BAYES' NETS

Lara J. Martin (she/they) TA: Aydin Ayanzadeh (he)

11/14/2023
CMSC 671

COURSE SCHEDULE

- HW3 is due TONIGHT
- You're allowed to use up to 3 of your 5 late days on it
- You can use up to 1 late day for each final project deadline (except the last one)
- First milestone due $11 / 16$
- NOTE: Meeting with me or Aydin is part of the grade (due when the proposal is due)
- Module 4 Presentations are 11/16
- Summaries due tomorrow

REVIEW: MLE EXAMPLE

$$
P\left(w_{i} \mid w_{i-1}\right)=\frac{\operatorname{count}\left(w_{i-1}, w_{i}\right)}{\operatorname{count}\left(w_{i-1}\right)}
$$

<s> I am Sam </s>
$<s>$ Sam I am </s>
<s> I do not like green eggs and ham </s>

$$
\begin{array}{lll}
P(\mathrm{I}|<\mathrm{s}\rangle)=\frac{2}{3}=.67 & P(\mathrm{Sam}|<\mathrm{s}\rangle)=\frac{1}{3}=.33 & P(\mathrm{am} \mid \mathrm{I})=\frac{2}{3}=.67 \\
P(</ \mathrm{s}\rangle \mid \mathrm{Sam})=\frac{1}{2}=0.5 & P(\mathrm{Sam} \mid \mathrm{am})=\frac{1}{2}=.5 & P(\mathrm{do} \mid \mathrm{I})=\frac{1}{3}=.33
\end{array}
$$

REVIEW: ISSUE WITH MLE: ZEROS

I will not eat them in the rain.
I will not eat them on a train.
Not in the dark! Not in a tree!
Not in a car! You let me be!
I do not like them in a box.
I do not like them with a fox.
I will not eat them in a house.
I do not like them with a mouse.
I do not like them here or there.
I do not like them anywhere!
I do not like green eggs and ham!
I do not like them, Sam-I-am.

$$
\begin{aligned}
& P(\text { "them"|"I do not like" })=\frac{6}{7} \\
& P(\text { "pink"|"I do not like" })=0
\end{aligned}
$$

LAPLACE (ADD ONE) SMOOTHING

I will not eat them in the rain.
I will not eat them on a train.
Not in the dark! Not in a tree!
Not in a car! You let me be!
I do not like them in a box. I do not like them with a fox.
I will not eat them in a house.
I do not like them with a mouse. I do not like them here or there. I do not like them anywhere! I do not like green eggs and ham! I do not like them, Sam-I-am.

$$
\begin{aligned}
& P(\text { "them"|"I do not like" })=\frac{6}{7} \\
& P(\text { "pink"|"I do not like" })=0
\end{aligned}
$$

Let V be the size of our vocabulary.

$$
\begin{aligned}
& P\left(\text { "them"|"I do not like") }=\frac{(6+1)}{(7+V)}\right. \\
& P\left(\text { "pink"|"I do not like") }=\frac{(0+1)}{(7+V)}\right.
\end{aligned}
$$

Too much probability to unseen words

GENERALIZED ADDITIVE SMOOTHING

I will not eat them in the rain.
I will not eat them on a train.
Not in the dark! Not in a tree!
Not in a car! You let me be!
I do not like them in a box. I do not like them with a fox.
I will not eat them in a house.
I do not like them with a mouse. I do not like them here or there. I do not like them anywhere! I do not like green eggs and ham! I do not like them, Sam-I-am.

$$
\begin{aligned}
& P(\text { "them"|"I do not like" })=\frac{6}{7} \\
& P(\text { "pink"|"I do not like" })=0
\end{aligned}
$$

Let V be the size of our vocabulary.

$$
\begin{aligned}
& P\left(\text { "them"|"I do not like") }=\frac{(6+\lambda)}{(7+V)}\right. \\
& P\left(\text { "pink"|"I do not like") }=\frac{(0+\lambda)}{(7+V)}\right.
\end{aligned}
$$

BAYES' NETS

PROBABILISTIC MODELS

- Models describe how (a portion of) the world works
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables

INDEPENDENCE

- Two variables are independent if

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

Meaning that their joint distribution factors into a product of two simpler distributions.

$$
\forall x, y: P(x \mid y)=P(x)
$$

- Independence is written as: $X \Perp Y$
- It is a simplifying assumption used for modeling.
- Empirical joint distributions can be used to approximate independence

REPRESENTING INDEPENDENCE

- Independent relationships can be thought of as cause $\&$ effect
- What can we assume about the relationship between
\{weather, traffic, cavity, toothache\}?
- We can represent dependent relationships through directed acyclic graphs where the nodes are random variables and the edges represent the relationship from cause to effect

IF the graph accurately represents the independence structure, nodes are independent of their siblings given their immediate parents: Toothache \perp Catch \mid Cavity

CONDITIONAL PROBABILITY TABLE

If we have a cavity, this may be the reason why we have a toothache but also the reason why the dentist detects a cavity.

For discrete RV's we can represent the conditional probability as a table

$p($ Cav $)$	$p(\neg \mathrm{Cav})$
0.2	0.8

	$p($ Det \mid Cav $)$	$p(\neg$ Det \mid Cav $)$
Cav $=T$	0.9	0.1
Cav $=F$	0.6	0.4

	$p($ Tth \mid Cav $)$	$p(\neg$ Tth \mid Cav $)$
Cav=T	0.6	0.4
Cav=F	0.1	0.9

BAYES' NETS: MULTIPLE PARENTS

Nodes can have more than one parent, or none

- CPT includes all parents
- Nodes without parents: marginals
"Car has fuel" "Weather is warm"

"Car starts"

	p (Starts \mid Gas,Temp $)$	$\mathrm{p}(\neg$ Starts \mid Gas,Temp $)$
Gas=T, Temp=T	0.9	0.1
Gas=T, Temp=F	0.8	0.2
Gas=F, Temp=T	0.5	0.5
Gas=F,Temp=F	0.3	0.7

BUT if conditioned on a common child, parents are no longer
independent (knowing effect influences the probability of both causes) Gas ํ Temp | Starts

BAYES' NETS: CHAINS

Nodes can have "grandparents" (chains)
Late \perp Gas, Temp \mid Starts

IF the graph accurately represents the independence structure, nodes are independent of their grandparents given their immediate parents

INDEPENDENCE IN BAYES' NETS

IF the graph accurately represents the independence structure, we can factor the joint probability into a convenient form

$$
p\left(X_{1}, X_{2}, \ldots, X_{D}\right)=\prod_{i=1}^{D} p\left(X_{i} \mid \operatorname{PARENTS}\left(X_{i}\right)\right)
$$

Nodes are conditionally independent of their ancestors and siblings (non-descendents) given their parents.

X is conditionally independent of Y given Z iff:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \quad \text { or } \quad \forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

CAUSE AND EFFECT

If you know the cause and effect relationships for your problem, it's easy to build a Bayes Net.
Can you also infer cause and effect relationship from a graph? No!

$$
\begin{aligned}
p(A, B, C, D) & =p(A \mid B, C, D) p(B \mid C, D) p(C \mid D) p(D) \\
& =p(B \mid A, C, D) p(A \mid C, D) p(C \mid D) p(D)
\end{aligned}
$$

A graph for a given set of RV is not necessarily unique.

USING BAYES' NETS - EXAMPLE

You are on vacation, and you've asked your neighbors (John \& Mary) to keep an eye on your house while you are away. They'll call you if your house alarm goes off.

Your alarm system could be triggered because of an actual burglar or because a thunderstorm sets it off.

USING BAYES' NETS - EXAMPLE

What's the probability that

- Both neighbors call
- The alarm goes off
- There is no burglar
- There is no storm
$\mathrm{p}(\mathrm{j}, \mathrm{m}, \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{t})=$ $\mathrm{p}(\mathrm{j} \mid \mathrm{a}) \mathrm{p}(\mathrm{m} \mid \mathrm{a}) \mathrm{p}(\mathrm{a} \mid \neg \mathrm{b}, \neg \mathrm{t}) \mathrm{p}(\neg \mathrm{b}) \mathrm{p}(\neg \mathrm{t})=$ (.9) (.7) (.001) (.999) (.998) $=0.00062$

Joint probability table: $2^{\wedge} \wedge=32$ cells
CPT factorization: 20 cells
$p\left(X_{1}, X_{2}, \ldots, X_{D}\right)=\prod_{i=1}^{D} p\left(X_{i} \mid \operatorname{ParEnts}\left(X_{i}\right)\right)$

YOUR TURN: USING BAYES' NETS

In general, there's a 4 step process to solve any query about a Bayes' Net:

1. Write the query as a statement about probabilities
2. Rewrite statement in terms of the joint probability distribution
3. Factor the joint probability using Bayes' Net independencies
4. Simplify, and plug in numbers from CPTs ${ }_{D}$
$p\left(X_{1}, X_{2}, \ldots, X_{D}\right)=\prod_{i=1} p\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
Calculate the probability that there is a burglar if both John and Mary call.

Steps $1 \& 2: \quad p(b \mid j, m)=\frac{p(b, j, m)}{p(j, m)}=\alpha \cdot p(b, j, m)$

$$
=\alpha \sum_{h_{1}} \sum_{h_{2}} p\left(b, T h=h_{1}, A l=h_{2}, j, m\right)
$$

BAYES' NETS BIG PICTURE

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is way too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

