INTRO TO PROBABILITY

COURSE SCHEDULE

- HW 3 is due $11 / 14$
- All project milestones are released (see website)
- First milestone due 11/16
- Module 4 Presentations are 11/16
- Summaries due $11 / 15$

Name
Team Name Topic Preference

FINAL PROJECT TEAMS

- Figure out what you want to work on
- Come up with cute team names (if you want)
- Project Milestone 1: Project Proposal is due $\mathbf{1 1 / 1 6}$
- Includes:

1. Meeting with me or Aydin
2. Writing a proposal

Aja, Richard

Breitmeyer, Max

May, An

Rubinstein, Jacob Spencer
Anand, Aaditya
Konagalla, Ashish Gupta
Kumar, Akshay
Patel, Neel R 2

Choudhury, Shadab Hafiz

Gopal, Bharath
Hossain, Shahin
Bollineni, Prerana 4

Honraopatil, Arya M 4
Poyekar, Bhargavi
4
Vidam, Mukesh Kumar
Bansal, Apoorv
Jagabathina, Lakshmi Vivek
Sharma, Saksham Kumar
Athimamula, Ashish
Changal, Mahesh Reddy
Changal, Ramesh
6
Pendem, Saieesh 6
Samudrala, Hanuma Sashank
Bhande, Siddhesh Laxman
Muthunooru, Aksheetha
Oruganti, Seetaram
Shah, Pratvi Dhananjay
Abili, Chris 8

Kadasani, Dayakar Reddy
Kochar, Pravar Aditya
Young, Jo
Sivakumar, Naren
Ugwuabonyi, Emmanuel Chinonyelu
brav. Shawn 2 244 6 6

6 8

1 search,logic, planning,rl,bayes,probability,NN,transformer 1 NN,transformer, rl,logic, probability,planning, bayes,search 1 bayes,probability,transformer,NN,rl,logic,search,planning 1 search,logic, planning, rl, bayes, probability,NN,transformer 2 transformer,NN, probability, bayes,rl, planning,logic,search

2 search,logic, planning, rl, bayes, probability,NN,transformer

3 logic, probability,bayes,NN,transformer,planning,search,rl 3 probability,search,rl,transformer,NN,planning,bayes,logic 3 transformer,NN, probability, bayes, rl, planning,logic,search

5 logic,rl,bayes, probability,NN,transformer,search,planning 5 rl,search, planning,logic, bayes, probability,NN,transformer 5 probability,search,logic, planning,rl, bayes,NN,transformer

6 probability,NN,transformer,search,logic,planning,rl,bayes

7 search,logic, planning,rl,bayes, probability,NN,transformer 7 transformer,NN,probability,bayes,rl,planning,logic,search 7 NN,probability,bayes,rl, planning,logic,search,transformer 7 search,logic,planning,rl,bayes,probability,NN,transformer

8 logic,transformer, bayes,rl, probability,planning,NN, search 8 planning,bayes,probability,search,logic,rl,transformer,NN 8 search,logic, planning,rl, bayes, probability,NN,transformer 9 transformer,NN,rl, probability, bayes,search, planning,logic 9 search,NN,transformer, probability,bayes,logic, planning,rl 9 NN.transformer,search.rl.probabilitv,logic,planning,baves

BIGGER PICTURE

THE COURSE SO FAR

- Module 0: Introduction to AI \& Agents \rightarrow building basic vocabulary, intro to agent paradigm
- Module 1: Search \rightarrow Reaching a goal by "exploring" \& using task-specific information (heuristics)
- Module 2: Logical Agents \rightarrow Reaching a goal by "reasoning"
- Planning is search with logic
- Module 3: Sequential Decision Making \rightarrow Reaching a goal by "learning" the environment
- Module 4: Probability \& Stochastic Reasoning \rightarrow Reaching a goal by modeling it with probability from data
- Module 5: Machine Learning \rightarrow Reaching a goal by modeling it from learning patterns in data

PROBABILITY

How comfortable are you with probability?

Very! I got this!14\%
I have an intuitive sense of probability but I have trouble apply it29\%
I can get by.52\%
Ehhh...
0\%
What's probability?5\%

Consider the probability $\mathrm{P}(\mathrm{X})$. A distribution is...

how many values can fit X
how likely each value of X is
the sum of all values of X

SIMILARITIES TO LOGIC

Like logical assertions, probabilities are about possible worlds. Instead of strictly ruling out possibilities (where a logical assertion is false), probabilities quantify how likely a particular possible world is.

In probability theory, the possible worlds are called the sample space.

REASONING UNDER UNCERTAINTY

- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Unobserved variables (states): Agent needs to reason about other aspects they can't sense (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known/observed variables relate to the unknown/unobserved variables

RANDOM VARIABLES

- Capture some aspect of the world we might have uncertainty about
- Notation: capital letter
- E.g., $\mathrm{R}=\mathrm{Is}$ it raining?
$\mathrm{U}=\mathrm{Is}$ Dr. Martin carrying an umbrella?
- Unobserved random variables refer to a distribution

DISTRIBUTIONS

- A distribution is an exhaustive list of all possible values a random variable can contain AND how likely each is
- Any value listed must be possible i.e., have a probability ≥ 0

$$
P(W)
$$

$P(U)$

W	Probability
Rain	0.3
Fog	0.1
Sun	0.6

U	Probability
Umbrella	0.2
No Umbrella	0.8
	$\sum_{u} P(U=u)=1$

JOINT DISTRIBUTIONS

- A joint distribution over a set of random variables $X_{1}, X_{2}, \ldots X_{n}$ is a distribution where both values would be true

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right)
$$

or

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)
$$

Where $P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0$ and $\sum_{x_{1}, x_{2}, \ldots x_{n}} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1$

JOINT DISTRIBUTIONS

$P(W, U)$		
\mathbf{W}	\mathbf{U}	Probability
Rain	Umbrella	0.3
Rain	No Umbrella	0.2
Sun	Umbrella	0.1
Sun	No Umbrella	0.4

CONDITIONAL DISTRIBUTIONS

- A conditional distribution is a distribution where a probability is being calculated given some other fixed values

$P(U \mid W=$ rain $)$		
\mathbf{W}	\mathbf{U}	Probability
Rain	Umbrella	0.8
Rain	No Umbrella	0.2

CLASS DISCUSSION

- What types of agents use probability?
- Can you think of any AI that uses probability?
- When would you not want to use probability?

