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9/7/2023
CMSC 671

By the end of class today, you will be able to:
1. Categorize agents based on their capabilities and behavior (Agents)

2. Formulate a search problem (Search)
3. Predict the order of nodes that breadth- and depth-first search will traverse (Search)
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SCHEDULE

Recap
Types of agents
Why search?

Intro to uninformed search
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RECAP: AGENT DEFINITION

* Agent: anything that its environment
through ,and on its environment

through

Sensors

Percept: input at an instant
Percept sequence: history of inputs

Agent function: mapping of
to effectors

Agent program: (concise) implementation of
an agent function
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RECAP: WAYS TO
DESCRIBE ENVIRONMENTS

Fully Observable vs Partially Observable
Deterministic vs Stochastic

Static vs Dynamic

Discrete vs Continuous

Episodic vs Sequential ‘

Single Agent vs Multi Agent
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TYPES OF AGENTS
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TYPES OF AGENTS

Similar to environments, we can come up with a taxonomy of agents based on how

they behave:

1. Simple Reflex Agent

2. Model-based Reflex Agent

3. Model-based Goal-based Agent
4. Model-based Utility-based Agent
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TYPES OF AGENTS:
SIMPLE REFLEX AGENT

Decide actions directly from the
current percept sequence

Example:
1f [A, Empty]: return Right
1f [B, Empty]: return Left

if [A or B, Human]: return Suck
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TYPES OF AGENTS:

MODEL-BASED REFLEX AGENT

Attempt to model the state of the
world, decide action based on
modeled (“remembered”) state

Example:

* Observe that at a certain time, people
are more likely to show up in A

e Move to location based on time of
day
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TYPES OF AGENTS:
MODEL-BASED GOAL-BASED AGENT

Action choices change as the goal
changes

Example:

* For the same performance criteria
(suck as much blood as possible), we
can add a goal of keeping one room
clear to act as a home

* As the goal changes, vampire changes
how often it moves
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TYPES OF AGENTS:
MODEL-BASED UTILITY-BASED AGENT

Agent cares not only about reaching ( TN Sensors
a goal, but also how it reaches its Ny
What th Id
goal ( How the world evolves isalti{u.:enﬁ;r
* gﬂ
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Example: ; 2
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WHAT TYPE OF AGENT IS A ROOMBA?

. Simple Reflex Agent

. Model-based Reflex Agent < Keeps a memory of the world but only reacts to its surroundings
Model-based Goal-based Agent

Model-based Utility-based Agent
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WHAT TYPE OF AGENT IS WATSON?
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Model-based Reflex Agent
. Model-based Goal-based Agent
. Model-based Utility—based Agent < Not just to win but to get the most money

. Simple Reflex Agent
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UNINFORMED
SEARCH
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WHY SEARCH?

* Some problems are small enough to go throug|
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| possible states:
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Tic-tac-toe: 32 = 19,683 states (3 values for each cell, nine cells)

* Most real-world problems are intractable /[ & = & SR
* We need to be smart about how we visit states - (1 Y
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WHY SEARCH?

For when we don’t know how to

reach a goal (or any goal) from a
given initial state (or any initial

state)

Modified from slides Dr. Cassandra Ken
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SEARCH TODAY: ALPHAGO

a Selection b  Expansion c Evaluation d
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SEARCH TODAY: STORY
GENERATION

. Key: Propositions:
H H S o e
,1"1 /?b fa ‘MLP temporal edge  Fluent 1 { aw !na ot 1::nrt.
g action . HIl = Hawkins on island.
ny: HP SPTB » ng: HPSPTN s e SUTPTiSe edge ] SP = Silver at port.
r Y T character . . Fluent2y . . ‘1
H rumar S i believes(S,TB)\— > cpisiemic edge "l 'h.llver on l“’l'md,' ,
A H A H I'N = Treasure doesn’t exist.
h 4 g  J TB = Treasure buried.
ny: HP SPTB » ny: HP 5P TB Fluent 3 { Tl= Treasure on island.
3 sail s | sail H 3 e z'f;“’k'ﬂﬁ h;S treasure,
S = Silver has treasure.
A 4 A ) AA
ng HISITB | —» no:HISITB »| g HISITN
H dig S | dig H S i dig
A A ) AL s
n,: HISITI ~ |  ngHISITI »|  ng: HISITI take(S,T)
; take(S, T ;
H take(H,T) S | take(H, m" (5.1) H S | take(H,T) H S
A v Al A AA b Al
nye: HI SITH » 1n,,:HISITH

H .2 HI SI'TS N2 HISITH | H n.s: HI SI TS

Initial State:

HP SP'TB b(5,TN)
Author’s Goal: TH
Hawkins® Goal: TH
Silver’s Goal: T8

Actions: rumor believes(S,TB)  sail dig take(H,T) take(S,T)
rre: TB PRE: false prE: HPSP pre: HITB  prE: HITI  PRE: SITI
EFF: B(5.TB) ErF: TB EFF: HI S EFF: TI EFF: TH EFF: TS
CON: H CON: HoRe COM: S CON: H CON: H COM: S
oBs: H 0OBS: S OBS: HS oBs: HS oBs: HS OBS: HS

Figure 1: A narrative search space graph for the plot of Treasure Island (Stevenson 1919).
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DEFINING A
SEARCH PROBLEM

Break down the problem space into states and actions (for each state)

* + these components:
* Initial state — where the agent starts
* Transition model — how actions change states

Goal test — measuring if the current state is the goal

Step cost (optional) — how expensive it is to take action 4 in state s

Problem: Find a sequence of actions that transitions the initial state
into a state which passes the goal test
Solution: sequence of actions, or a plan
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WHAT ARE STATES?

» Current position and attributes of everything in the environment
* Only need the things relevant to the agent’s decision making

* Like discrete snapshots over time

State
Location A: vampire, human
Location B: empty

19



9/7/2023 - Agents & Uninformed Search

WHAT ARE ACTIONS?

 Anything the agent can do to affect the environment

Actions
move left, move right, suck

move right, suck

Or for this particular state...

20
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TRANSITION MODEL EXAMPLE

Left

Left

A B
Ayl
!
Suck
B

Right

Left

A B
Ayl
!
Suck
A

Right

Right
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GENERIC SEARCH ALGORITHM™

function I REE-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leat node and remove it from the trontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier
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THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)
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THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)
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THE GENERIC SEARCH ALGORITHM

O Other nodes
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THE GENERIC SEARCH ALGORITHM
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THE GENERIC SEARCH ALGORITHM
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THE GENERIC SEARCH ALGORITHM
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THE GENERIC SEARCH ALGORITHM

O Other nodes
@ (states)



9/7/2023 - Agents & Uninformed Search

THE GENERIC SEARCH ALGORITHM

function TREE-SEARCH( problem ) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier @ ‘
Challenges:
* Loops

* Inefficiency
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THE GENERIC SEARCH ALGORITHM

function GRAPH-SEARCH( problem) returns a solution, or failure
initialize the frontier using the initial state of problem
initialize the explored set to be empty
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Challenges:
Lo Ol0I0]0

* Inetficiency
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WHAT ABOUT EFFICIENCY?

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Use data structures to control which nodes get explored next!
How we store the frontier affects the performance of the algorithm.
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BREADTH-FIRST SEARCH (BFS)

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Store frontier as first-in first-out (FIFO) queue
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[Start] @
Current node: O Frontier
none
@ c O Chosen node
O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
| S
Current node: O Frontier
Start
@ O Chosen node
O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
LA, B] @
Current node: O Frontier
Start
@ O Chosen node
O Other nodes
@ (states)




9/7/2023 - Agents & Uninformed Search

BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
Current node: O Frontier
A
G O Chosen node

O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
B,C, D] @
Current node: O Frontier
A
G O Chosen node

O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[C, D] @
Current node: O Frontier
B
@ G O Chosen node
O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):
FIFO QUEUE

Frontier:
[C, D, Goal, F] @
Current node: O Frontier
B
@ G O Chosen node
O Other nodes
@ (states)
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BREADTH-FIRST SEARCH (BFS):

Frontier:
[C, D, Goal, F]

Eventually.?.
Current node:
B

Return:
[Start, B, Goal]

FIFO QUEUE

O Other nodes

(states)
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DEPTH-FIRST SEARCH (DFS)

function TREE-SEARCH( problem) returns a solution, or failure
initialize the frontier|using the initial state of problem
loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Store frontier as last-in first-out (LIFO) queue, or a stack.
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YOUR TURN - DFS: LIFO STACK
Frontier:
[Start]
Current node: O Frontier
none
@ O Chosen node
O Other nodes
olo

You can work in pairs! Put both your names on it, please!
To be submitted on Blackboard after class
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FOR NEXT CLASS

* Fill out the paper presentation survey - Due TOMORROW!
* Submit DFS answers
* Read Chapter 3.1-3.4 (if you haven’t already)

45
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