REINFORCEMENT LEARNING

Lara J. Martin (she/they) TA: Aydin Ayanzadeh (he)

> 10/24/2023 CMSC 671

By the end of class today, you will be able to:

- Explain why we would use reinforcement learning instead of value/policy iteration
- Describe the relationship between utility and Q-values
- Compare and contrast the effects of exploration and exploitation

Modified from slides by Dr. Cassandra Kent

MDPS IN THE REAL WORLD

• Consider a complex task environment: Dungeons & Dragons battle

Screencap from Netflix's Stranger Things via https://www.tbetimes.co.uk/article/dungeons-and-dragons-fans-enter-the-land-of-popularity-j0q53lkcw

WHAT DO WE NEED TO DEFINE AN MDP?

Recall that an MDP has 5 components: $(S, A(s), T(s, a, s'), R(s), \gamma)$

- State S:
 - Character stats, health, injuries, inventory, location, skills
 - Monster stats, health, location
 - Not too bad, all of this is finite and known to players
- Actions A(s):
 - Any combination of weapons/spells in inventory used on a certain # of monsters
 - Spells to help team
 - But also...using items
 - Starts to get complicated if you include saying things as the character, but we can ignore this for now

WHAT DO WE NEED TO DEFINE AN MDP?

Recall that an MDP has 5 components: ($S, A(s), T(s, a, s'), R(s), \gamma$)

- Transition function *T*(*s*, *a*, *s'*):
 - Some sort of model of the rules of the game
 - E.g., What happens when I cast fireball on this goblin?
- Reward R(s):
 - What do we need to define this for our agent?
 - The experience we get for slaying the monsters?
 - What if we wanted to spare them or they got away?
 - Did we have any other objectives?
 - E.g., Did we get the magical amulet?
 - Note that these rewards don't occur at every step, just at the end!
- Discount factor γ: No problem, just a parameter

10/24/2023 - Reinforcement Learning

HOW CAN WE SOLVE THIS TYPE OF MDP?

How can we avoid difficult-to-specify transition functions?

- The world is our transition function!
- We can try an action, and see what happens
- No need to specify everything

How can we avoid difficult-to-specify reward functions?

- Similar idea as above
- Find a way to observe a reward signal
- No need to formulate a function

INTUITION BEHIND RL

Learning by **trial-and-error**

- 1. Try doing something
- 2. Leverage the real world or a simulator to observe the transition function and reward function
- 3. Record the results
- 4. Repeat, focusing more on what worked in past trials

HIGH-LEVEL RL ALGORITHM

Goal: Compute a policy $\pi(s) \rightarrow a$

- 1. Start in initial state s_t (t =current time)
- 2. Observe the reward r
- 3. Pick an action a_t to execute
- 4. Executing a_t will cause the agent to go to state s_{t+1}
- 5. Repeat steps 1-4, until we have a lot of data
- 6. Compute the best policy $\pi(s)$ we can given what we've observed

We call this a **trial**

MODEL-BASED VS. MODEL-FREE

Model-Based RL: learn T(s, a, s'), then compute $\pi(s)$

- Interacting with the environment produces samples of the transition function and the reward function
- Build **explicit** models of *T* and *R*
 - p(s'|s,a) = (# times doing a in s led to s')/(# times tried a in s)
 - R(s) = average reward for s
- Compute $\pi(s)$ with value/policy iteration

MODEL-BASED VS. MODEL-FREE

Model-Free RL: don't try to learn T(s, a, s'), but compute $\pi(s)$ directly

- Interacting with the environment produces samples of the transition function and the reward function
- We only care about T and R as a means of computing utility and an optimal policy
- **Directly compute optimal policy** from samples of *T* and *R*

MODEL-BASED VS. MODEL-FREE

Model-based RL

• Useful if we need to know the transition function

- See problems such as system identification
- Many model-based approaches • Commonly used model-free see the first half of Section 21.3 for some examples

Model-Free RL

- More straightforward approach if all you want is a policy
- Approach we will focus on in detail
- approach: Q-learning

Q-VALUES AND UTILITY

How Q-learning works:

- Since we're **not** modeling T(s, a, s'), move action a into our utility estimate
- We call this a Q-value: Utility of doing action *a* in state *s*

Q(s,a)

• Goal of Q-learning: learn enough Q-values to compute an effective policy

Q-VALUES AND UTILITY

Value Iteration $U^{\pi}(s)$

Long-term expected discounted reward of being in state **s** and following policy π

$$\pi^*(s) = \arg\max_a \sum_{s'} p(s' \mid s, a) U^{\pi^*}(s')$$

Optimal policy in state s

Reinforcement Learning $Q^{\pi}(s, a)$ Long-term expected discounted reward of being in state *s*, taking

action a, then following policy π

$$\pi^*(s) = \arg\max_a Q^{\pi^*}(s, a)$$

Optimal policy in state s

Q-VALUES AND UTILITY

U(s) and Q(s, a) represent the same thing!

- U(s) is useful for Value and Policy Iteration
- Q(s, a) is easier to work with for model-free reinforcement learning

We can relate the two values directly:

$$U(s) = \max_{a} Q(s, a)$$

Dis
util
acti

Discounted expected utility of doing action *a* in state *s*

Implicitly encodes transition function

THE Q-LEARNING ALGORITHM

- 1. Start in initial state s_t (t =current time)
- 2. Observe the reward r
- 3. Pick an action a_t to execute
- 4. Executing a_t will cause the agent to go to state s_{t+1}
- 5. Update Q-value for $Q(s_t, a_t)$
- 6. Repeat steps 1-5, until we have a lot of data
- 7. Compute $\pi(s)$ from Q(s, a)

$$\pi^*(s) = \arg\max_a Q^{\pi^*}(s, a)$$

ANALOGY: ANTS

UPDATING Q-VALUES

UPDATING Q-VALUES

 $U(s_{t+1})$ The Q-value update equation: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r + \gamma \max_{a'} \left(Q(s_{t+1}, a') \right) - Q(s_t, a_t))$ New measurement of $Q(s_t, a_t)$ Recall: $U(s) = \max_{a} Q(s, a)$ $Q(s,a) = R(s) + \gamma \sum_{s'} p(s'|s,a) U(s')$ We're updating the Q-Value based on its observed change in value

UPDATING Q-VALUES

The Q-value update equation (for terminal states):

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r + \gamma \max(Q(s_{t+1}, a')) - Q(s_t, a_t))$$

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r - Q(s_t, a_t))$

Why not set this directly to the observed reward?

- We can set $Q(s_t, a_t) = r$ if our rewards are deterministic
- We should use the update equation if our rewards are stochastic!

D&D Q-TABLE EXAMPLE

	Use Sword	Move forward	Move back	Heal
S1 Have sword Monster alive	5	2	0	0
S2 No sword Monster alive	0	0	10	11
S3 Have sword Monster dead	0.001	2	1	5
S4 No Sword Monster dead	0	1	0	3

SELECTING ACTIONS DURING TRIALS

Option 1: Random Actions Always pick an action at random This provides the extensive **exploration** of the state space

Start Medium reward High reward

SELECTING ACTIONS DURING TRIALS - EXAMPLE

Scenario: We just moved to a new city for college. We need to learn a policy for ourselves to get from our apartment to campus.

Option 1: Random Actions

Always pick an action at random *Every day, we'll take a random turn at every intersection.*

What's going to happen in this case?