AGENTS &
UNINFORMED
SEARCH

Lara J. Martin (she/they)
TA: Aydin Ayanzadeh (he)

9/7/2023
CMSC 671

By the end of class today, you will be able to:
1. Categorize agents based on their capabilities and behavior (Agents)

2. Formulate a search problem (Search)
3. Predict the order of nodes that breadth- and depth-first search will traverse (Search)

9/7/2023 - Agents & Uninformed Search

SCHEDULE

Recap
Types of agents
Why search?

Intro to uninformed search

9/7/2023 - Agents & Uninformed Search 3

RECAP: AGENT DEFINITION

* Agent: anything that its environment
through ,and on its environment

through

Sensors

Percept: input at an instant
Percept sequence: history of inputs

Agent function: mapping of
to effectors

Agent program: (concise) implementation of
an agent function

9/7/2023 - Agents & Uninformed Search

RECAP: WAYS TO
DESCRIBE ENVIRONMENTS

Fully Observable vs Partially Observable
Deterministic vs Stochastic

Static vs Dynamic

Discrete vs Continuous

Episodic vs Sequential ‘

Single Agent vs Multi Agent

9/7/2023 - Agents & Uninformed Search

TYPES OF AGENTS

9/7/2023 - Agents & Uninformed Search

TYPES OF AGENTS

Similar to environments, we can come up with a taxonomy of agents based on how

they behave:

1. Simple Reflex Agent

2. Model-based Reflex Agent

3. Model-based Goal-based Agent
4. Model-based Utility-based Agent

9/7/2023 - Agents & Uninformed Search

TYPES OF AGENTS:
SIMPLE REFLEX AGENT

Decide actions directly from the
current percept sequence

Example:
1f [A, Empty]: return Right
1f [B, Empty]: return Left

if [A or B, Human]: return Suck

"

Agent

~

Sensors s

)

'

What the world
1s like now

(Condition-action rules)—-b-

Y

What action I
should do now

v

Actuators

JUSWIUOIIAUF

)

9/7/2023 - Agents & Uninformed Search

TYPES OF AGENTS:

MODEL-BASED REFLEX AGENT

Attempt to model the state of the
world, decide action based on
modeled (“remembered”) state

Example:

* Observe that at a certain time, people
are more likely to show up in A

e Move to location based on time of
day

kA

~. Sensors s
a
S +
\

(How the world evolves)— —

(What my actions do >/

gent

'-,-ll-hu._,_._'“|I
"ﬁ'

.

P

(Condition-action rules)—D—

~

)

What the world
1s like now

Y

What action |
should do now

g

JUSWIUOITAUE]

Actuators

C

9/7/2023 - Agents & Uninformed Search

TYPES OF AGENTS:
MODEL-BASED GOAL-BASED AGENT

Action choices change as the goal
changes

Example:

* For the same performance criteria
(suck as much blood as possible), we
can add a goal of keeping one room
clear to act as a home

* As the goal changes, vampire changes
how often it moves

- -
f ” TN~ Sensors
.
\\

N

What the world
(How the world evolves is like now
L

Y

JUIWIUOITAUH

\| What it wi i
(Whal my actions do . l‘:;ltl ﬁ;v;i]tit:;enl;ike
|
What action |
oals - should do now
\Agent Actuators

)

9/7/2023 - Agents & Uninformed Search 10

TYPES OF AGENTS:
MODEL-BASED UTILITY-BASED AGENT

Agent cares not only about reaching (TN Sensors
a goal, but also how it reaches its Ny
What th Id
goal (How the world evolves isalti{u.:enﬁ;r
* gﬂ
What it will be like
. (What my actions do if I do action A =
Example: ; 2
i . . . H h: [will b
* Energy-efficient vampire agent otz Al E
e Still wants to suck as much blood as Y =
. What action [
pOSSlble should do now
Y
Actuators

 Limits how often it moves kAgem

9/7/2023 - Agents & Uninformed Search

WHAT TYPE OF AGENT IS A ROOMBA?

. Simple Reflex Agent

. Model-based Reflex Agent < Keeps a memory of the world but only reacts to its surroundings
Model-based Goal-based Agent

Model-based Utility-based Agent

9/7/2023 - Agents & Uninformed Search

WHAT TYPE OF AGENT IS WATSON?

-

~
i ~ A
™= == -:. E === .; .l‘-‘ . t
" 518200 Ths23,490) Tl s21.600)"
| '- i B
& : AL B a .
'
| | l q :

Model-based Reflex Agent
. Model-based Goal-based Agent
. Model-based Utility—based Agent < Not just to win but to get the most money

. Simple Reflex Agent

9/7/2023 - Agents & Uninformed Search

UNINFORMED
SEARCH

9/7/2023 - Agents & Uninformed Search

X

X

X

@)

X

X

O

WHY SEARCH?

* Some problems are small enough to go throug|

@)

N al

| possible states:

O

@)

@)

@)

O

@)

@)

Tic-tac-toe: 32 = 19,683 states (3 values for each cell, nine cells)

* Most real-world problems are intractable /[& = & SR
* We need to be smart about how we visit states - (1 Y

9/7/2023 - Agents & Uninformed Search 15

WHY SEARCH?

For when we don’t know how to

reach a goal (or any goal) from a
given initial state (or any initial

state)

Modified from slides Dr. Cassandra Ken

9/7/2023 - Agents & Uninformed Search

SEARCH TODAY: ALPHAGO

a Selection b Expansion c Evaluation d

i H

Boe(Hn) B (B W

ES U T A
i k\)

16

9/7/2023 - Agents & Uninformed Search

SEARCH TODAY: STORY
GENERATION

. Key: Propositions:
H H S o e
,1"1 /?b fa ‘MLP temporal edge Fluent 1 { aw !na ot 1::nrt.
g action . HIl = Hawkins on island.
ny: HP SPTB » ng: HPSPTN s e SUTPTiSe edge] SP = Silver at port.
r Y T character . . Fluent2y . . ‘1
H rumar S i believes(S,TB)\— > cpisiemic edge "l 'h.llver on l“’l'md,' ,
A H A H I'N = Treasure doesn’t exist.
h 4 g J TB = Treasure buried.
ny: HP SPTB » ny: HP 5P TB Fluent 3 { Tl= Treasure on island.
3 sail s | sail H 3 e z'f;“’k'ﬂﬁ h;S treasure,
S = Silver has treasure.
A 4 A) AA
ng HISITB | —» no:HISITB »| g HISITN
H dig S | dig H S i dig
A A) AL s
n,: HISITI ~ | ngHISITI »| ng: HISITI take(S,T)
; take(S, T ;
H take(H,T) S | take(H, m" (5.1) H S | take(H,T) H S
A v Al A AA b Al
nye: HI SITH » 1n,,:HISITH

H .2 HI SI'TS N2 HISITH | H n.s: HI SI TS

Initial State:

HP SP'TB b(5,TN)
Author’s Goal: TH
Hawkins® Goal: TH
Silver’s Goal: T8

Actions: rumor believes(S,TB) sail dig take(H,T) take(S,T)
rre: TB PRE: false prE: HPSP pre: HITB prE: HITI PRE: SITI
EFF: B(5.TB) ErF: TB EFF: HI S EFF: TI EFF: TH EFF: TS
CON: H CON: HoRe COM: S CON: H CON: H COM: S
oBs: H 0OBS: S OBS: HS oBs: HS oBs: HS OBS: HS

Figure 1: A narrative search space graph for the plot of Treasure Island (Stevenson 1919).

17

9/7/2023 - Agents & Uninformed Search

DEFINING A
SEARCH PROBLEM

Break down the problem space into states and actions (for each state)

* + these components:
* Initial state — where the agent starts
* Transition model — how actions change states

Goal test — measuring if the current state is the goal

Step cost (optional) — how expensive it is to take action 4 in state s

Problem: Find a sequence of actions that transitions the initial state
into a state which passes the goal test
Solution: sequence of actions, or a plan

9/7/2023 - Agents & Uninformed Search

WHAT ARE STATES?

» Current position and attributes of everything in the environment
* Only need the things relevant to the agent’s decision making

* Like discrete snapshots over time

State
Location A: vampire, human
Location B: empty

19

9/7/2023 - Agents & Uninformed Search

WHAT ARE ACTIONS?

 Anything the agent can do to affect the environment

Actions
move left, move right, suck

move right, suck

Or for this particular state...

20

9/7/2023 - Agents & Uninformed Search

TRANSITION MODEL EXAMPLE

Left

Left

A B
Ayl
!
Suck
B

Right

Left

A B
Ayl
!
Suck
A

Right

Right

9/7/2023 - Agents & Uninformed Search

GENERIC SEARCH ALGORITHM™

function I REE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leat node and remove it from the trontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier @ ‘
Challenges:
* Loops

* Inefficiency

9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Challenges:
Lo Ol0I0]0

* Inetficiency

9/7/2023 - Agents & Uninformed Search

WHAT ABOUT EFFICIENCY?

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Use data structures to control which nodes get explored next!
How we store the frontier affects the performance of the algorithm.

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS)

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Store frontier as first-in first-out (FIFO) queue

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[Start] @
Current node: O Frontier
none
@ c O Chosen node
O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
| S
Current node: O Frontier
Start
@ O Chosen node
O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
LA, B] @
Current node: O Frontier
Start
@ O Chosen node
O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
Current node: O Frontier
A
G O Chosen node

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
B,C, D] @
Current node: O Frontier
A
G O Chosen node

O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[C, D] @
Current node: O Frontier
B
@ G O Chosen node
O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[C, D, Goal, F] @
Current node: O Frontier
B
@ G O Chosen node
O Other nodes
@ (states)

9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):

Frontier:
[C, D, Goal, F]

Eventually.?.
Current node:
B

Return:
[Start, B, Goal]

FIFO QUEUE

O Other nodes

(states)

9/7/2023 - Agents & Uninformed Search

DEPTH-FIRST SEARCH (DFS)

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Store frontier as last-in first-out (LIFO) queue, or a stack.

9/7/2023 - Agents & Uninformed Search

YOUR TURN - DFS: LIFO STACK
Frontier:
[Start]
Current node: O Frontier
none
@ O Chosen node
O Other nodes
olo

You can work in pairs! Put both your names on it, please!
To be submitted on Blackboard after class

9/7/2023 - Agents & Uninformed Search

FOR NEXT CLASS

* Fill out the paper presentation survey - Due TOMORROW!
* Submit DFS answers
* Read Chapter 3.1-3.4 (if you haven’t already)

45

	Slide 1: Agents & Uninformed Search
	Slide 2: Schedule
	Slide 3: RECAP: Agent Definition
	Slide 4: Recap: Ways to Describe Environments
	Slide 5: Types of Agents
	Slide 6: Types of Agents
	Slide 7: Types of Agents: Simple Reflex Agent
	Slide 8: Types of Agents: Model-based Reflex Agent
	Slide 9: Types of Agents: Model-based Goal-based Agent
	Slide 10: Types of Agents: Model-based Utility-based Agent
	Slide 11: What type of agent is a Roomba?
	Slide 12: What type of agent is Watson?
	Slide 13: Uninformed Search
	Slide 14: Why Search?
	Slide 15: Why Search?
	Slide 16: Search Today: AlphaGO
	Slide 17: Search Today: Story Generation
	Slide 18: Defining A Search Problem
	Slide 19: What are States?
	Slide 20: What Are Actions?
	Slide 21: Transition Model Example
	Slide 22: Generic Search Algorithm™
	Slide 23: The Generic Search Algorithm
	Slide 24: The Generic Search Algorithm
	Slide 25: The Generic Search Algorithm
	Slide 26: The Generic Search Algorithm
	Slide 27: The Generic Search Algorithm
	Slide 28: The Generic Search Algorithm
	Slide 29: The Generic Search Algorithm
	Slide 30: The Generic Search Algorithm
	Slide 31: The Generic Search Algorithm
	Slide 32: The Generic Search Algorithm
	Slide 33: What about Efficiency?
	Slide 34: Breadth-First Search (BFS)
	Slide 35: Breadth-First Search (BFS): FIFO Queue
	Slide 36: Breadth-First Search (BFS): FIFO Queue
	Slide 37: Breadth-First Search (BFS): FIFO Queue
	Slide 38: Breadth-First Search (BFS): FIFO Queue
	Slide 39: Breadth-First Search (BFS): FIFO Queue
	Slide 40: Breadth-First Search (BFS): FIFO Queue
	Slide 41: Breadth-First Search (BFS): FIFO Queue
	Slide 42: Breadth-First Search (BFS): FIFO Queue
	Slide 43: Depth-First Search (DFS)
	Slide 44: Your Turn – DFS: LIFO Stack
	Slide 45: For Next Class

