BAYES' NETS INFERENCE

Lara J. Martin (she/they) TA: Aydin Ayanzadeh (he)

11/14/2023
CMSC 671

By the end of class today, you will be able to:

- Draw connections between inference by enumeration with probability (MLE) and Bayes' nets
- Eliminate variables for Bayes' net inference

REVIEW: INDEPENDENCE

What does it mean for A and B to be independent $(P(A) \Perp P(B))$?

- A and B do not affect each other's probability
- $P(A, B)=P(A) P(B)$
- $P(x \mid y)=P(x)$

CONDITIONING

- What does it mean for A and B to be conditionally independent given C?
- A and B don't affect each other if C is known
- $P(\mathrm{~A}, \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$

REVIEW: BAYES' RULE

- What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

- What's it useful for?
- Diagnosis
- Effect is perceived, want to know (probability of) cause

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

REVIEW: BAYES' RULE

- What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

- What's it useful for?
- Diagnosis
- Effect is perceived, want to know (probability of) cause

$$
P(\text { hidden } \mid \text { observed })=\frac{P(\text { observed } \mid \text { hidden }) P(\text { hidden })}{P(\text { observed })}
$$

REVIEW: BAYES' NETS

- Bayesian Network (BN): BN = (DAG, CPD)
- DAG: directed acyclic graph (BN's structure)
- CPT: conditional probability table (BN's parameters)

$p($ Cav $)$	$p(\neg \mathrm{Cav})$
0.2	0.8

	$p($ Det $\mid \mathrm{Cav})$	$p(\neg$ Det $\mid \mathrm{Cav})$
Cav $=\mathrm{T}$	0.9	0.1
Cav=F	0.6	0.4

	$p($ Tth \mid Cav $)$	$p(\neg$ Tth \mid Cav $)$
Cav=T	0.6	0.4
Cav=F	0.1	0.9

BAYES' NETS BIG PICTURE

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is way too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

BAYESIAN DIACNOSTIC REASONINC

- Bayes' rule (extended) says that
- $P\left(H_{i} \mid E_{1}, \ldots, E_{m}\right)=P\left(E_{1}, \ldots, E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1}, \ldots, E_{m}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:
- $\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right)=\prod_{\mathrm{j}=1}^{\mathrm{j}} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{\mathrm{l}} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

REVIEW: THE CHAIN RULE

- $\mathrm{P}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}}\right)=\mathrm{P}\left(\alpha_{1}\right) \times$
$\mathrm{P}\left(\alpha_{2} \mid \alpha_{1}\right) \times$
$\mathrm{P}\left(\alpha_{3} \mid \alpha_{1}, \alpha_{2}\right) \times \ldots \times$
$\mathrm{P}\left(\alpha_{\mathrm{n}} \mid \alpha_{1}, \cdots, \alpha_{\mathrm{n}-1}\right)$
$=\quad \prod_{\mathrm{i} 1 . . . \mathrm{n}} \mathrm{P}\left(\alpha_{\mathrm{i}} \mid \alpha_{\left.1, \cdots, \alpha_{\mathrm{i}-1}\right)}\right.$
$=P\left(x_{1}, \ldots, x_{n}\right)={ }_{i=1}^{n} P\left(\left.x_{i}\right|_{i}\right)$

REVIEW: THE CHAIN RULE $P\left(x_{1}, \ldots, x_{n}\right)={ }_{i=1}^{n} P\left(x_{i} \mid{ }_{i}\right)$

- Decomposition: $P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x 2\right) \ldots$

```
P(Traffic, Rain, Umbrella) =
    P(\mathrm{ Rain ) P(Traffic | Rain) P(Umbrella | Rain, Traffic)}
```

- With assumption of conditional independence:

$$
\begin{aligned}
& P(\text { Traffic, Rain, Umbrella })= \\
& \quad P(\text { Rain }) P(\text { Traffic } \mid \text { Rain }) P(\text { Umbrella } \mid \text { Rain })
\end{aligned}
$$

- Bayes' nets express conditional independences
- (Assumptions)

CHANNNG: EXAMPLE

Computing the joint probability for all variables is easy:

$$
\begin{array}{rlrl}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e})= & & \text { By product rulle } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{a}, \mathrm{~b}, \boldsymbol{c}, \mathrm{~d}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & \text { By conditional } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & & \text { independence } \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{a}, \boldsymbol{b}, \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \boldsymbol{a}, \mathrm{b}) \mathrm{P}(\mathrm{a}, \mathrm{~b}) & \\
& =\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a}) & &
\end{array}
$$

We're reducing distributions- $\mathbf{P}(\mathbf{x}, \mathbf{y})$-to single values.

TOPOLOGICAL SEMANTICS

- Remember: A node is conditionally independent of its non-descendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)

INDEPENDENCE WITH CHILDREN

- Common Cause:
- Y causes X and Y causes Z
- Are X and Z independent? No
- Are X and Z independent given Y? Yes
- Common Effect:
- Two causes of one effect
- Are X and Z independent? Yes
- Are X and Z independent given Y ? No

```
Observing an effect "activates"
influence between possible
causes.
```


REVIEW: BAYES' NETS EXAMPLE

What's the probability that

- Both neighbors call
- The alarm goes off
- There is no burglar
- There is no storm
$\mathrm{p}(\mathrm{j}, \mathrm{m}, \mathrm{a}, \neg \mathrm{b}, \neg \mathrm{t})=$ $\mathrm{p}(\mathrm{j} \mid \mathrm{a}) \mathrm{p}(\mathrm{m} \mid \mathrm{a}) \mathrm{p}(\mathrm{a} \mid \neg \mathrm{b}, \neg \mathrm{t}) \mathrm{p}(\neg \mathrm{b}) \mathrm{p}(\neg \mathrm{t})=$ (.9) (.7) (.001) (.999) (.998) $=0.00062$

Joint probability table: $2^{\wedge} \wedge=32$ cells
CPT factorization: 20 cells
$p\left(X_{1}, X_{2}, \ldots, X_{D}\right)=\prod_{i=1}^{D} p\left(X_{i} \mid \operatorname{ParEnts}\left(X_{i}\right)\right)$

CONDITIONALITY EXAMPLE

- Hidden: A, B, E. You don't know:
- If there's a burglar.
- If there was an earthquake.
- If the alarm is going off.
- Observed: J and M.
- John and/or Mary have some chance of calling if the alarm rings.
- You know who called you.

CONDITIONALITY EXAMPLE 2

- At first:
- Is the probability of John calling affected by whether there's an earthquake?
- Is the probability of Mary calling affected by John calling?
- Your alarm is going off!
- Is the probability of Mary calling affected by John calling?

INFERENCE TASKS

- Simple queries: Compute posterior marginal $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value $)$
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
- $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}} \mid \mathrm{E}=\right.$ value $)=\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\right.$ value $) \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \mathrm{X}_{\mathrm{i}}, \mathrm{E}=\right.$ value $)$
- Optimal decisions:
- Decision networks include utility information
- Probabilistic inference gives P(outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- Explanation: Why do I need a new starter motor?

DIRECT INFERENCE WITH BNS

- Instead of computing the joint, suppose we just want the probability for one variable.
- Exact methods of computation:
- Enumeration
- Variable elimination
- Join trees: get the probabilities associated with every query variable

REVIEW: INFERENCE BY ENUMERATION

1. Find the relevant datapoints consistent with the evidence
E.g., when it was raining and I was on time
2. Sum across all the h 's to get the joint probability of the query and the evidence
E.g., total of all the times I was on time when it was raining
3. Normalize i.e., divide each instance by the sum of them all
E.g., divide by the total across all queries (on

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)=\frac{P\left(Q, e_{1} \ldots e_{k}\right)}{\sum_{q} P\left(Q, e_{1} \ldots e_{k}\right)}
$$

With:

- "evidence" variables

$$
E_{1} \ldots E_{k}=e_{1} \ldots e_{k}
$$

- "query" variable Q
- "hidden" variables $H_{1} \ldots H_{r}$

We want $P\left(Q \mid e_{1} \ldots e_{k}\right)$
Q in this example is "will I be on time?" time, not on time) with the same evidence (raining, etc.)

INFERENCE BY ENUMERATION

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then:

$$
\mathrm{P}(\mathrm{X} \mid \mathbf{E})=\alpha \mathrm{P}(\mathrm{X}, \mathbf{E})=\alpha \sum \mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})
$$

- Each $\mathrm{P}(\mathbf{X}, \mathbf{E}, \mathbf{Y})$ term can be computed using the chain rule
- Computationally expensive!

In general, there's a 4 step process to solve any query about a Bayes' Net:

1. Write the query as a statement about probabilities
2. Rewrite statement in terms of the joint probability distribution
3. Figure out ALL the atomic probabilities you need
4. Simplify, and plug in numbers from CPTs
$\mathrm{P}(\mathrm{X} \mid \mathbf{E})=\alpha \mathrm{P}(\mathrm{X}, \mathbf{E})=\alpha \sum \mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})$
Calculate the probability that there is a burglar if both John and Mary call.

ENUMERATION EXAMPLE

- $P\left(\mathrm{x}_{\mathrm{i}}\right)=\Sigma_{\pi_{\mathrm{i}}} P\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) P\left(\pi_{\mathrm{i}}\right)$
- Say we want to know $P(\mathrm{D}=t)$
- Only E is given as true
- $\mathrm{P}(\mathrm{d} \mid \mathrm{e})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$
- $\quad=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b} \mid \mathrm{a}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{e} \mid \mathrm{c})$

- With simple iteration, that's a lot of repetition!
- $\mathrm{P}(\mathrm{e} \mid \mathrm{c})$ has to be recomputed every time we iterate over $\mathrm{C}=$ true

VARIABLE ELIMINATION

- Basically just enumeration with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs
- Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously

VARIABLE ELIMINATION APPROACH

- Write query in the form

$$
p\left(x_{n}\right)=\sum_{x_{1}} \ldots \sum_{x_{n-1}} p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right)
$$

- Note that there is no α term here
- It's a conjunctive probability, not a conditional probability...
- Iteratively,
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product

VARIABLE ELIMINATIONs EXAMPLE

$$
\begin{aligned}
\mathrm{P}(\mathrm{w}) & =\mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c}) \\
& ={ }_{\mathrm{r}, \mathrm{~s}, \mathrm{c}}^{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \underbrace{\mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c})}_{\mathrm{c}} \\
& =\mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{f}_{1}(\mathrm{r}, \mathrm{~s})
\end{aligned}
$$

"factors"

A MORE COMPLEX EXAMPLE

- We want to compute $P(d)$

LUNGS 1

- Need to eliminate: v, s, x, t, l, a, b
- Initial factors:

$$
P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

LUNGS 2

- We want to compute $P(d)$

- Need to eliminate: v, s, x, t, l, a, b
- Initial factors:

$$
\underline{P(v) P(s) P(t \mid v)} P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Eliminate: v
- Compute: $f_{v}(t)=P(v) P(t \mid v)$

$$
\underline{f}_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Note: $f_{v}(t)=P(t)$
- Result of elimination is not necessarily a probability term
- For example, $f_{v}(t)$ might capture $\mathrm{P}(\mathrm{t})$ and $\mathrm{P}(\neg \mathrm{t})$

- We want to compute $P(d)$

LUNGS 3

- Need to eliminate: s, x, t, l, a, b
- Initial factors: $P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

$$
f_{v}(t) \underline{P(s)} \underline{P(l \mid s)} \underline{P(b \mid s)} P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Eliminate: s
- Compute: $f_{s}(b, l)=P(s) P(b \mid s) P(l \mid s)$

$$
f_{v}(t) f_{s}^{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

- Summing on s results in a factor with two arguments $f_{s}(b, l)$
- In general, result of elimination may be a function of several variables

- We want to compute $P(d)$

LUNGS 4

- Need to eliminate: x, t, l, a, b
- Initial factors

$$
\begin{aligned}
& P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
\end{aligned}
$$

Eliminate: x

$$
f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b)
$$

Compute: $f_{x}(a)=P(x \mid a)$

$$
f_{v}(t) f_{s}(b, l) \underline{f_{x}(a)} P(a \mid t, l) P(d \mid a, b)
$$

- We want to compute $P(d)$

LUNGS 5

- Need to eliminate: t, l, a, b
- Initial factors $P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

$$
\begin{aligned}
& f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& \underline{f_{v}(t)} f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b)
\end{aligned}
$$

Eliminate: t
Compute: $f_{t}(a, l)=f_{v}(t) P(a \mid t, l)$

$$
f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)
$$

- We want to compute $P(d)$

LUNGS 6

- Need to eliminate: l, a, b
- Initial factors

$$
\begin{aligned}
& P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
& f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b) \\
& \quad f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b)
\end{aligned}
$$

Eliminate: l
Compute: $f_{l}(a, b)=f_{s}(b, l) f_{t}(a, l)$

$$
f_{l}(a, b)^{l} f_{x}(a) P(d \mid a, b)
$$

- We want to compute $P(d)$

LUNGS FINALE

- Need to eliminate: b
- Initial factors

$$
\begin{gathered}
P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
f_{v}(t) P(s) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
f_{v}(t) f_{s}(b, l) P(a \mid t, l) P(x \mid a) P(d \mid a, b) \\
f_{v}(t) f_{s}(b, l) f_{x}(a) P(a \mid t, l) P(d \mid a, b) \\
f_{s}(b, l) f_{x}(a) f_{t}(a, l) P(d \mid a, b) \\
\quad \underline{f_{l}(a, b)} \underline{f_{x}(a)} \underline{P(d \mid a, b)} \underline{f_{a}(b, d) \quad \underline{f_{b}(d)}}
\end{gathered}
$$

Eliminate: a, b
Compute: $f_{a}(b, d)=f_{a}(a, b) f_{x}(a) p(d \mid a, b) \quad f_{b}(d)=f_{b}(b, d)$

VARIABLE ELIMINATION ALGORITHM

- Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$ be an ordering on the non-query variables
- For $\mathrm{i}=\mathrm{m}, \ldots, 1$

$$
P\left(X_{j} \mid \operatorname{Parents}\left(X_{j}\right)\right)
$$

$\begin{array}{lll}X_{1} & X_{2} & X_{m}\end{array}$
j

- In the summation for X_{i}, leave only factors mentioning X_{i}
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_{i}
- Sum out X_{i}, getting a factor f that contains a number for each value of the variables mentioned, not including X_{i}
- Replace the multiplied factor in the summation

