

Lara J. Martin (she/they)

TA: Aydin Ayanzadeh (he)

9/28/2023

CMSC 671

By the end of class today, you will be able to:

- 1. Identify if a knowledge base entails certain statements given the possible worlds
- 2. Write a proof using rules of inference in propositional logic

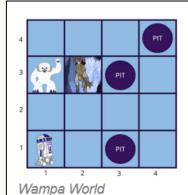
MODULE 2 GROUP PRESENTATIONS

1-page paper summaries due tomorrow 10/4 at 11:59pm

Group presentations are Thursday 10/5

HW 2 RELEASED

https://laramartin.net/Principles-of-AI/homeworks/logic/logical-agent.html



Homework 2: Hunt the Wampa (10%)

Due October 10, 2023 at 11:59:00 PM on Blackboard.

Materials:

HW2-LogicalAgents.ipynb

Learning Objectives

In this assignment, you will:

- Combine propositional logic rules to create an inference algorithm & knowledge base that can successfully guide the agent (the robot R2-D2) toward its goal
- Analyze the consequences of propositional logic rules on the agent's decision-making process
- Evaluate the effectiveness of your inference algorithm in guiding the agent's behavior in different Wampa World scenarios
- · Recognize logical agents in the wild
- Compare logical agents to search algorithms

Part 1: Implement the agent

RECAP

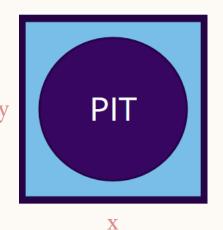
PROPOSITIONAL LOGIC DEFINITIONS

- Symbol: a variable that stands for a statement that must be either True or False
- Sentence: an assertion about the world; in a knowledge representation language
 - Two kinds: axioms and derived sentences
- Inference: deriving new sentences from KB
- $M(\alpha)$: all possible worlds where α is true
- If $\alpha \models \beta$ (entailment), α is a stronger/more specific statement than β
- If $\alpha \vdash \beta$ (inference), β is provable from α
- $W_{1,3} \Rightarrow S_{1,2}$ What is $W_{1,3}$? What is $S_{1,2}$? conclusion/consequence

A model of a KB is an interpretation in which all sentences in KB are true (i.e., like the conjunction of all sentences in the KB)

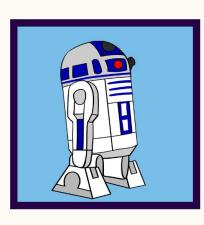
POSSIBLE WORLDS

Pxy is true if there is a pit in [x,y]



Bxy is true if there is a breeze y in [x,y]

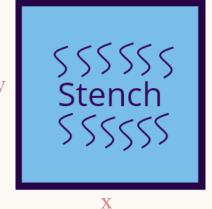
Axy is true if there is an agent in [x,y]



Wxy is true if there is a Wampa in [x,y]

X

Sxy is true if there is a stench v in [x,y]



Symbols for each location [x,y]

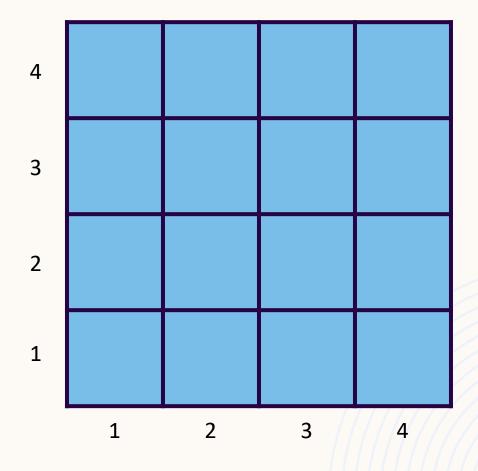
We can construct sentences out of these using logical connectors. We'll label each sentence.

R1: \neg P1,1

R2: B1,1 \Leftrightarrow (P1,2 V P2,1)

R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1)

These are true of all Wampa Worlds.



We can construct sentences out of these using logical connectors. We'll label each sentence.

R1: \neg P1,1

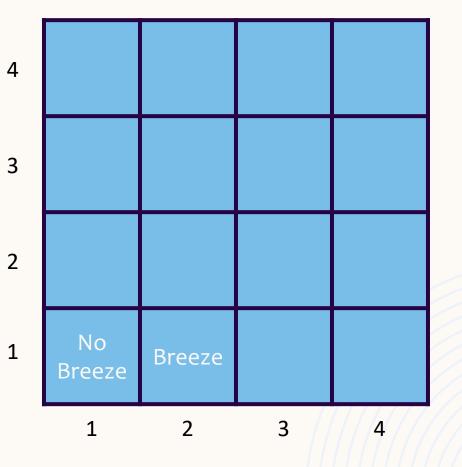
R2: B1,1 \Leftrightarrow (P1,2 V P2,1)

R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1)

What if we perceive the presence or absence of breeze in [1,1], [2,1]?

R4: $\neg B1,1$

R5: B2,1



We can construct sentences out of these using logical connectors. We'll label each sentence.

R1: \neg P1,1

R2: B1,1 \Leftrightarrow (P1,2 V P2,1)

R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1)

R4: \neg B1,1

R5: B2,1

Can we mechanically combine the sentences in our KB to prove that a pit exists at (or is absent from) any location?

THE "HUNT THE WAMPA" AGENT

• Some atomic propositions:

S12 = There is a stench in cell (1,2)

B34 = There is a breeze in cell (3,4)

W13 = The Wampa is in cell (1,3)

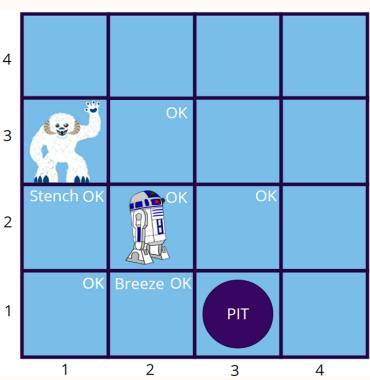
V11 = We have visited cell (1,1)

OK11 = Cell (1,1) is safe.

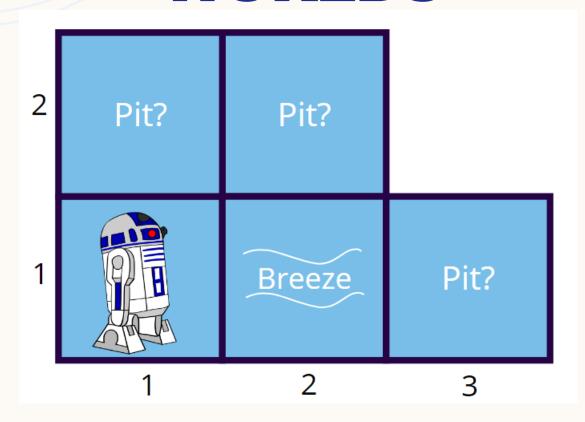
etc

Some rules:

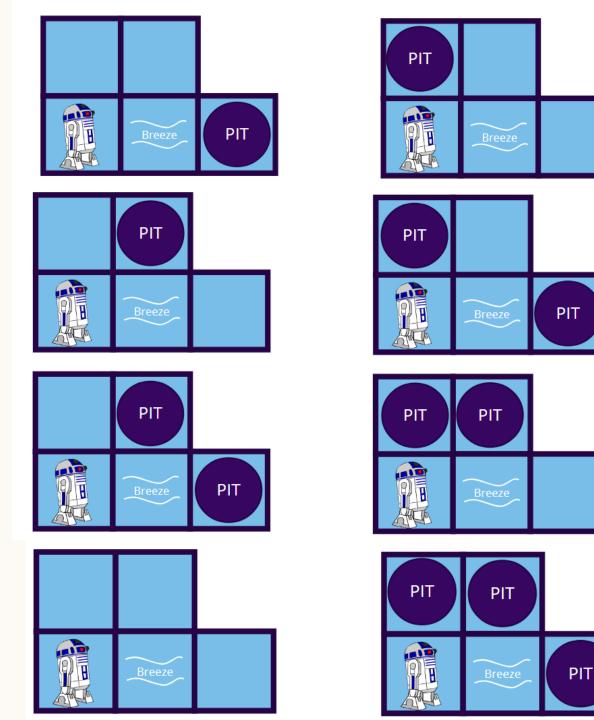
• Note that the lack of variables requires us to give similar rules for each cell



POSSIBLE WORLDS

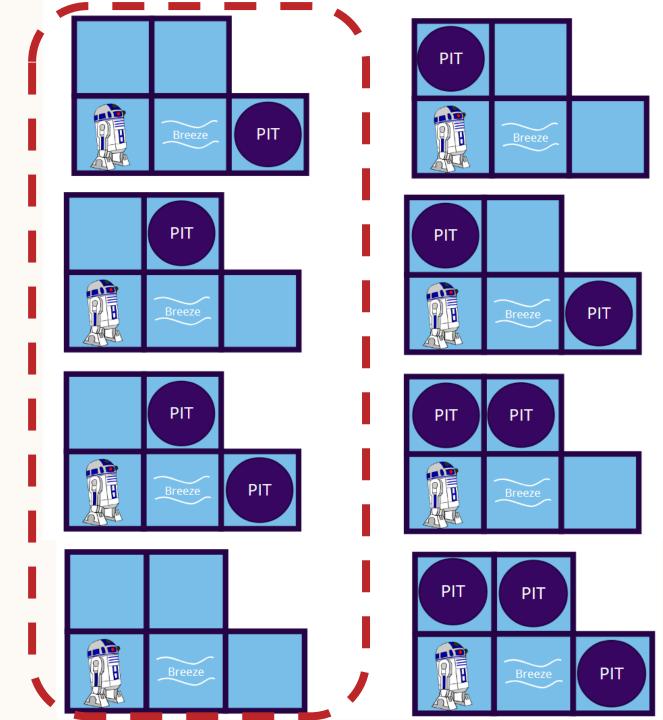


 $M(\alpha)$ – set of all models **m** where α is satisfied



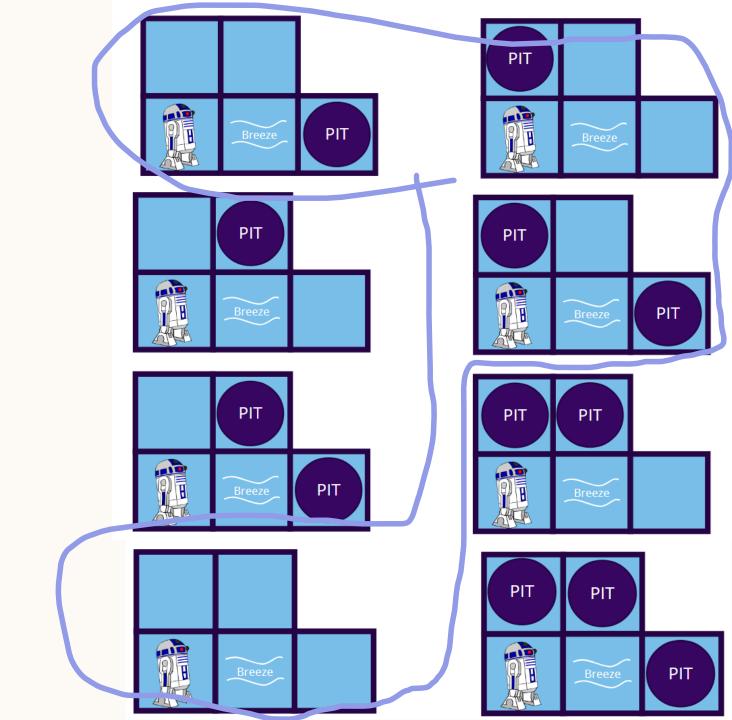
POSSIBLE WORLDS

 α_1 = "There is no pit in [1,2]"



POSSIBLE WORLDS

 α_1 = "There is no pit in [2,2]"



POSSIBLE WORLDS

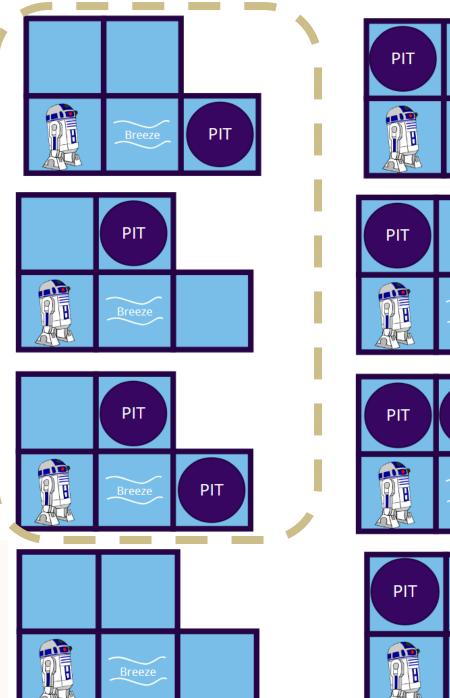
```
KB = R1: \neg P1,1

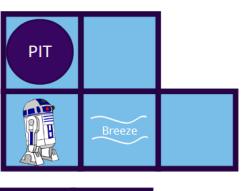
R2: B1,1 \Leftrightarrow (P1,2 \vee P2,1 )

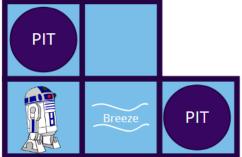
R3: B2,1 \Leftrightarrow (P1,1 \vee P2,2 \vee P3,1 )

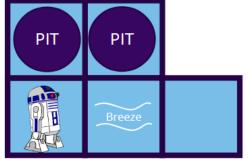
R4: \neg B1,1

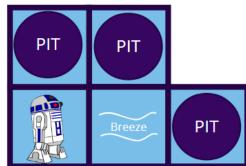
R5: B2,1
```







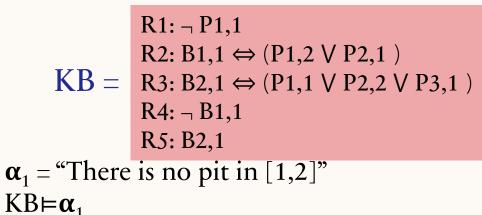


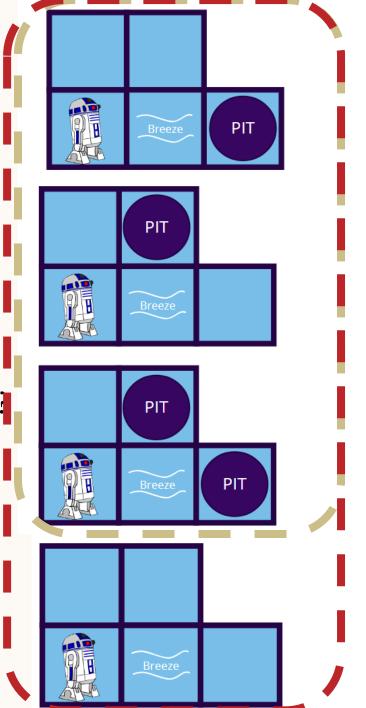


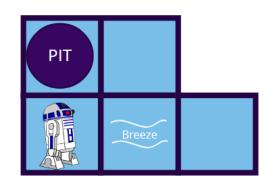
POSSIBLE WORLDS

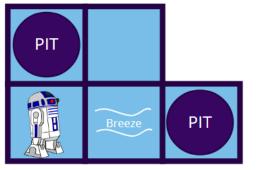
 $\beta \models \alpha$ if and only if $M(\beta) \subseteq M(\alpha)$ " β entails α if and only if every model in which β is true, α is also true"

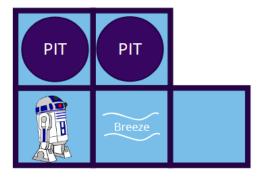
Does our KB entail that there is no pit in [1,2]: $KB \models \alpha_1$ if and only if $M(KB) \subseteq M(\alpha_1)$

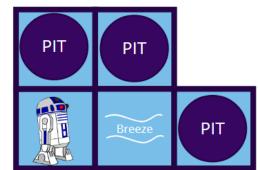












POSSIBLE WORLDS

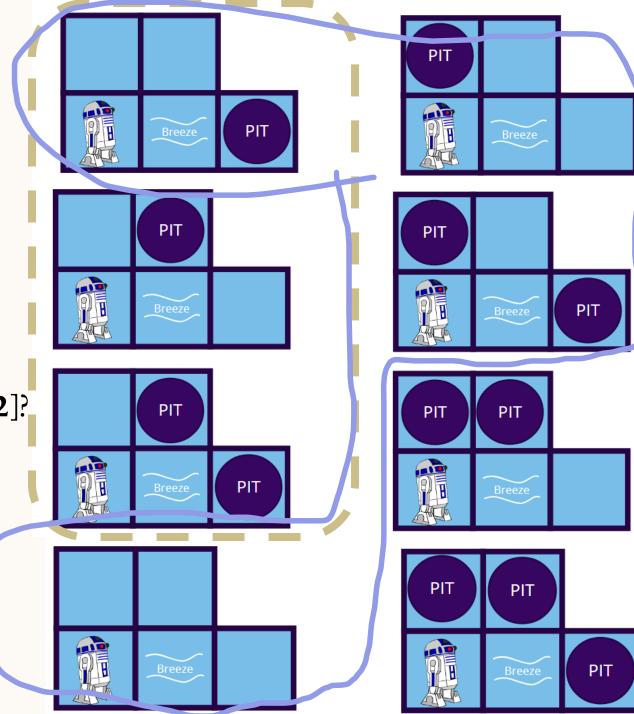
 $\beta \models \alpha$ if and only if $M(\beta) \subseteq M(\alpha)$ " β entails α if and only if every model in which β is true, α is also true"

Does our KB entail that there is **no pit in** [2,2]? $KB \models \alpha_2$ if and only if $M(KB) \subseteq M(\alpha_2)$

$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

 α_2 = "There is no pit in [2,2]"

KB does not entail α_2 in some models where KB is true & α_2 is false



THEOREM PROVING

SOUND RULES OF INFERENCE

RULE

Modus Ponens

And Introduction

And Elimination

Double Negation

Unit Resolution

Resolution

de Morgans

 V/ \Rightarrow Equivalence

PREMISES

$$\alpha, \alpha \Rightarrow \beta$$

α, β

αΛβ

 $\neg \, \neg \alpha$

 $\alpha \vee \beta, \neg \beta$

 $\alpha \vee \beta, \neg \beta \vee \gamma$

 $\neg(\alpha \lor \beta)$

 $\alpha \Rightarrow \beta$

CONCLUSION

β

αΛβ

α

α

α

 $\alpha \vee \gamma$

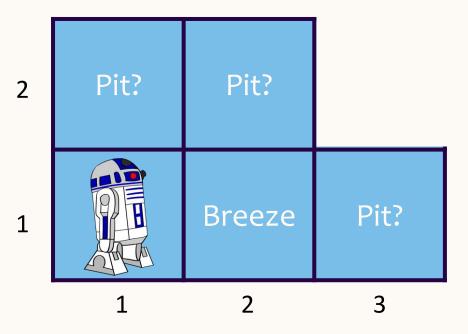
 $\neg \alpha \land \neg \beta$

 $\neg \alpha \lor \beta$

All of the logical equivalence rules can be re-written as inference rules.

$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

Prove whether or not there is a pit in [1,2].



$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

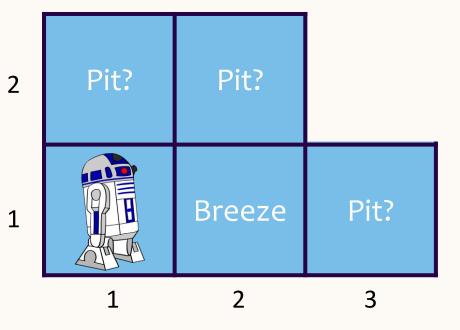
Biconditional Elimination:

$$\frac{\alpha \Leftrightarrow \beta}{(\alpha \Longrightarrow \beta) \land (\beta \Longrightarrow \alpha)}$$

Apply biconditional Elimination to R2 to get R6.

R6:
$$(B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)$$

Monotonicity: if $KB \models \alpha$ then $KB \land \beta \models \alpha$ We can safely add to the KB, without invalidating anything else that we inferred.



$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

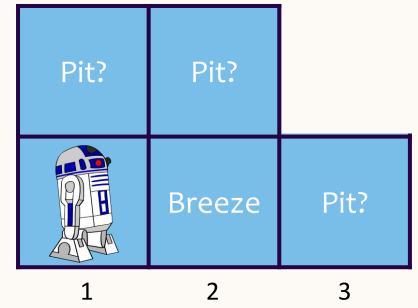
And Elimination:

$$\frac{\alpha \wedge \beta}{\alpha}$$

R6: (B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)

Apply And-Elimination to R6 to get R7.

R7:
$$((P1,2 \lor P2,1) \Longrightarrow B1,1)$$



L

$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

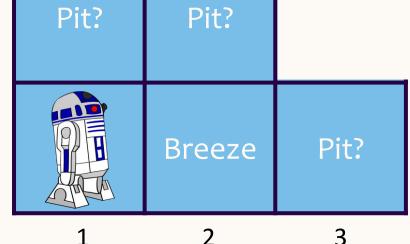
Logical equivalence for contrapositives: $(\alpha \Longrightarrow \beta)$ $\overline{(\neg \beta \Rightarrow \neg \alpha)}$

R6:
$$(B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)$$

R7:
$$((P1,2 \lor P2,1) \Longrightarrow B1,1)$$

Logical equivalence for contrapositives applied to R7 gives R8.

R8:
$$(\neg B1,1 \Longrightarrow \neg (P1,2 \lor P2,1))$$



$$KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$$

Modus Ponens:

$$\frac{\alpha \Longrightarrow \beta, \alpha}{\beta}$$

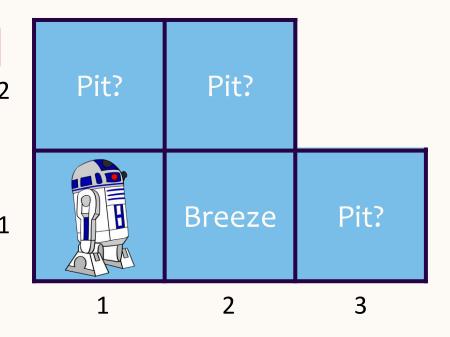
R6: $(B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)$

R7: $((P1,2 \lor P2,1) \Longrightarrow B1,1)$

R8: $(\neg B1,1 \Longrightarrow \neg (P1,2 \lor P2,1))$

Apply Modus Ponens to R4 and R8 to get:

R9: \neg (P1,2 V P2,1))



INFERENCE EXAMPLE

 $KB = \begin{cases}
R1: \neg P1,1 \\
R2: B1,1 \Leftrightarrow (P1,2 \lor P2,1) \\
R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1) \\
R4: \neg B1,1 \\
R5: B2,1
\end{cases}$

De Morgan's Rule:

$$\frac{\neg(\alpha \lor \beta)}{(\neg\alpha \land \neg\beta)}$$

R6: (B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)

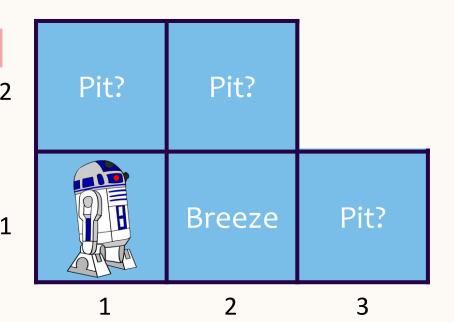
R7: $((P1,2 \lor P2,1) \Longrightarrow B1,1)$

R8: $(\neg B1,1 \Longrightarrow \neg (P1,2 \lor P2,1))$

R9: \neg (P1,2 V P2,1))

Apply De Morgan's Rule to R9:

R10: ¬P1,2 ∧ ¬ P2,1



 $R1: \neg P1,1$

R2: B1,1 \Leftrightarrow (P1,2 \vee P2,1)

 $KB = R3: B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1)$

R4: ¬ B1,1

R5: B2,1

And Elimination:

 $\frac{\alpha \wedge \beta}{\alpha}$

R6: (B1,1 \Longrightarrow (P1,2 \lor P2,1)) \land ((P1,2 \lor P2,1) \Longrightarrow B1,1)

R7: $((P1,2 \lor P2,1) \Longrightarrow B1,1)$

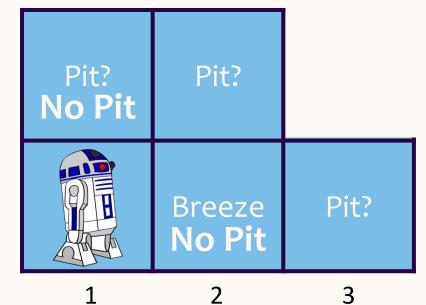
R8: $(\neg B1,1 \Longrightarrow \neg (P1,2 \lor P2,1))$

R9: \neg (P1,2 V P2,1))

R10: \neg P1,2 $\land \neg$ P2,1

R11: ¬P1,2

R12: \neg P2,1



1

Your Mission

Prove that the Wampa is in (1,3), given the observations shown and these rules:

Reminder of Wampa Rules

- If there is no stench in a cell, then there is no Wampa in any adjacent cell
- If there is a stench in a cell, then there is a Wampa in some adjacent cell
- If there is no breeze in a cell, then there is no pit in any adjacent cell
- If there is a breeze in a cell, then there is a pit in some adjacent cell
- If a cell has been visited, it has neither a Wampa nor a pit

FIRST write the propositional rules for the relevant cells (your initial KB)

THEN write the proof steps and indicate what inference rules you used in each step

PROVE IT!

A = Agent

B = Breeze

G = Gasp

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wampa

V12 S12 ¬B12	V22 ¬S22 ¬B22	
V11 ¬S11 ¬B11	V21 B21 ¬S21	

Inference Rules

Modus Ponens

$$\frac{\alpha \Longrightarrow \beta, \alpha}{\beta}$$

And Introduction

$$\frac{\alpha,\,\beta}{\alpha\wedge\beta}$$

And Elimination

$$\alpha \wedge \beta$$

Double Negation

$$\neg\neg\alpha$$

Unit Resolution

$$\alpha \vee \beta, \neg \beta$$

Resolution

$$\frac{\boldsymbol{\alpha} \vee \boldsymbol{\beta}, \neg \boldsymbol{\beta} \vee \boldsymbol{\gamma}}{\boldsymbol{\alpha} \vee \boldsymbol{\gamma}}$$

$$\alpha \vee \gamma$$

FOR NEXT CLASS

- Read Chapters 8.1.2, 8.2, 8.3, 9.3
- Get ready to present Module 2 (for those with Module 2)
- Start looking at Homework 2