

NLP Tasks

Instructor: Lara J. Martin (she/they)

TA: Omkar Kulkarni (he)

<https://laramartin.net/NLP-class/>

Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner

Learning Objectives

Define featurization & other ML terminology

Define some “classification” terminology

Distinguish between different text classification tasks

Formalize NLP Tasks at a high-level:

- What are the input/output for a particular task?
- What might the features be?
- What types of applications could the task be used for?

Similar to HW 1

Calculate elementary processes on a dataset

Speaking of HW 1...

Due Feb 20

Homework 1: Being up to the Task

Learning Objectives

- Searching for basic information about NLP tasks.
- Exploring a dataset.
- Coming up with appropriate tasks for an application & providing your reasoning behind it.
- Determining appropriate inputs and outputs for tasks.
- Creating a system diagram.

Description

You work for SuperDuperAI (SDAI), a start-up company that makes AI tools that their customers can use. You are their NLP specialist. One of SDAI's customers recently came to the company with a [database of textbooks](#) that they collected. They want SDAI to make them an app that can quiz people when they select a textbook.

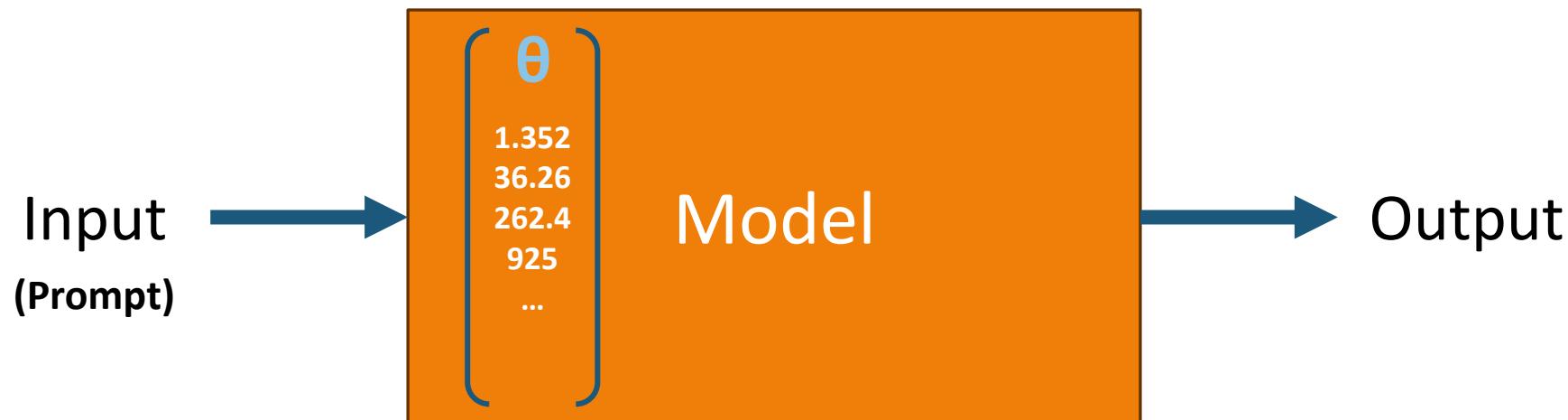
The flow of the app will look like this:

- a. The user types in a keyword that they're interested in, and the app finds relevant textbooks.
- b. They select the textbook and chapter they want to use.
- c. The app displays a question relevant to the chapter.
- d. The user answers the question.
- e. The app gives a numerical score for how well the user answered the question.

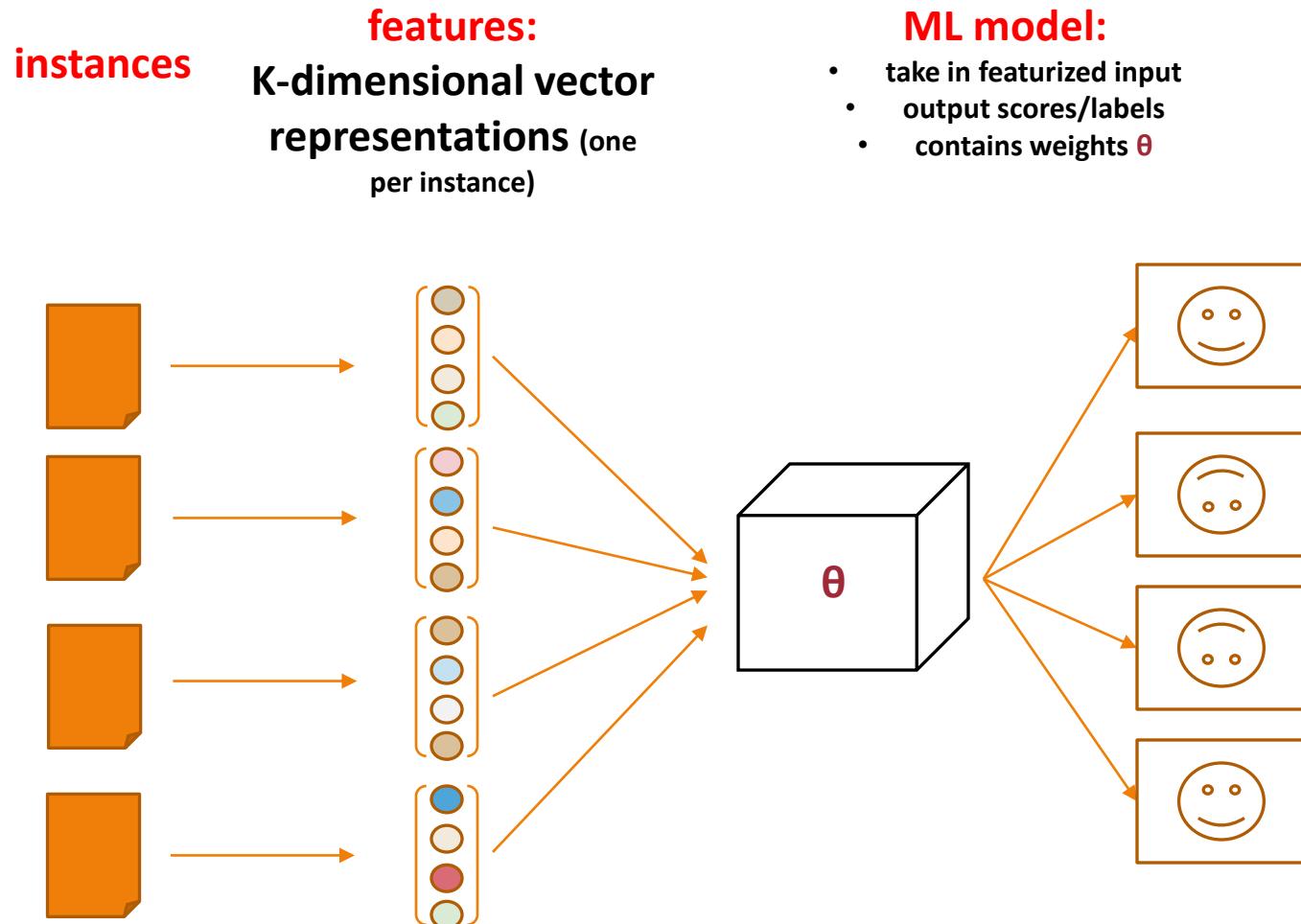
Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters (θ): vectors of numbers that control how the model produces labels/scores from inputs. These are learned through **training**.



ML/NLP Framework



Helpful ML Terminology

Model: the (computable) way to go from **features** (input) to labels/scores (output)

Weights/parameters: vectors of numbers that control how the model produces labels/scores from inputs. These are learned through **training**.

Objective function: an algorithm/calculation, whose variables are the **weights** of the **model**, that we numerically optimize in order to learn appropriate weights based on the labels/scores. The **model's** weights are adjusted.

Evaluation function: an algorithm/calculation that scores how “correct” the **model's** predictions are. The **model's** weights are not adjusted.

Note: The evaluation and objective functions are often different!

(More) Helpful ML Terminology

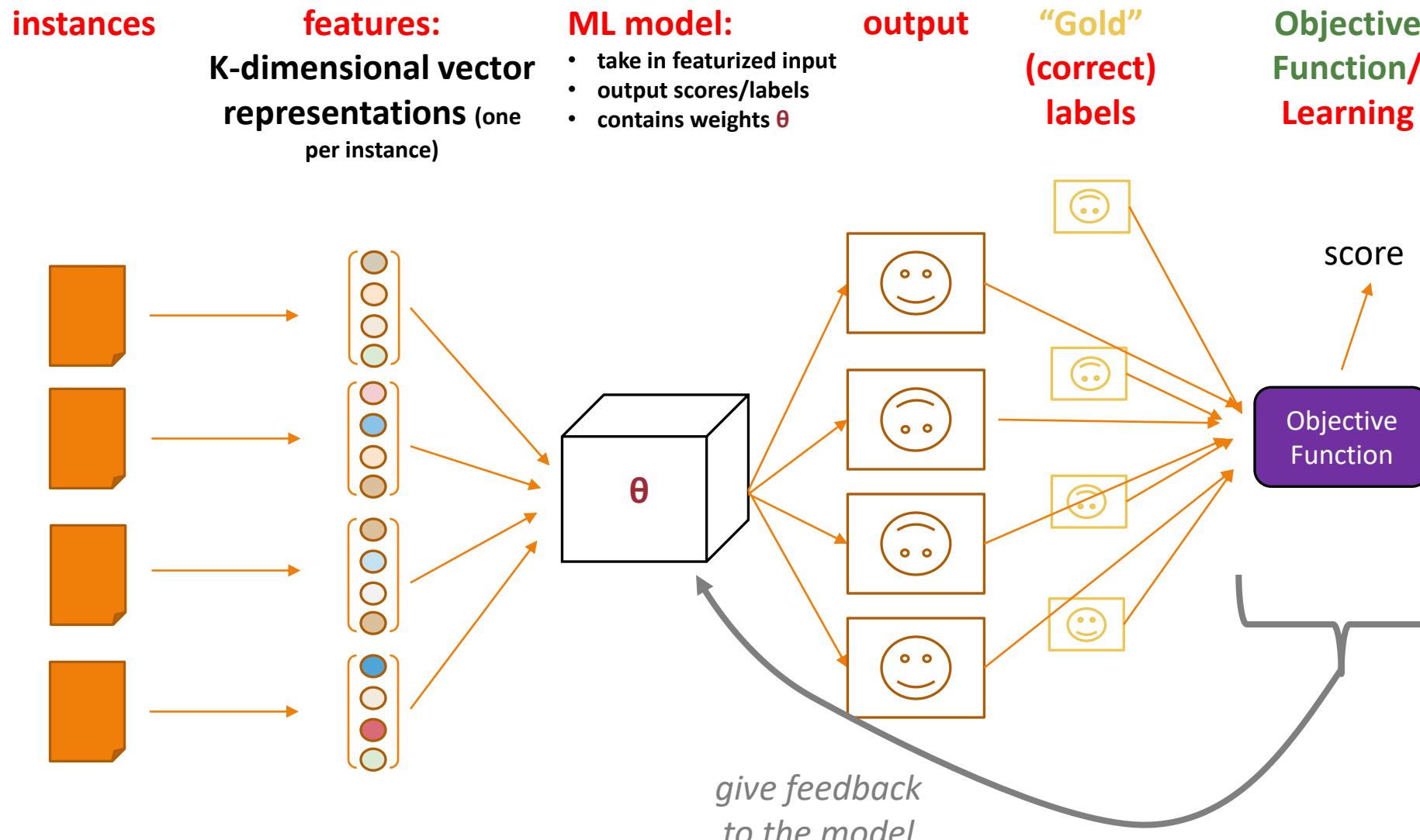
Training / Learning:

- the process of adjusting the model's weights to learn to make good predictions.

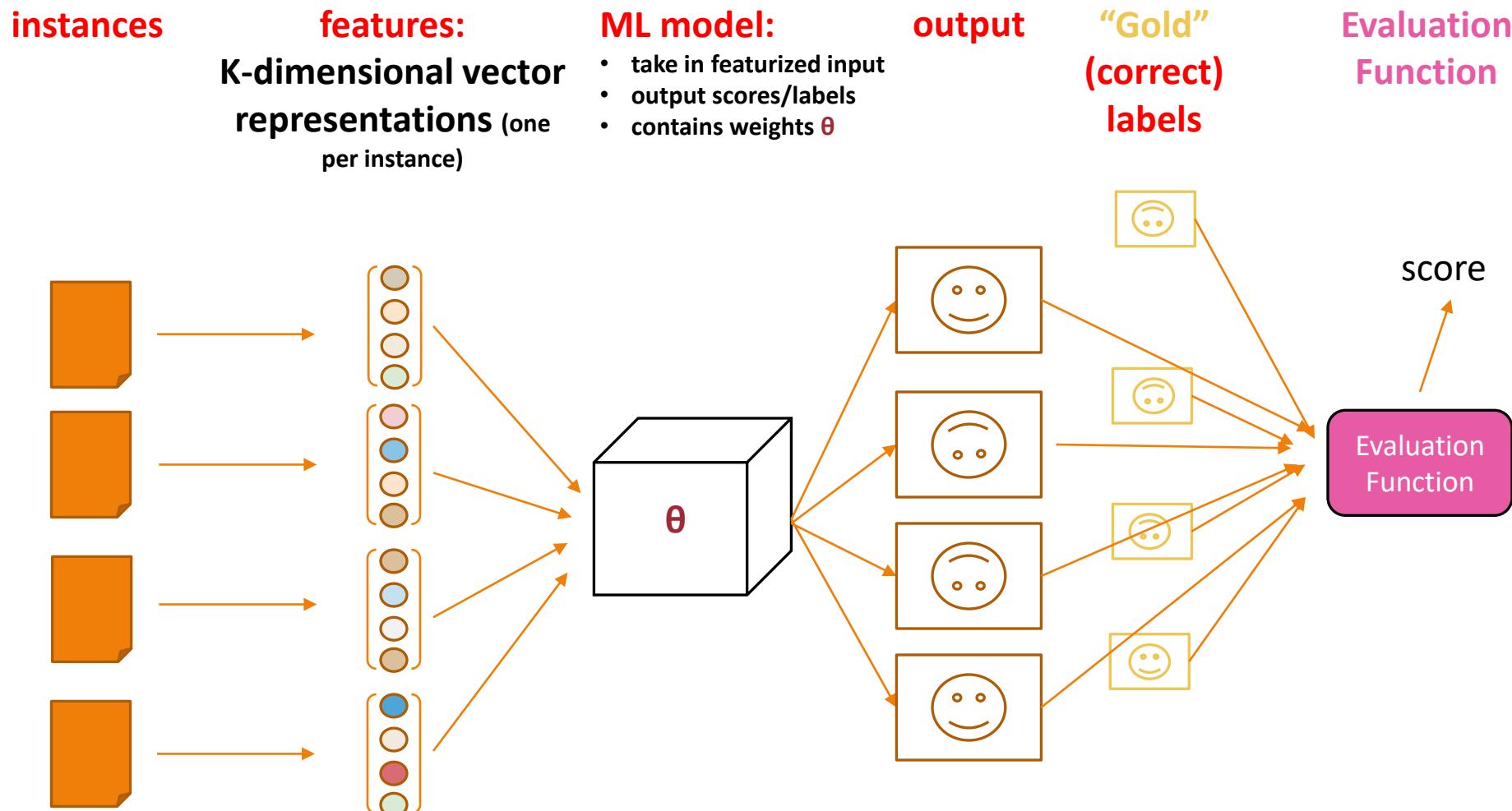
Inference / Prediction / Decoding / Classification:

- the process of using a model's existing weights to make (hopefully!) good predictions

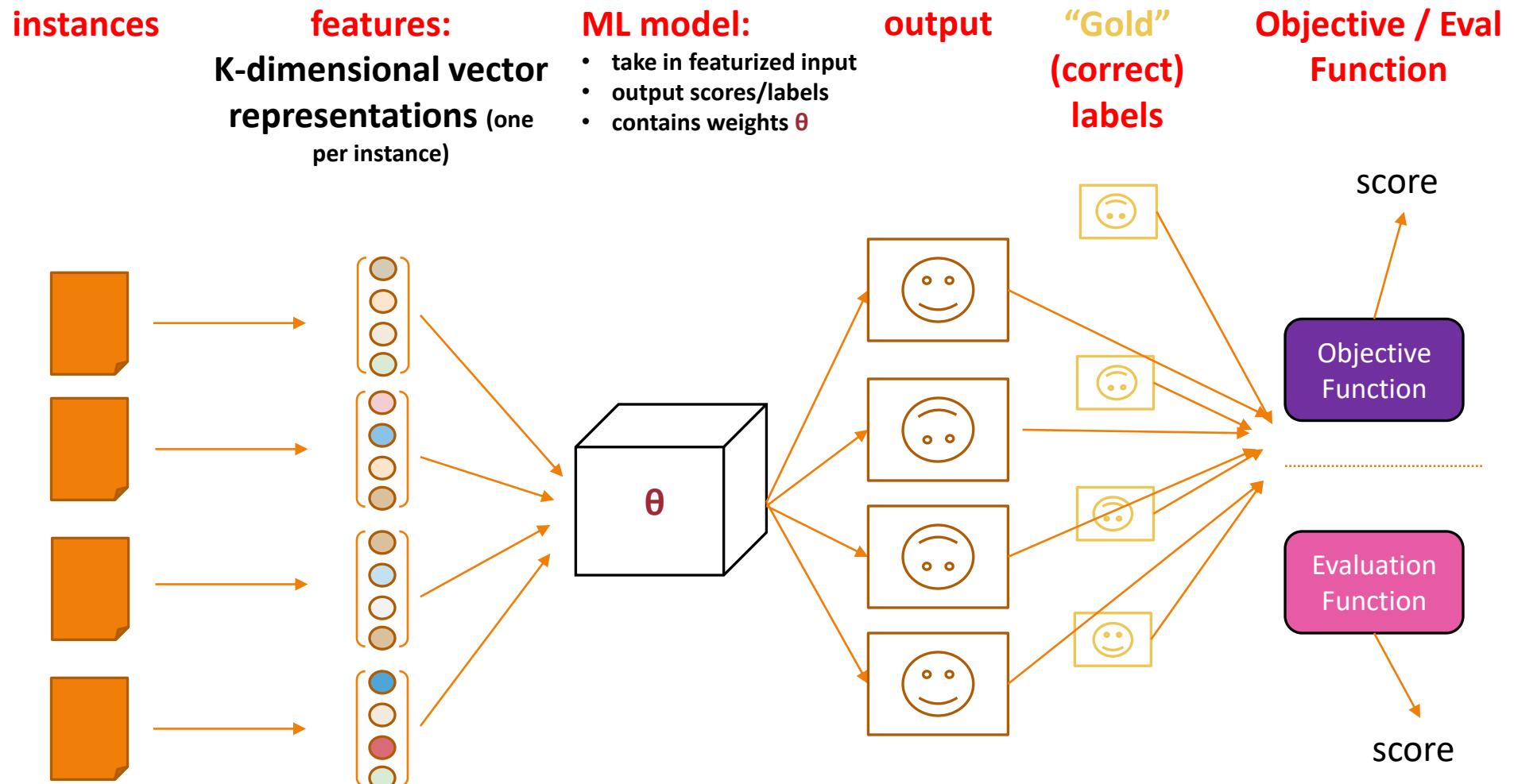
ML/NLP Framework for Learning



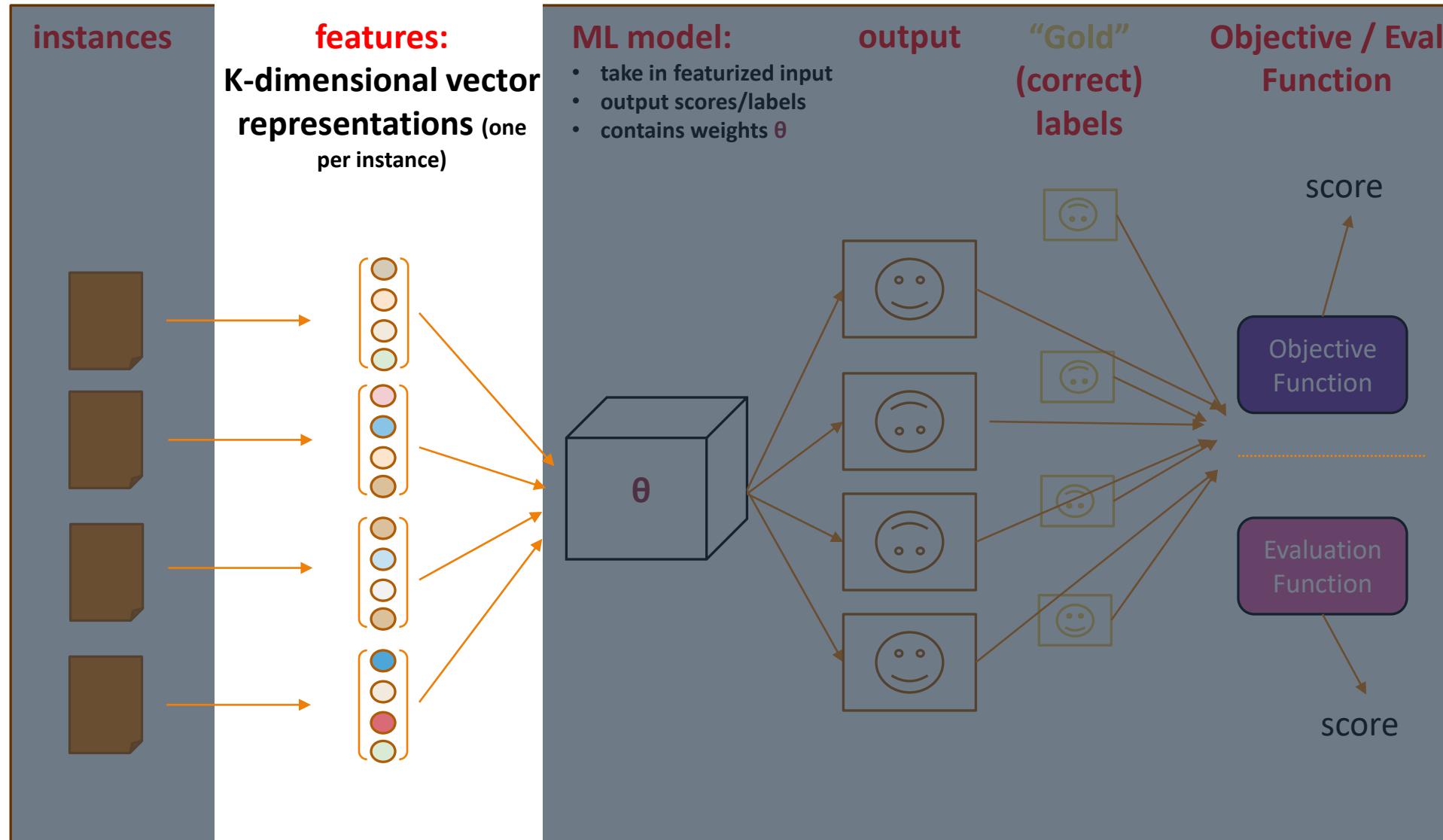
ML/NLP Framework for Prediction



ML/NLP Framework for Learning & Prediction



First: Featurization / Encoding / Representation



ML Term: “Featurization”

The procedure of extracting **features** for some input

Often viewed as a K-dimensional vector function f of the input language x

$$f(x) = (f_1(x), \dots, f_K(x))$$

Each of these is a feature
(/feature function)

ML Term: “Featurization”

The procedure of extracting **features** for some input

Often viewed as a K -dimensional vector function f of the input language x

$$f(x) = (f_1(x), \dots, f_K(x))$$

In supervised settings, it can equivalently be viewed as a K -dimensional vector function f of the input language x and a potential label y

- $f(x, y) = (f_1(x, y), \dots, f_K(x, y))$

Features can be thought of as “soft” rules

- E.g., positive sentiments tweets may be *more likely* to have the word “happy”

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Defining Appropriate Features

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

You can define classes of features by templating (we'll come back to this!)

Often binary-valued (0 or 1), but can be real-valued

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
2. Linguistically-inspired features
3. Dense features via embeddings

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - easy to define / extract
 - sometimes still very useful
2. Linguistically-inspired features
3. Dense features via embeddings

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - easy to define / extract
 - sometimes still very useful
2. Linguistically-inspired features
 - harder to define
 - helpful for interpretation
 - depending on task: conceptually helpful
 - currently, not freq. used
3. Dense features via embeddings

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)

- easy to define / extract
- sometimes still very useful

2. Linguistically-inspired features

- harder to define
- helpful for interpretation
- depending on task: conceptually helpful
- currently, not freq. used

3. Dense features via embeddings

- harder to define
- harder to extract (unless there's a model to run)
- currently: freq. used

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)
 - Identify ***unique*** sufficient atomic sub-parts (e.g., words in a document)
 - Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)
2. Linguistically-inspired features
3. Dense features via embeddings

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

Questions to consider...

- What are the input/output for this task?
- What might the features be?
- What types of applications could the task be used for?

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

Questions to consider...

- What are the input/output for this task?
- What might the features be?
- What types of applications could the task be used for?

Input

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

Output

TECH
NOT TECH

Questions to consider...

- What are the input/output for this task?
- **What might the features be?**
- What types of applications could the task be used for?

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

Let's make a core assumption: the **label** can be predicted from **counts of individual word types**

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction



TECH
NOT TECH

With V word types,
define V feature
functions $f_i(x)$ as
 $f_i(x) = \#$ of times word
type i appears
in document x

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction

$$f(x) = (f_i(x))^V_i$$

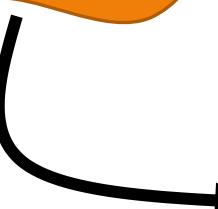
TECH
NOT TECH

With V word types,
define V feature
functions $f_i(x)$ as
 $f_i(x) = \#$ of times word
type i appears
in document x

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

feature extraction



TECH
NOT TECH

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2
...	
sniffle	0
...	

Example: Document Classification via Bag-of-Words Features

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

$f(x)$: “bag of words”

feature $f_i(x)$	value
alerts	1
assist	1
bombing	1
Boston	2
...	
sniffle	0
...	

w : weights

feature	weight
alerts	.043
assist	-0.25
bombing	0.8
Boston	-0.00001
...	

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)

- Identify ***unique*** sufficient atomic sub-parts (e.g., words in a document)
- Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)

2. Linguistically-inspired features

- Define features from words, word spans, or linguistic-based annotations extracted from the document

3. Dense features via embeddings

Three Common Types of Featurization in NLP

1. Bag-of-words (or bag-of-characters, bag-of-relations)

- Identify ***unique*** sufficient atomic sub-parts (e.g., words in a document)
- Define simple features over these, e.g.,
 - Binary (0 or 1) → indicating presence
 - Natural numbers → indicating number of times in a context
 - Real-valued → various other score (we'll see examples throughout the semester)

2. Linguistically-inspired features

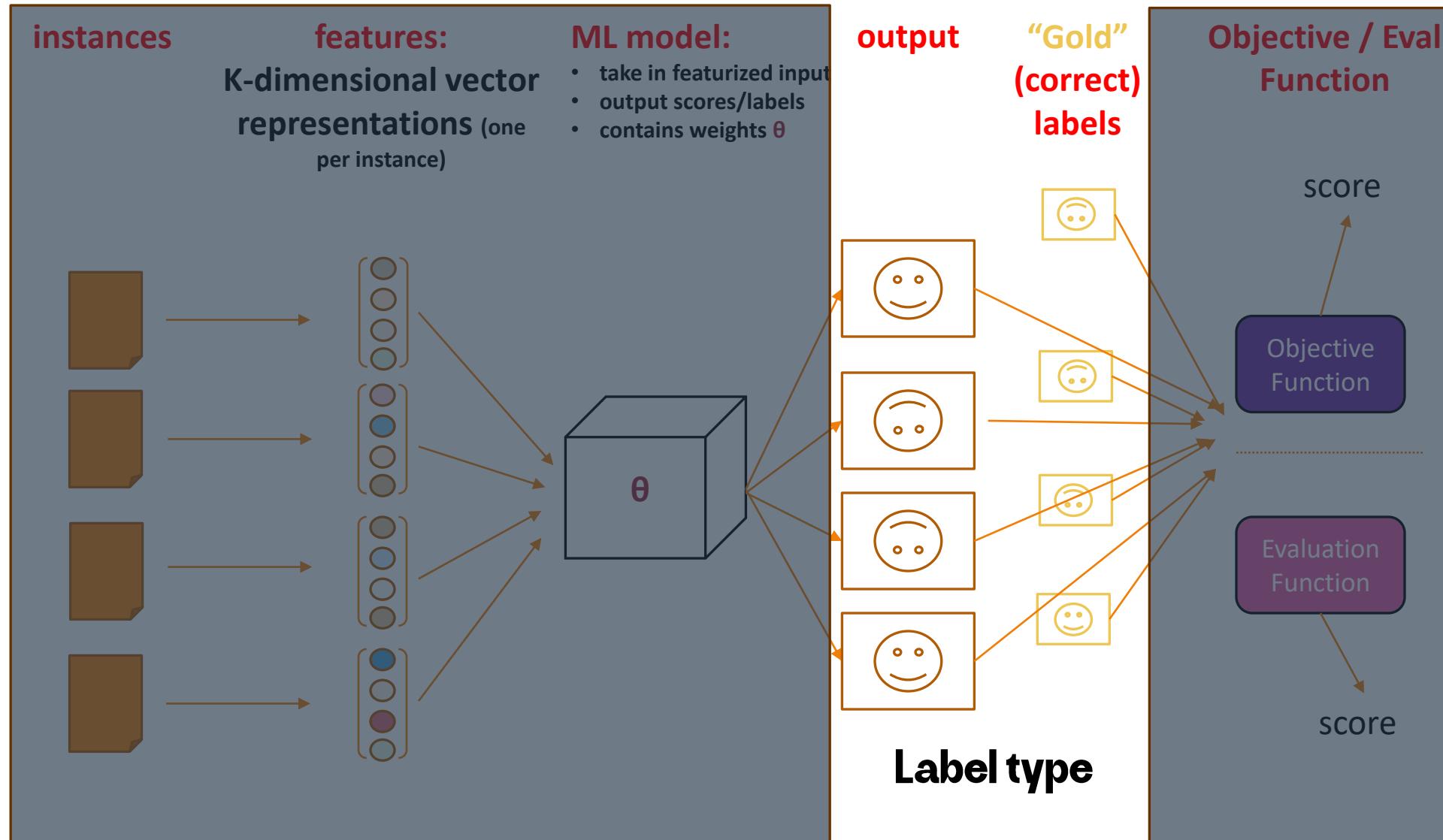
- Define features from words, word spans, or linguistic-based annotations extracted from the document

3. Dense features via embeddings

- Compute/extract a real-valued vector, e.g., from word2vec, ELMO, BERT, ...

Will be discussed in a future lecture

Second: Classification Terminology



Classification Types (Terminology)

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification			
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Classification Types (Terminology)

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification			
Multi-label Classification			
Multi-task Classification			

Classification Types (Terminology)

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep, ...}
Multi-label Classification			
Multi-task Classification			

Classification Types (Terminology)

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep, ...}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited, ...}
Multi-task Classification			

Classification Types (Terminology)

Name	Number of Tasks (Domains) Labels are Associated with	# Label Types	Example
(Binary) Classification	1	2	Sentiment: Choose one of {positive or negative}
Multi-class Classification	1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep, ...}
Multi-label Classification	1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited, ...}
Multi-task Classification	> 1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging ... ----- Task 1: document labeling Task 2: sentiment

Text Annotation Tasks ("Classification" Tasks)

1. Classify the entire document ("text categorization")
2. Classify word tokens individually
3. Classify word tokens in a sequence
4. Identify phrases ("chunking")
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Text Annotation Tasks ("Classification" Tasks)

1. Classify the entire document ("text categorization")
2. Classify word tokens individually
3. Classify word tokens in a sequence
4. Identify phrases ("chunking")
5. Syntactic annotation (parsing)
6. Semantic annotation

Slide courtesy Jason Eisner, with mild edits

Questions to consider...

- What are the input/output for this task?
- What might the features be?
- **What types of applications could the task be used for?**

Electronic alerts have been used to assist the authorities in moments of chaos and potential danger: after the Boston bombing in 2013, when the Boston suspects were still at large, and last month in Los Angeles, during an active shooter scare at the airport.

TECH
NOT TECH

Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification
Sentiment analysis

...

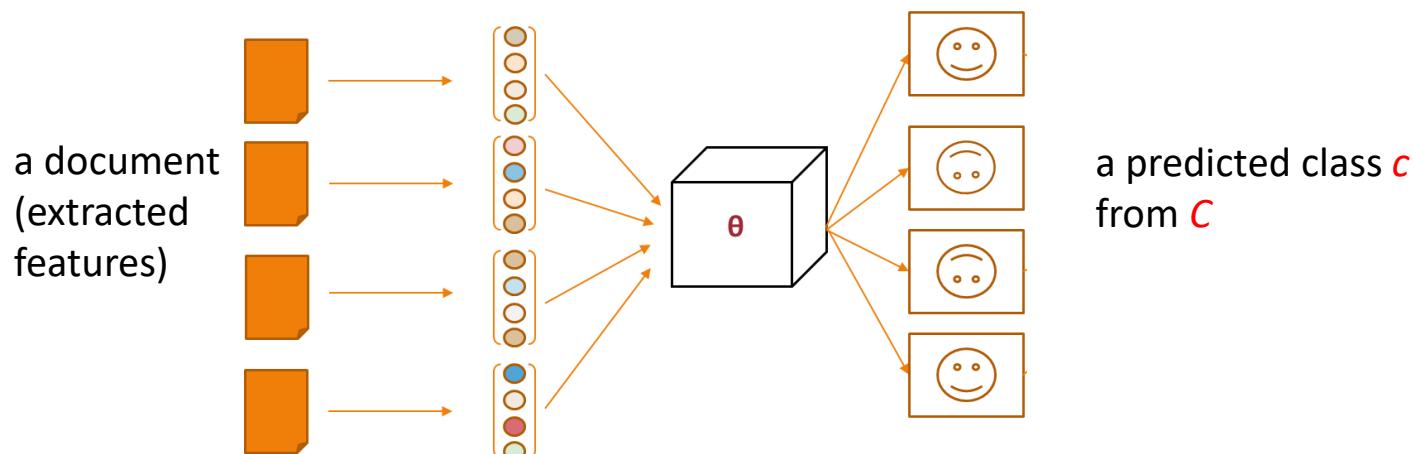
Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification
Sentiment analysis
...



Text Classification: Hand-coded Rules?

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification
Sentiment analysis

...

Rules based on combinations of words or other features
spam: black-list-address OR (“dollars” AND “have been selected”)

Accuracy can be high
If rules carefully refined by expert

Building and maintaining these rules is expensive

Can humans faithfully assign uncertainty?

Text Classification: Supervised Machine Learning

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification
Sentiment analysis
...

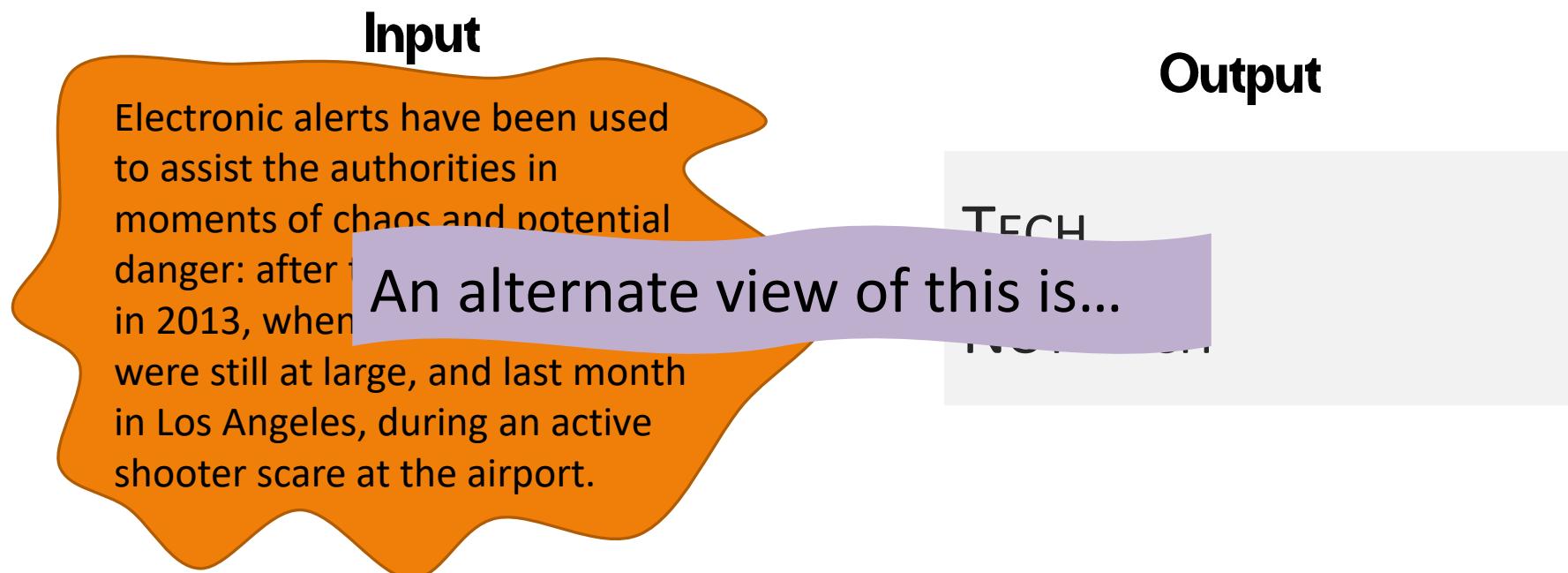
a fixed set of classes

$$C = \{c_1, c_2, \dots, c_j\}$$

a training set of m hand-labeled documents D with corresponding labels $(d_1, y_1), \dots, (d_m, y_m), y \in C$

Questions to consider...

- What are the input/output for this task?
- What might the features be?
- What types of applications could the task be used for?



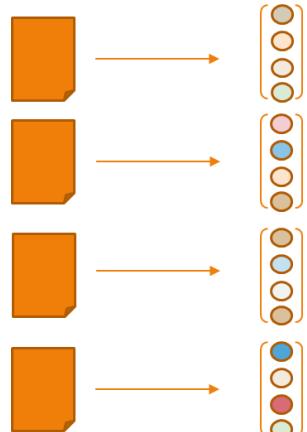
Text Classification: Supervised Machine Learning - Training

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

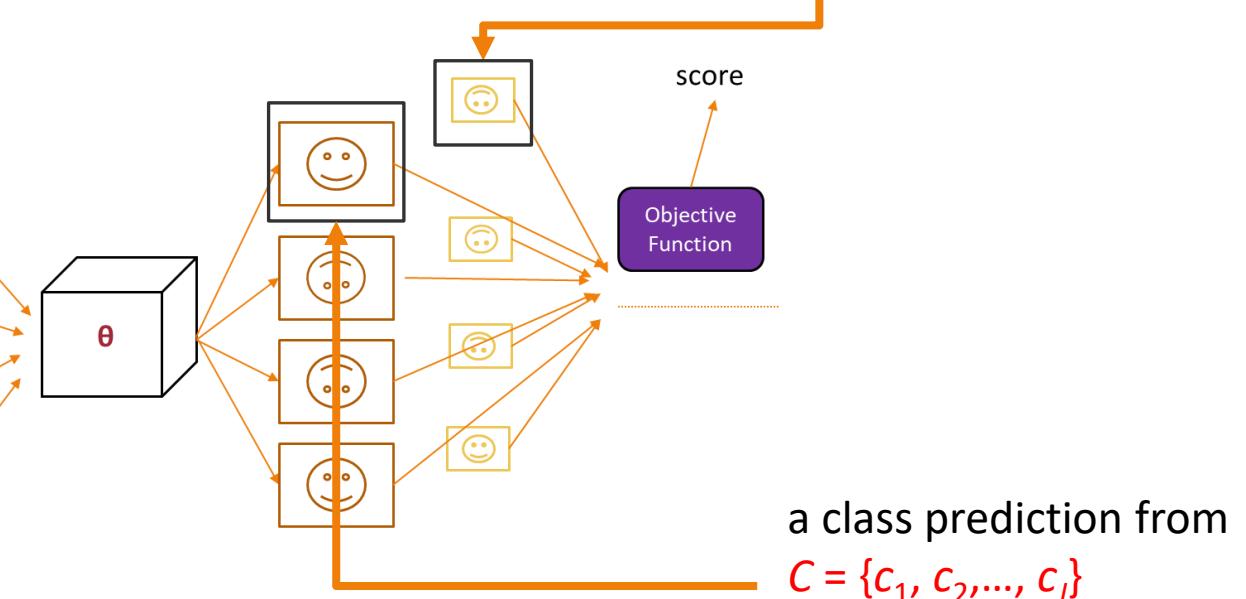
document d_i from the **training set**



Language Identification
Sentiment analysis

...

y_i corresponding to the gold label for d_i



Text Classification: Supervised Machine Learning - Testing

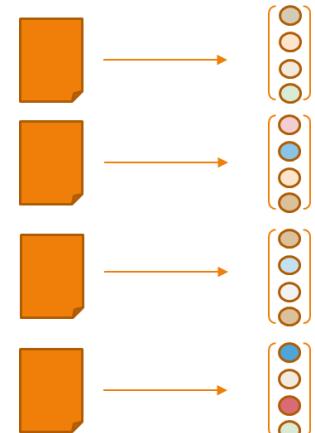
Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language identification
Sentiment analysis

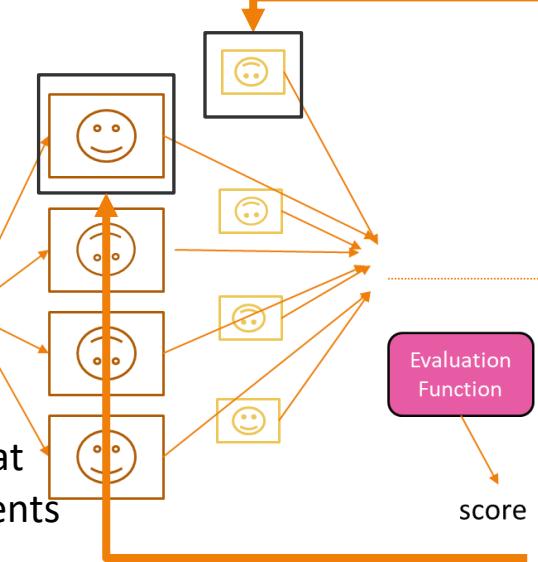
document d_i from the **testing set**



a learned classifier y that maps documents to classes

INTRO TO NLP - NLP TASKS

...



y_i corresponding to the gold label for d_i

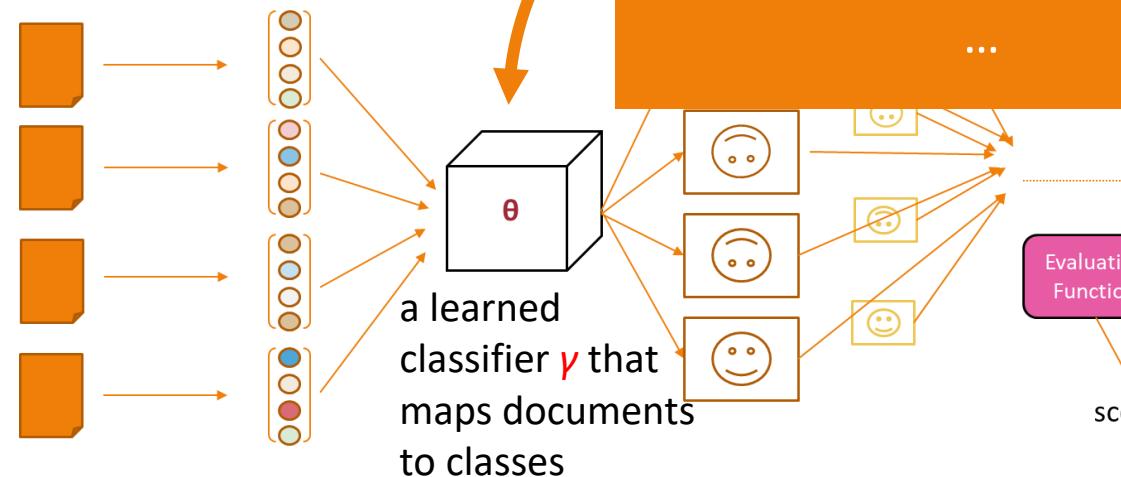
Text Classification: Supervised Machine Learning – Model examples

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

document d_i from the **testing set**



Language identification

Sentiment analysis

Naïve Bayes
Logistic regression
...
Neural network
Support-vector machines
k-Nearest Neighbors
...

Knowledge Check: Handling Types and Tokens

- 10 minutes to do it in class
- You can complete it after class
- Then submit it to Blackboard
- I'll release my answer 2/13 (please finish before then)

The screenshot shows a website for CMSC 473/673 NLP @ UMBC. The top navigation bar is yellow and includes links for CMSC 473/673 NLP @ UMBC, About, Schedule, Homework, Knowledge Checks, and a search bar. The Knowledge Checks link is highlighted with a red box. Below the navigation, the page title is "CMSC 473/673 Natural Language Processing at UMBC" and the semester is "Spring 2026". A link to "Jump to class policies" is provided, followed by a list of policies: Late Day, Academic Integrity, Generative AI, GitHub Use, and Collaboration. The "Knowledge Checks" section is currently selected, as indicated by the red box around the "2/5 - Handling Types and Tokens" link. The content for this section is partially visible, mentioning NLP as the field of working with language to automatically perform a variety of tasks, and the Learning Objectives, which include "By the end of the course, you will be able to...".

CMSC 473/673 NLP @ UMBC

About Schedule Homework ▾ Knowledge Checks ▾

CMSC 473/673 Natural Language Processing at UMBC

Spring 2026

Jump to class policies: [Late Day](#) [Academic Integrity](#) [Generative AI](#) [GitHub Use](#) [Collaboration](#)

Course Description

Natural language processing (NLP) is the field of working with language to automatically perform a variety of tasks, instead of or in collaboration with people. NLP can focus on the Generation (NLG) and/or Understanding (NLU) of natural language. Recently, large language models (LLMs) like ChatGPT have gotten the attention of the general public, but they have also greatly changed the landscape of modern NLP research. This course will show you both old & new techniques that are still used today and will give you a basic understanding of why & how we do NLP.

Learning Objectives

By the end of the course, you will be able to...

2/5 - Handling Types and Tokens

Text Annotation Tasks ("Classification" Tasks)

1. Classify the entire document ("text categorization")
2. Classify word tokens individually
3. Classify word tokens in a sequence
4. Identify phrases ("chunking")
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

- ⇒ (A) Manufacturing plant or
- ⇒ (B) Living plant

Training Data: Build a special classifier just for tokens of “plant”

Sense	Context
(1) Manufacturing ” ” ” ”	... union responses to <i>plant</i> closures computer disk drive <i>plant</i> located in ... company manufacturing <i>plant</i> is in Orlando ...
(2) Living ” ” ” ”	... animal rather than <i>plant</i> tissues can be to strain microscopic <i>plant</i> life from the ... and Golgi apparatus of <i>plant</i> and animal cells

Test Data:

Sense	Context
???	... vinyl chloride monomer <i>plant</i> , which is ...
???	... molecules found in <i>plant</i> tissue from the ...

slide courtesy of D. Yarowsky (modified)

WSD for Machine Translation (English → Spanish)

Problem:

... He wrote the last **sentence** two years later ...

⇒ *sentencia* (legal sentence) or

⇒ *frase* (grammatical sentence)

Training Data: Build a special classifier just for tokens of “sentence”

Translation	Context
(1) sentencia	... for a maximum <i>sentence</i> for a young offender ...
” ”	... of the minimum <i>sentence</i> of seven years in jail ...
” ”	... were under the <i>sentence</i> of death at that time ...
(2) frase	... read the second <i>sentence</i> because it is just as ...
” ”	... The next <i>sentence</i> is a very important ...
” ”	... It is the second <i>sentence</i> which I think is at ...

Test Data:

Translation	Context
???	... cannot criticize a <i>sentence</i> handed down by ...
???	... listen to this <i>sentence</i> uttered by a former ...

slide courtesy of D. Yarowsky (modified)

Accent Restoration in Spanish & French

Problem:

Input: ... déjà travaille côte a côte ...

Output: ... déjà travaillé côté à côté ...

Examples:

... appeler l'autre **côte** de l'atlantique ...

⇒ *côté* (meaning side) or

⇒ *côte* (meaning coast)

... une famille des **pecheurs** ...

⇒ *pêcheurs* (meaning fishermen) or

⇒ *pécheurs* (meaning sinners)

slide courtesy of D. Yarowsky (modified)

Accent Restoration in Spanish & French

Training Data:

Pattern	Context
(1) côté	... du laisser de <i>cote</i> faute de temps ...
” ”	... appeler l' autre <i>cote</i> de l' atlantique ...
” ”	... passe de notre <i>cote</i> de la frontiere ...
(2) côte	... vivre sur notre <i>cote</i> ouest toujours ...
” ”	... creer sur la <i>cote</i> du labrador des ...
” ”	travaillaient cote a <i>cote</i> , ils avaient ...

Test Data:

Pattern	Context
???	... passe de notre <i>cote</i> de la frontiere ...
???	... creer sur la <i>cote</i> du labrador des ...

slide courtesy of D. Yarowsky (modified)

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...
⇒ *lɛd* (as in *lead mine*) or
⇒ *li:d* (as in *lead role*)

Training Data:

Pronunciation	Context
(1) lɛd	... it monitors the <i>lead</i> levels in drinking ...
” ”	... conference on <i>lead</i> poisoning in ...
” ”	... strontium and <i>lead</i> isotope zonation ...
(2) li:d	... maintained their <i>lead</i> Thursday over ...
” ”	... to Boston and <i>lead</i> singer for Purple ...
” ”	... Bush a 17-point <i>lead</i> in Texas , only 3 ...

Test Data:

Pronunciation	Context
???	... median blood <i>lead</i> concentration was ..
???	... his double-digit <i>lead</i> nationwide . The ...

slide courtesy of D. Yarowsky (modified)

Spelling Correction

Problem:

... and he fired presidential **aid/aide** Dick Morris after ...
⇒ *aid* or
⇒ *aide*

Training Data:

Spelling	Context
(1) aid " "	... and cut the foreign <i>aid/aide</i> budget in fiscal 1996 they offered federal <i>aid/aide</i> for flood-ravaged states ...
(2) aide " "	... fired presidential <i>aid/aide</i> Dick Morris after and said the chief <i>aid/aide</i> to Sen. Baker, Mr. John ...

Test Data:

Spelling	Context
???	... said the longtime <i>aid/aide</i> to the Mayor of St. ...
???	... will squander the <i>aid/aide</i> it receives from the ...

slide courtesy of D. Yarowsky (modified)

What features? Example: “word to [the] left [of correction]”

Word to left	Frequency as Aid	Frequency as Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n -gram language model ($n \geq 2$) would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

slide courtesy of D. Yarowsky (modified)

An assortment of possible cues ...

	Position	Collocation	l ^{ed}	li: ^d
N-grams (word, lemma, part-of-speech)	+1 L	lead <i>level/N</i>	219	0
	-1 W	<i>narrow lead</i>	0	70
	+1 W	lead <i>in</i>	207	898
	-1 W, +1 W	<i>of lead in</i>	162	0
	-1 W, +1 W	<i>the lead in</i>	0	301
Wide-context collocations	+1P, +2P	lead, < <i>NOUN</i> >	234	7
	±k W	<i>zinc</i> (in ±k words)	235	0
Verb-object relationships	±k W	<i>copper</i> (in ±k words)	130	0
	-V L	<i>follow/V + lead</i>	0	527
	-V L	<i>take/V + lead</i>	1	665

generates a whole bunch of potential
cues – use data to find out which
ones work best

Word to left	Frequency as Aid	Frequency as Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0

slide courtesy of D. Yarowsky (modified)

An assortment of possible cues ...

	Position	Collocation	led	li:d
N-grams (word, lemma, part-of-speech)	+1 L	lead <i>level/N</i>	219	0
	-1 W	<i>narrow lead</i>	0	70
	+1 W	lead <i>in</i>	207	898
	-1W,+1W	<i>of lead in</i>	162	0
	-1W,+1W	<i>the lead in</i>	0	301
Wide-context collocations	+1P,+2P	lead , < <i>NOUN</i> >	234	7
	±k W	<i>zinc</i> (in ±k words)	235	0
Verb-object relationships	±k W	<i>copper</i> (in ±k words)	130	0
	-V L	<i>follow/V + lead</i>	0	527
	-V L	<i>take/V + lead</i>	1	665

This feature is relatively weak, but weak features are still useful, especially since very few features will fire in a given context.

merged ranking
of all cues
of all these types

11.40	<i>follow/V + lead</i>	⇒ li:d
11.20	<i>zinc</i> (in ±k words)	⇒ led
11.10	<i>lead level/N</i>	⇒ led
10.66	<i>of lead in</i>	⇒ led
10.59	<i>the lead in</i>	⇒ li:d
10.51	<i>lead role</i>	⇒ li:d

slide courtesy of D. Yarowsky (modified)

Final decision list for *lead* (abbreviated)

What are the input/output?

What are the features?

What types of applications?

List of all features,
ranked by their weight.

(These weights are for a simple
“decision list” model where the single
highest-weighted feature that fires
gets to make the decision all by itself.

However, a log-linear model, which
adds up the weights of all features
that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	<i>follow/V</i> + <i>lead</i>	⇒ li:d
11.20	<i>zinc</i> (in $\pm k$ words)	⇒ led
11.10	<i>lead level/N</i>	⇒ led
10.66	<i>of lead in</i>	⇒ led
10.59	<i>the lead in</i>	⇒ li:d
10.51	<i>lead role</i>	⇒ li:d
10.35	<i>copper</i> (in $\pm k$ words)	⇒ led
10.28	<i>lead time</i>	⇒ li:d
10.24	<i>lead levels</i>	⇒ led
10.16	<i>lead poisoning</i>	⇒ led
8.55	<i>big lead</i>	⇒ li:d
8.49	<i>narrow lead</i>	⇒ li:d
7.76	<i>take/V</i> + <i>lead</i>	⇒ li:d
5.99	<i>lead, NOUN</i>	⇒ led
1.15	<i>lead in</i>	⇒ li:d
	○ ○ ○	

slide courtesy of D. Yarowsky (modified)

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...
⇒ *lɛd* (as in *lead mine*) or
⇒ *li:d* (as in *lead role*)

Training Data:

Pronunciation	Context
(1) lɛd	... it monitors the <i>lead</i> levels in drinking ...
” ”	... conference on <i>lead</i> poisoning in ...
” ”	... strontium and <i>lead</i> isotope zonation ...
(2) li:d	... maintained their <i>lead</i> Thursday over ...
” ”	... to Boston and <i>lead</i> singer for Purple ...
” ”	... Bush a 17-point <i>lead</i> in Texas , only 3 ...

Test Data:

Pronunciation	Context
???	... median blood <i>lead</i> concentration was ..
???	... his double-digit <i>lead</i> nationwide . The ...

slide courtesy of D. Yarowsky (modified)

Token Classification

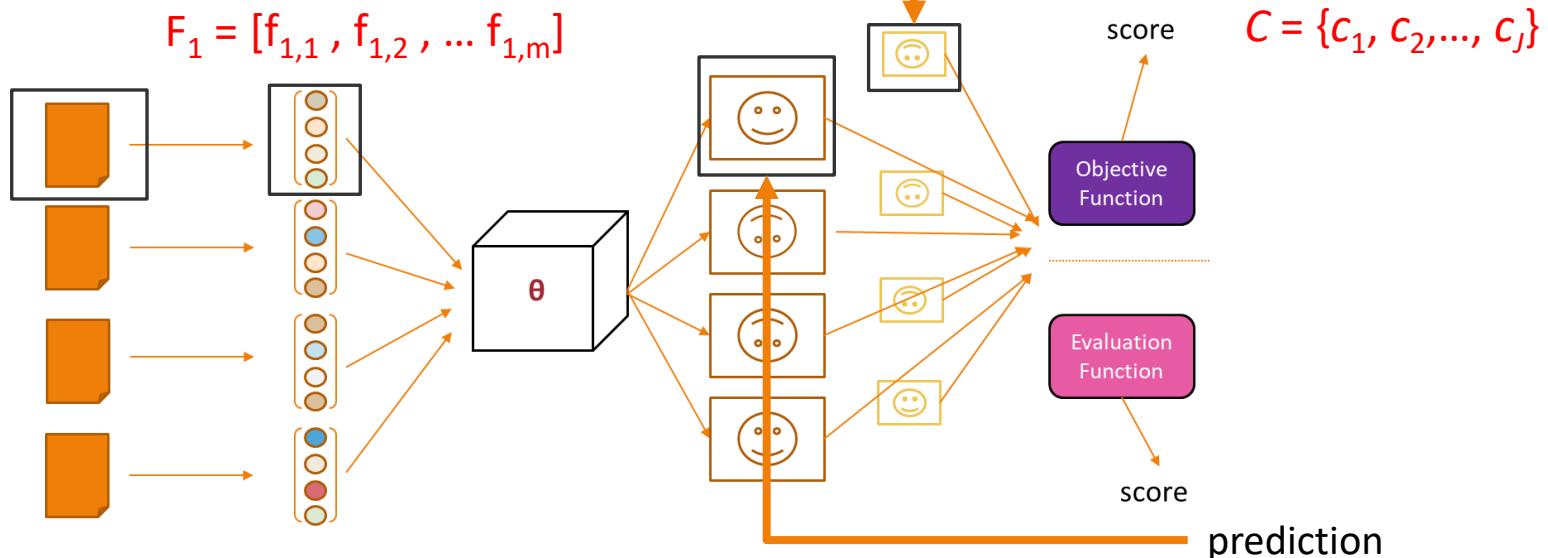
Word pronunciation

Word sense disambiguation (WSD)
within or across languages

Accent restoration

...

features F_1 extracted from
word w_1 and its surrounding
words (context)



Text Annotation Tasks ("Classification" Tasks)

1. Classify the entire document ("text categorization")
2. Classify word tokens individually
3. Classify word tokens in a sequence (i.e., order matters)
4. Identify phrases ("chunking")
5. Syntactic annotation (parsing)
6. Semantic annotation
7. Text generation

Slide courtesy Jason Eisner, with mild edits

Example: Part of Speech Tagging

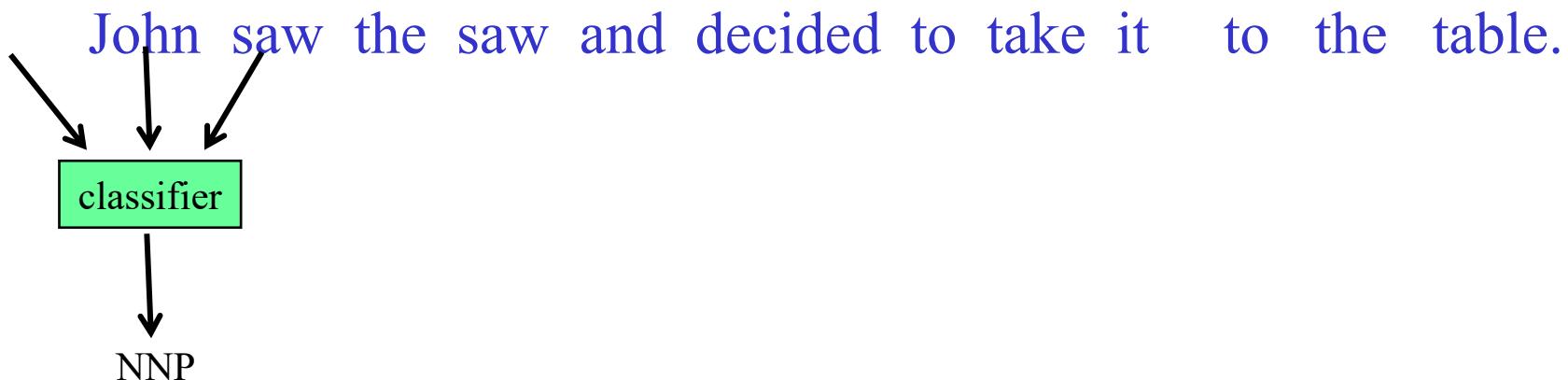
We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Slide courtesy Jason Eisner, with mild edits

Sequence Labeling as Classification

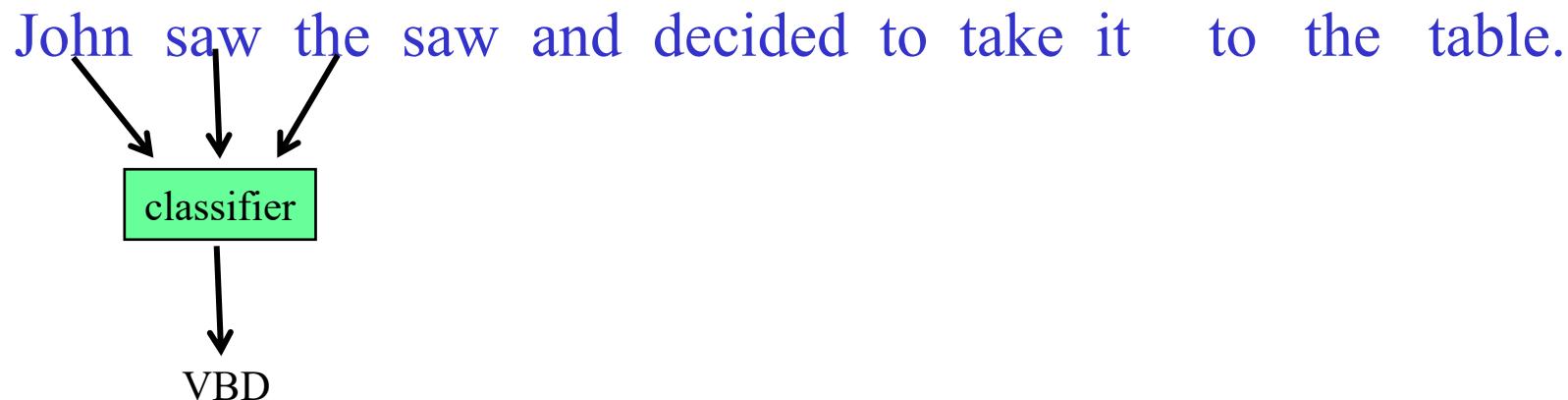
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

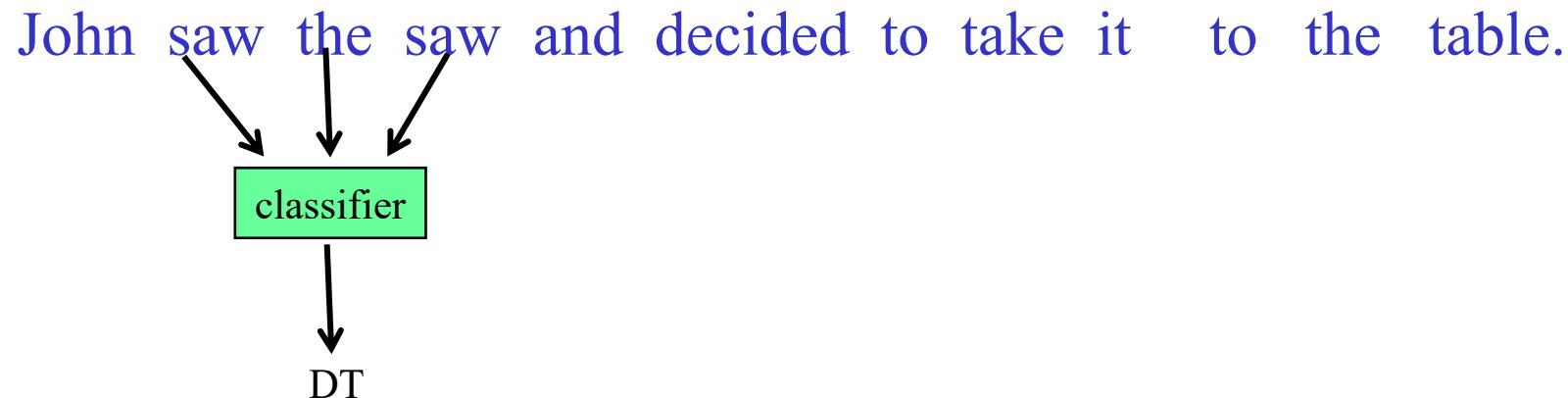
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

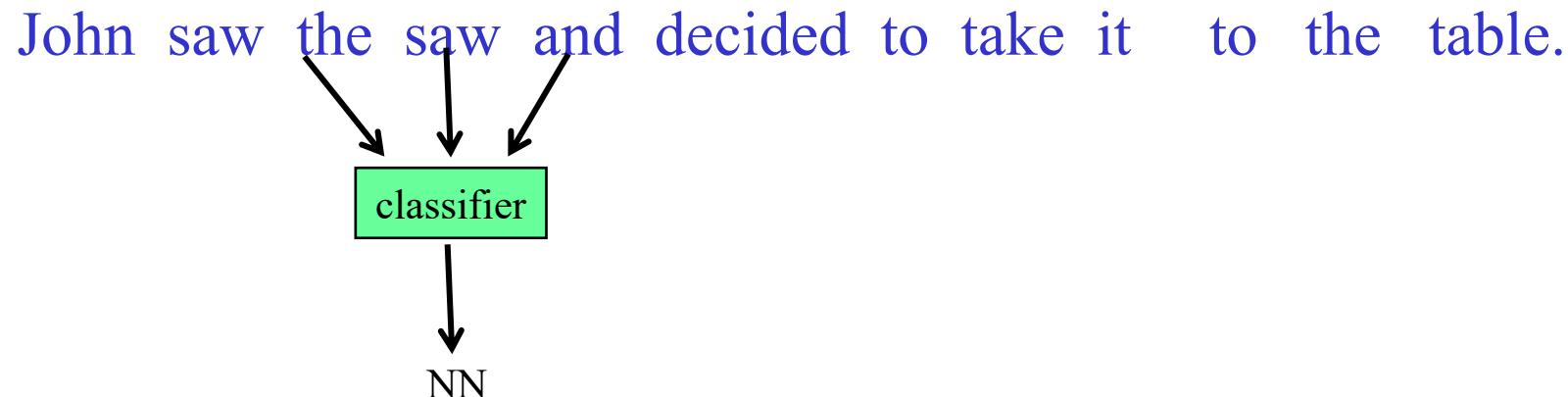
Classify each token independently but use as input features, information about the surrounding tokens (sliding window).



Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

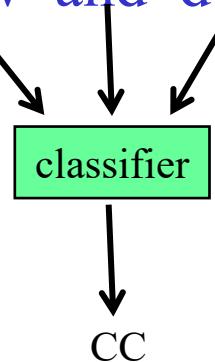


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

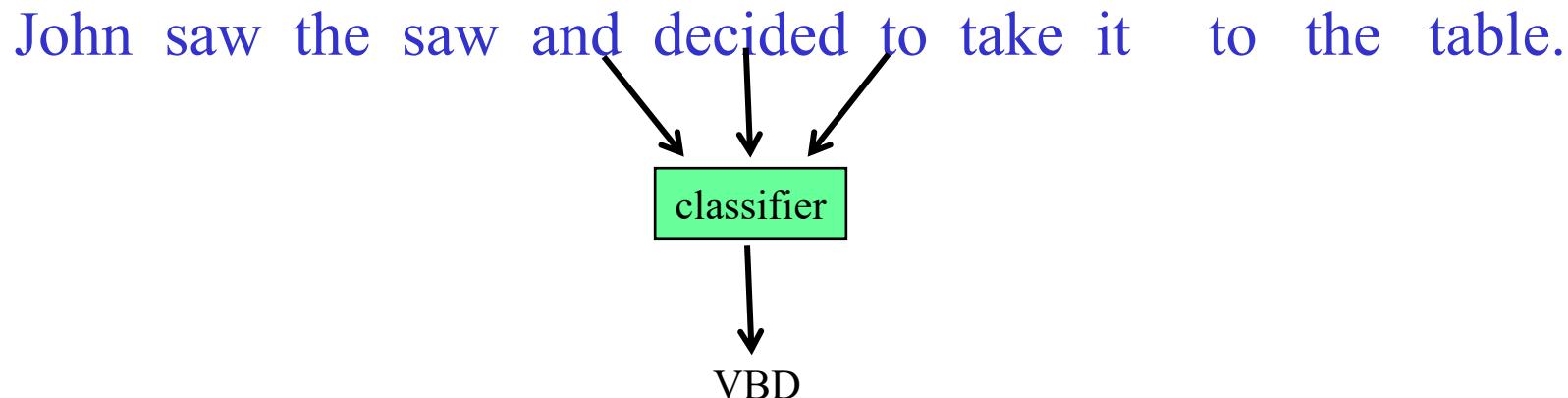
John saw the saw and decided to take it to the table.



Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

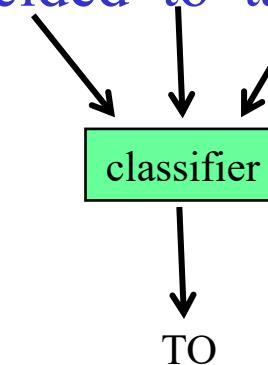


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

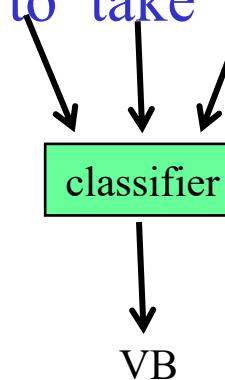


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

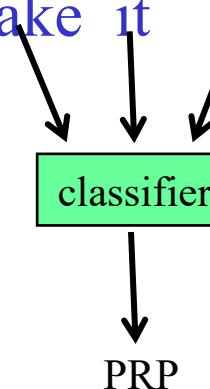


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

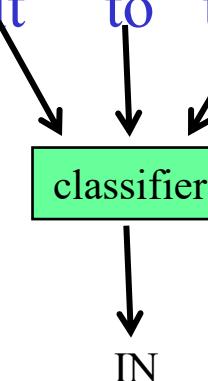


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.

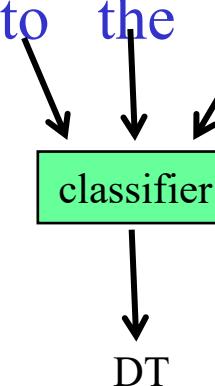


Slide courtesy Ray Mooney, with mild edits

Sequence Labeling as Classification

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table.



Slide courtesy Ray Mooney, with mild edits