NLP Tasks

Instructor: Lara J. Martin (she/they)
TA: Omkar Kulkarni (he)

https://laramartin.net/NLP-class/
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Learning Objectives

Define featurization & other ML terminology

Define some “classification” terminology
Distinguish between different text classification tasks

Formalize NLP Tasks at a high-level:
> What are the input/output for a particular task?
o What might the features be? —  Similar to HW 1
o What types of applications could the task be used for?

Calculate elementary processes on a dataset
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Speaking of HW 1...

Due Feb 20

Homework 1: Being up to the Task

Learning Objectives

= Searching for basic information about NLP tasks.

Exploring a dataset.

Coming up with appropriate tasks for an application & providing your reasoning behind it.
Determining appropriate inputs and outputs for tasks.

Creating a system diagram.

-

-

Description

You work for SuperDuperAl (SDAI), a start-up company that makes Al tools that their customers can use. You are their NLP specialist. One of SDAI's
customers recently came to the company with a database of textbooks that they collected. They want SDAI to make them an app that can quiz people
when they select a textbook.

The flow of the app will look like this:

a. The user types in a keyword that they're interested in, and the app finds relevant textbooks.
b. They select the textbook and chapter they want to use.

c. The app displays a question relevant to the chapter.

d. The user answers the question.

e. The app gives a numerical score for how well the user answered the question.

2/4/2025 Being the NLP specialist on the team, you are in charge of figuring out what is needed to create parts a, ¢, and e.




Helpful ML Terminology

: the (computable) way to go from features (input) to labels/scores
(output)

Weights/parameters (0): vectors of numbers that control how the model
produces labels/scores from inputs. These are learned through training.

Input
(Prompt)

Output
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ML/NLP Framework

. features: ML model:
Instances K-dimensional vector * take in featurized input
. *  output scores/labels
representatlons (one e contains weights 6

per instance)
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Helpful ML Terminology

: the (computable) way to go from features (input) to labels/scores
(output)

Weights/parameters: vectors of numbers that control how the model produces
labels/scores from inputs. These are learned through training.

Objective function: an algorithm/calculation, whose variables are the weights of
the , that we numerically optimize in order to learn appropriate weights
based on the labels/scores. The weights are adjusted.

. an algorithm/calculation that scores how “correct” the

predictions are. The weights are not adjusted.
Note: The evaluation and
objective functions are often
different!
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(More) Helpful ML Terminology

Training / Learning:

* the process of adjusting the model’s weights to learn to make good predictions.

Inference / Prediction / Decoding / Classification:

* the process of using a model’s existing weights to make (hopefully!) good
predictions
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ML/NLP Framework for Learning

instances features: ML model: output Objective
K-dimensional vector ° takeinfeaturizedinput (correct) Function/

. * output scores/labels .
representations (one . contains weights 6 labels Learning

per instance)

score

N !/

Obijective
Function

0®0@ 0000 00000000

give feedback
to the model
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ML/NLP Framework for Prediction

instances features: ML model: output Evaluation
K-dimensional vector ° takeinfeaturizedinput (correct) Function
. * output scores/labels
representations (one . contains weights 6 labels

per instance)

score

/
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ML/NLP Framework for Learning & Prediction

instances features: ML model: output Objective / Eval
K-dimensional vector ° takeinfeaturizedinput (correct) Function
. * output scores/labels
representations (one . contains weights 6 labels

per instance)
score

Obijective
Function

Evaluation
Function

NV

score

0®0@ 0000 00000000
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First: Featurization / Encoding / Representation

features:
K-dimensional vector

representations (one
per instance)
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ML Term: “Featurization”

The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the
input language x

fx) = (f1(x), ..., fx (X))
S

Each of these is a feature

(/feature function)




ML Term: “Featurization”

The procedure of extracting features for some input

Often viewed as a K-dimensional vector function f of the input language x

fx) = (1), ..., fie (%))

In supervised settings, it can equivalently be viewed as a K-dimensional vector function
f of the input language x and a potential label y

? f(xry) - (f1(X,Y), er(x'y))

Features can be thought of as “soft” rules
o E.g., positive sentiments tweets may be more likely to have the word “happy”
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Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not O are said to have fired
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Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we’ll come back to this!)

Often binary-valued (0 or 1), but can be real-valued
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Three Common Types of Featurization in
NLP

1. Bag-of-words (or bag-of-
characters, bag-of-relations)

2. Linguistically-inspired
features

3. Dense features via
embeddings
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Three Common Types of Featurization in
NLP

* easy to define / extract
e sometimes still very useful

1. Bag-of-words (or bag-of- <
characters, bag-of-relations)

2. Linguistically-inspired
features

3. Dense features via
embeddings
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Three Common Types of Featurization in

NLP

1. Bag-of-words (or bag-of- <
characters, bag-of-relations)

2. Linguistically-inspired <
features

3. Dense features via
embeddings
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Three Common Types of Featurization in
NLP

* easy to define / extract
sometimes still very useful

1. Bag-of-words (or bag-of- <
characters, bag-of-relations)

* harder to define

i oo i ] * helpful for interpretation
2. Linguistically-inspired < - depending on task:

features conceptually helpful
e currently, not freq. used

* harder to define

3. Dense features via - * harder to extract (unless

embeddings there’s a model to run)
e currently: freq. used
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Three Common Types of
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
o Identify unique sufficient atomic sub-parts (e.g., words in a document)

° Define simple features over these, e.g.,
o Binary (0 or 1) = indicating presence
° Natural numbers = indicating number of times in a context
° Real-valued = various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features

3. Dense features via embeddings

2/5/2026 INTRO TO NLP - NLP TASKS
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Example: Document Classification via
Bag-of-Words Features

TECH
NOT TECH




Questions to consider...

> What are the input/output for this task?
o What might the features be?
> What types of applications could the task be used for?

TECH
NOT TECH
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Questions to consider...

> What are the input/output for this task?
o What might the features be?
> What types of applications could the task be used for?

Input

Output

TECH
NOT TECH
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Questions to consider...

> What are the input/output for this task?
> What might the features be?
> What types of applications could the task be used for?

TECH
NOT TECH
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Example: Document Classification via
Bag-of-Words Features

TECH
NOT TECH

With V word types,

define V feature
functions f;(x) as
feature extraction fl ( X) —# of times word

type i appears
in document x




Example: Document Classification via
Bag-of-Words Features

TECH
NOT TECH

With V word types,

define V feature
functions f;(x) as
feature extraction fl ( X) —# of times word

type i appears
in document x

) = (),




Example: Document Classification via
Bag-of-Words Features

TECH

NOT TECH

feature f;(x) m

alerts

assist

bombing
feature extraction Boston

sniffle 0

N R R R




Example: Document Classification via
Bag-of-Words Features

TECH
NOT TECH
f(x): “bag of words” w: weights
VORI [T T
alerts 1 alerts
assist 1 assist -0.25
bombing 1 bombing 0.8
Boston 2 Boston -0.00001

sniffle 0




Three Common Types of
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
o Identify unique sufficient atomic sub-parts (e.g., words in a document)

° Define simple features over these, e.g.,
o Binary (0 or 1) = indicating presence
° Natural numbers = indicating number of times in a context
° Real-valued = various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features

o Define features from words, word spans, or linguistic-based annotations extracted from
the document

3. Dense features via embeddings
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Three Common Types of
Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
o Identify unique sufficient atomic sub-parts (e.g., words in a document)

° Define simple features over these, e.g.,
o Binary (0 or 1) = indicating presence
° Natural numbers = indicating number of times in a context
° Real-valued = various other score (we’ll see examples throughout the semester)

2. Linguistically-inspired features

o Define features from words, word spans, or linguistic-based annotations extracted from
the document

3. Dense features via embeddings Will be
discussed

o Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, ... :
in a future

lecture
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Second: Classification Terminology

output
(correct)
labels

Label type
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Classification Types (Terminology)

Number of # Label Types
Tasks

(Domains)
Labels are
Associated with

(Binary) Classification

Multi-class
Classification

Multi-label
Classification

Multi-task
Classification
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Classification Types (Terminology)

Number of # Label Types
IEH S

(Domains)
Labels are
Associated with

Sentiment: Choose one of

(Binary) Classification 1 2 I ———

Multi-class
Classification

Multi-label
Classification

Multi-task
Classification
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Classification Types (Terminology)

Number of # Label Types
Tasks

(Domains)
Labels are
Associated with

Sentiment: Choose one of

' ificati 1 2 » .
(Binary) Classification e OF HEERe)
Multi-class 1 59 Part-of-speech: Choose one
Classification of {Noun, Verb, Det, Prep, ...}
Multi-label
Classification
Multi-task

Classification
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Classification Types (Terminology)

Number of # Label Types
Tasks

(Domains)
Labels are
Associated with

Sentiment: Choose one of

(Binary) Classification 1 e ————
Multi-class 1 59 Part-of-speech: Choose one
Classification of {Noun, Verb, Det, Prep, ...}
Multi-label Sentlmen.t:.Choose multiple

1 > 2 of {positive, angry, sad,

Classification :
excited, ...}

Multi-task
Classification
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Classification Types (Terminology)

Number of # Label Types
IFHS

(Domains)
Labels are
Associated with

Sentiment: Choose one of

(Binary) Classification 1 2 o
Multi-class Part-of-speech: Choose one
e 1 > 2
Classification of {Noun, Verb, Det, Prep, ...}
: Sentiment: Choose multiple
SIS 1 > 2 of {positive, angry, sad,

Classification )
excited, ...}

Task 1: part-of-speech

Per task: 2 of > 2 Task 2: named entity tagging

M- >1 (can apply to binary

Classification = = T R e
Task 1: document labeling
Task 2: sentiment

or multi-class)




Text Annotation Tasks

(“Classification” Tasks)

1.Classify the entire document (“text categorization”)

2 .Classify word tokens individually

3.Classify word tokens in a sequence

4.ldentify phrases (“chunking”)
5.Syntactic annotation (parsing)

6.Semantic annotation

/. Text generation




Text Annotation Tasks

(“Classification” Tasks)

1.Classify the entire document (“text categorization”)
2.

3.
4.
5.
6.




Questions to consider...

> What are the input/output for this task?
o What might the features be?
> What types of applications could the task be used for?

TECH
NOT TECH

2/5/2026 INTRO TO NLP - NLP TASKS



Text Classification

Assigning subject categories, topics, or Language Identification
genres

Sentiment analysis
Spam detection

Authorship identification
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Text Classification

Assigning subject categories, topics, or Language Identification
genres

Sentiment analysis
Spam detection

Authorship identification

a document '
(extracted
features) '

a predicted class ¢
from C

AV

0@0® 0000 0000 0000
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Text Classification: Hand-coded Rules?

Assigning subject categories, topics, or Language Identification
genres

Sentiment analysis
Spam detection

Authorship identification

Rules based on combinations of words or other features
spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high
If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?
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Text Classification: Supervised Machine
Learning

Assigning subject categories, topics, or Language Identification

enres : :
& Sentiment analysis
Spam detection

Authorship identification

a fixed set of classes

C={cy, ¢y, C}} a learned
“ . . ° »” classifier y that
a training set of m hand-labeled Tra NI ng P rocess maps documents

documents D with corresponding to classes

labels (d,y,),....(d.,v,.) v EC
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Questions to consider...

> What are the input/output for this task?
o What might the features be?
o What types of applications could the task be used for?

Input

Output

An alternate view of this is...

A o — - 1
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Text Classification: Supervised Machine
Learning - Training

Assigning subject categories, topics, or Language Identification

enres . .
8 Sentiment analysis
Spam detection ycorresponding to the
o . ) gold label for d.
Authorship identification I

score

document d. from the training set ' —

el | ()

N\
STt
o

0@0® 0000 0000 0000

C={cy, Cy..., C}}
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Text Classification: Supervised Machine
Learning - Testing

Assigning subject categories, topics, or Language Identification

enres . :
& Sentiment analysis
Spam detection ycorresponding to the
o . ) gold label for d.
Authorship identification I
@)
document d; from the testing set ' o § ’
J 'y
N A ¢
a8 |
B 8|~ @
S a learned
9 classifier y that CD o
' — o maps documents core @ Class prediction from

to classes C= {Cl, Cyyeeny C_]}
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Text Classification: Supervised Machine
Learning — Model examples

Assigning subject categories, topics, or Language Identification
genres

S
Spam detection ; - ;
Authorship identification :
PO 0
B ONDC
@)
document d; from the testing set ' o § \
@)
e
' 84 \. 0
e 7
= a learned
' 8 classifier y that
9 maps documents score
to classes
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Knowledge Check:
Handling Types and Tokens

CMSC 473/673 NLP @ UMBC About Schedule Homework ¥ Knowledge Checks >

e 10 minutes to do it

in class CM SC 473/673 Natural Language Processifream=ersys
Y | t t Spring 2026
®
O u Ca n CO m p e e I Jump to class policies: [Late Day] [Academic Integrity] [Generative Al] [GitHub Use] [Collaboration]

after class Course Description

. . Matural language processing (MLP) is the field of working with language to automatically perform a variety of
¢ T 1 e n S U b m It It to tasks, instead of or in collaboration with people. MLP can focus on the Generation (MLG) and/or Understanding
(MLU) of natural language. Recently, large language models (LLMs) like ChatGPT have gotten the attention of
B a C k b O a rd the general public, but they have also greatly changed the landscape of modemn MLP research. This course will
show you both old & new techniques that are still used today and will give you a basic understanding of why &
e |'ll release my how we do NLP.

Learning Objectives

answer 2/13 (please Bv the end of the course. vou will be ahle to...
finish before then)
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Text Annotation Tasks

(“Classification” Tasks)

1.
2 .Classify word tokens individually
3.

4.
5.
6.
/.




p(class | token in context)

Word Sense Disambiguation (WSD)

Problem:

The company said the plant is still operating ...
= (A) Manufacturing plant or
= (B) Living plant

Training Data: Build a special classifier just for tokens of “plant”

Sense Context
(1) Manufacturing ... union responses to plant closures. ...
T ... computer disk drive plant located in ...
company manufacturing plant 1s in Orlando ...
(2) Living ... animal rather than plant tissues can be ...
T ... to strain microscopic plant life from the ...
and Golgi apparatus of plant and animal cells

% %

% %

Test Data:
Sense Context
777 ... vinyl chloride monomer plant , which is ...
. 77? .. molecules found in plant tissue from the ... e




p(class | token in context)

WSD for Machine Translation
(English — Spanish)

Problem:

... He wrote the last sentence two years later ...
=- sentencia (legal sentence) or
= frase (grammatical sentence)

Training Data: Build a special classifier just for tokens of “sentence”
Translation Context
(1) sentencia | ... for a maximum sentence for a young offender ...

2 E

.. of the minimum sentence of seven years in jail ...
... were under the sentence of death at that time ...
(2) frase ... read the second sentence because it s just as ...

v ... The next sentence is a very important ...
... It is the second sentence which I think is at ...

% E

2 E

Test Data:

Translation Context ‘
27?7 ... cannot criticize a sentence handed down by ...
- 27?7 ... listen to this sentence uttered by a former ...




p(class | token in context)

Accent Restoration in Spanish & French

Problem:
Input: ... deja travaille cote a cote ...
¥
Output: ... déja travaillé cote a cote ...
Examples:

... appeler I"autre cote de ’atlantique ...
=~ coté (meaning side) or
= cote (meaning coast)

.. une famille des pecheurs ...
= pécheurs (meaning fishermen) or
= pécheurs (meaning sinners)
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p(class | token in context)

Accent Restoration in Spanish & French

Training Data:

Pattern Context

(1) cote ... du laisser de cote faute de temps ...
77 | ... appeler I’ autre cote del” atlantique ...
... passe de notre cote de la frontiere ...
(2) cote | ... vivre sur notre cote ouest toujours ...
S ... creer sur la cote du labrador des ...
travaillaient cote a cote , 1ls avaient ...

% L

E- L

Test Data:

Pattern Context
?77? ... passe de notre cote de la frontiere ...
27?7 ... creer sur la cote du labrador des ...
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p(class | token in context)
Text-to-Speech Synthesis

Problem:

... slightly elevated lead levels ...
= led (as in lead mine) or
= li:d (as in lead role)

Training Data:

Pronunciation Context
(1) led ... it monitors the /ead levels in drinking ...
v ... conference on lead poisoning in ...
... strontium and lead 1sotope zonation ...
(2) li:d ... maintained their /ead Thursday over ...
?7 ... to Boston and /ead singer for Purple ...
... Bush a 17-point /ead in Texas , only 3 ...

0 b

L 0

Test Data:
Pronunciation Context
777 ... median blood /ead concentration was ..
?7? ... his double-digit lead nationwide . The ...
] I
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p(class | token in context)

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...
= aid or

= aide

Training Data:

Spelling Context
(1) aid ... and cut the foreign aid/aide budget in fiscal 1996 ...
77 | ... they offered federal aid/aide for flood-ravaged states ...
(2) aide ... fired presidential aid/aide Dick Morris after ...
v ... and said the chief aid/aide to Sen. Baker, Mr. John ...
Test Data:
Spelling Context
77? ... said the longtime aid/aide to the Mayor of St. ...
77? ... will squander the aid/aide it receives from the ...

2/4/2025
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nat features? Example: “word to

| left [of correction]”

Word to left

Frequency as
Aid

Frequency as
Aide

foreign
federal
western
provide
covert
oppose
future
similar
presidential
chief
longtime
aids-infected

sleepy
disaffected

indispensable
practical
squander

718

297
146
88
26
1

cC oo o o o o

=N
e

—_— o o O o oIS O W

[ I =
R e

= D = = = 2

Spelling correction using an

would use
words to left and right to help
predict the true word.

Similarly, an would predict a
word’s class using classes to left
and right.

But we’d like to throw in all kinds of
other features, too ...

I ———



An assortment of possible cues ...

I EEEE——
2/4/2025

Position | Collocation led | lizd
N-grams +1 L lead level/N 219 0
-1w narrow lead 0 | 70
(word, +TW lead in 207 | 898
lemma, -lw,+1w | of lead in 162 0
part-of-speecH) | -1W,+1W | the lead in 0 |301
+1p,+2P |lead, <NOUN> 234 7
Wide-contex} | Ltk w zinc (in ==k words) 2351 0
collocations +k w copper (in £k words) | 130 | 0
Verb-object -VL follow/V + lead 0 |527
relatiunships\ -VL take/V + lead 1 665
Frequency as | Frequency as
generates a whole bunch of potential Word to left Aid Aide
cues — use data to find out which foreign 718 1
ones work best federal 297 0
western 146 0
provide 88 0




An assortment of possible cues ...

Pogition | Collocation led | li:d | This feature is
N-grams +1L )| lead level/N 219| 0 | relatively weak,

-1'w narrow lead 0 | 70 but weak
(word, +1w lead in 898 | features are still
lemma, -1w,+1w | of lead in 162 | 0 | useful, especially
part-of-speedh) | -1w,+1w | the lead in 0 (301 since

+1p,4+2P |lead, <NOUN> 234| 7 |very few features
Wide-contekt | £k w zine (in £k words) 235| 0 |willfireina given
collocations| |4k w copper (in =k words) | 130 | 0 context.
Verb-objec follow/V + lead 0 |527
relationshi L take/V + lead 1 665

follow/V + lead = li:d
zinc (in £k words) = led
lead level/N = led
of lead in = led
the lead in = li:d
lead role = li:d

merged ranking
of all cues
of all these types




Final decision list for lead (abbreviated)

What are the input/output? Logl. | Evidence Pronunciation
What types of applications? 11.20 | zinc (in £k words) = led
11.10 | lead level/N = led
List of all features, 10.66 | of lead in = led
: : 10.59 | the lead in = li:d
ranked by their weight. 1051 | lead role i
(These weights are for a simple 10351 copper (in £k words) = l.fd
“decision list” model where the single ig;i ieaj ?mj = il:j
highest-weighted feature that fires 10-16 lead Evf’i ° + = lfd
gets to make the decision all by itself. ) cad poisoning = f
8.55 | biglead = li:d
However, a log-linear model, which 8.49 | narrow lead = 1{:{1
adds up the weights of all features 7.76 | take/V + lead = lid
that fire, would be roughly similar.) (2.2 | lead ,.NOUN = led
lead in = li:d
o R oNe
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2/4/2025

Text-to-Speech Synthesis

Problem:

... slightly elevated lead levels ...
= led (as in lead mine) or
= li:d (as in lead role)

Training Data:

Pronunciation Context
(1) led ... it monitors the /ead levels in drinking ...
v ... conference on lead poisoning in ...
v ... strontium and lead 1sotope zonation ...
(2) li:d ... maintained their /ead Thursday over ...
?7 ... to Boston and /ead singer for Purple ...
?7 ... Bush a 17-point /ead in Texas , only 3 ...
Test Data:
Pronunciation Context
?7? ... median blood lead concentration was ..
?7? ... his double-digit lead nationwide . The ...

NLP TASKS
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Token Classification

Word pronunciation Accent restoration

Word sense disambiguation (WSD)
within or across languages

actual class Ci
score C= {Cl, Cyyeery CJ}

F, = [f1,1 ’ f1,2 y e fl,m]

features F, extracted from 9 f
word w, and its surrounding ' 1T | © hiect

'e) 'y JECFIVE
words (context) > C j g Function

., |@ ¥
' 8 / G D Evaluation

@) Function

o

° P

@ score

o2 .

prediction
2/4/2025 NLP TASKS 64




Text Annotation Tasks

(“Classification” Tasks)

1.
2.
3.Classify word tokens in a sequence (i.e., order matters)
4,

5
6.
7/




Example: Part of Speech Tagging

We could treat tagging as a token classification problem
> Tag each word independently given features of context

> And features of the word’s spelling (suffixes, capitalization)
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

\Jo[nn fw the saw and decided to take it to the table.
classifier

l

NNP
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

Jo% salw 76 saw and decided to take it to the table.

classifier

l

VBD
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw tij /w and decided to take 1t to the table.

classifier

l

DT
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw % 31w 7@ decided to take it to the table.

classifier

l

NN
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw a:ld decided to take it to the table.

classifier

l

CC
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw an%eclde‘d/o take 1t to the table.

classifier

l

VBD
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

N/

classifier

l

TO
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw and decided titake it to the table.

classifier

l

VB
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw and decided to taie 1t to the table.

/

classifier

l

PRP
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw and decided to take t\‘ to the table.

classifier
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Sequence Labeling as Classification

Classify each token independently but use as input features, information about
the surrounding tokens (sliding window).

John saw the saw and decided to take it ti‘ t‘ie fble.

classifier

l

DT
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