task**

- E.g., Universal dependencies (<https://universaldependencies.org/>)

<https://medium.com/data-science-in-your-pocket/dependency-parsing-associated-algorithms-in-nlp-96d65dd95d3e>

Modalities

Text


TTS isn't straight forward. Unless you have information on how text is pronounced, an orthography (a writing system) by itself can be misleading.

Audio (speech)

Video (closed captioning, sign languages)

Pictures (handwriting recognition, image captioning)

Any of these can be labeled

What's in a word?

bat

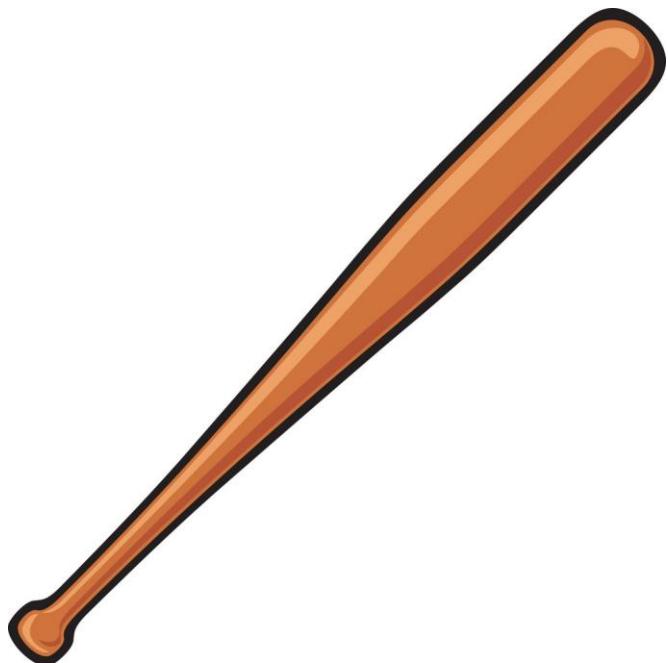
<https://www.freepngimg.com/download/bat/9-2-bat-png-hd.png>

What's in a word?

bats

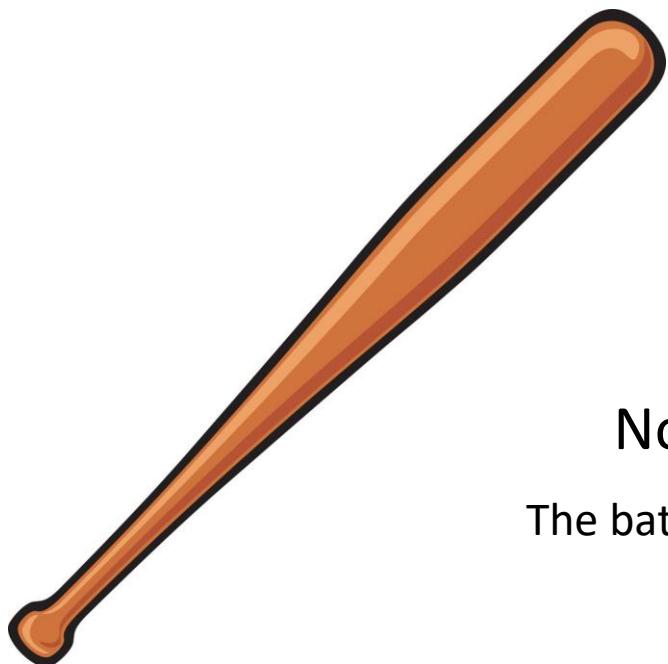
<https://www.freepngimg.com/download/bat/9-2-bat-png-hd.png>

What's in a word?


Fledermaus
flutter mouse

<https://www.freepngimg.com/download/bat/9-2-bat-png-hd.png>

What's in a word?



bat

<https://www.vectorstock.com/royalty-free-vector/baseball-bat-vector-1448799>

What's in a word?

bat

Noun?

The bat was heavy.

Verb?

They bat 1000.

What's in a word?

):

What's in a word?

my leg is hurting nasty):

What's in a word?

add two cups (a pint): bring to a boil

Tokens vs Types

The film got a great opening and the film went on to become a hit .

Vocabulary: the words (items) you know

Type: an element of the vocabulary.

Token: an instance of that type in running text.

How many of types & tokens appear in the above sentence?

Tokens vs Types

Types

- The
- film
- got
- a
- great
- opening
- and
- the
- went
- on
- to
- become
- hit
- .

Tokens


- The
- film
- got
- a
- great
- opening
- and
- the
- ~~film~~
- went
- on
- to
- become
- ~~a~~
- hit
- .

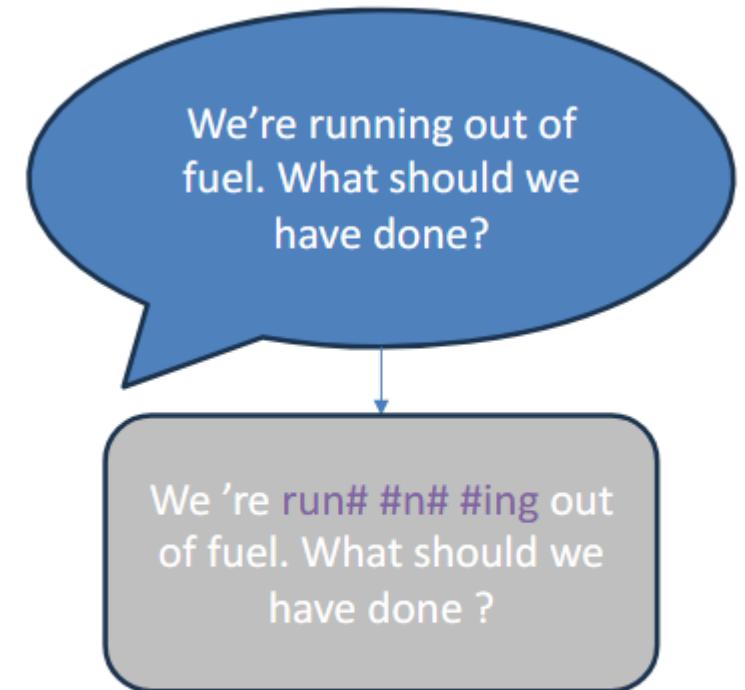
For your {task} how do you define tokens?

Sometimes:

1. They're defined for you by the *dataset creator*

What usually happens when you input a word that your writing/texting program doesn't recognize?

why?


- *scaleably handling novel words*
 - *linguistic reasons*
- *historical reasons / technical debt*

For your {task} how do you define tokens?

Sometimes:

1. They're defined for you by the *dataset creator*
2. They're defined by the *model*

*(why? scaleably
handling novel words)*

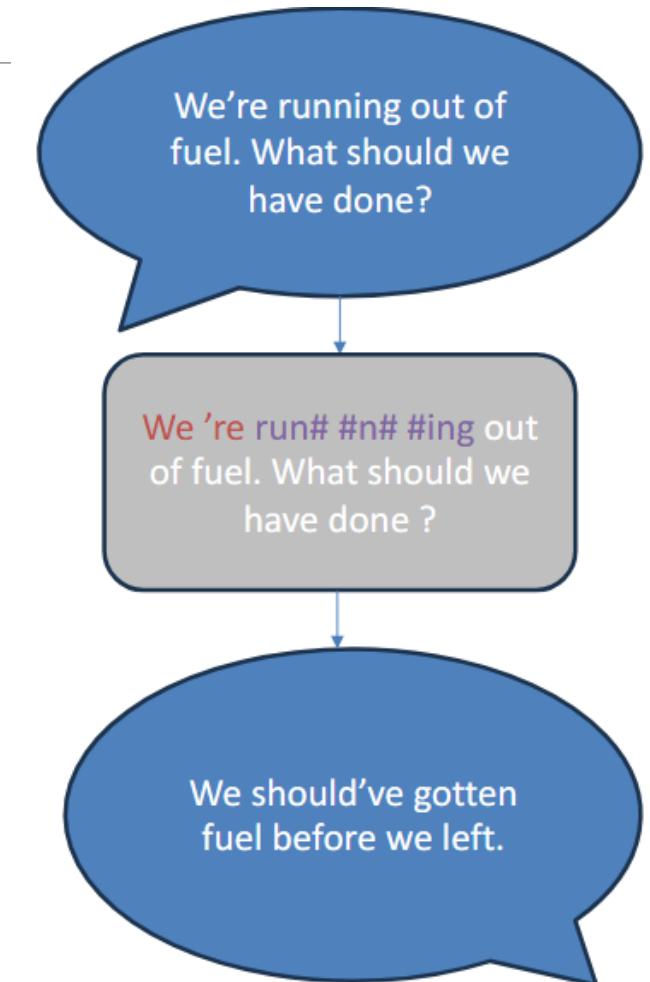
For your {task} how do you define tokens?

Sometimes:

1. They're defined for you by the *dataset creator*
2. They're defined by the *model*
3. It might be part of the *research problem itself*

pişirdiler
They cooked it.

vs.


pişmişlermişlerdi
They had it cooked it.

For your {task} how do you define tokens?

Sometimes:

1. They're defined for you by the *dataset creator*
2. They're defined by the *model*
3. It might be part of the *research problem itself*
4. They're defined by the *end user*
 1. You'll need to handle points 1 and/or 2 on-the-backend...
 2. and then reversing the process to present output to the user

What are some NLP applications that you see in your daily life?

- ChatGPT/chatbots
- Speech recognition
- Dialog agents (Siri/Alexa)
- Translation
- Auto-correct/ Grammar correction
- Auto-complete (search engines, email)
- Search engine agent
- Code assistants
- Email summarizer

True or False

The following sentence has the same number of types as tokens (i.e., # types = # tokens)

The dog caught the frisbee .