TYPES OF ML ALGORITHMS

Lara J. Martin (she/they) TA: Aydin Ayanzadeh (he)

> 11/30/2023 **CMSC 671**

By the end of class today, you will be able to:

- Distinguish between types of machine learning algorithms (in more detail)
 Determine the classes and features of a given algorithm
 Determine whether a given algorithm is supervised or unsupervised

Modified from slides by Dr. Cynthia Matuszek

COURSE UPDATES

- Milestone 3 is due December 7th (a week from today)
 - Draft of paper, official conference template
 - Get preliminary results

REVIEW: DIVIDING UP DATA FOR TRAINING

dog [position of lines] [loops and dots] [any other information relevant to our problem]

cat

Training ~80% Why would we do this? To prevent overfitting!

OVERFITTING

Classification

https://www.mathworks.com/discovery/overfitting.html

K-FOLD CROSS-VALIDATION

- Another way of avoiding overfitting
- Not usually helpful when you need a model for generation → better for data analysis

https://scikit-learn.org/stable/modules/cross_validation.html

apply **f** to a never before seen *test example* **x** and output the predicted value **y** = $\mathbf{f}(\mathbf{x})$

7

SOME POPULAR MODELS

- Linear Models
- Support Vector Machines (SVMs)
- K-Means
- K-Nearest Neighbor (KNN)
- Decision Trees
- Logistic Regression
- Hidden Markov Models (HMM)
- Naïve Bayes
- Reinforcement Learning
- Neural Networks

LINEAR MODELS

11/30/2023 – Types of ML Algorithms

SUPPORT VECTOR MACHINE (SVM)

- Find the separator with the max margin
- Only support vectors matter → other training examples are ignorable
- Can be non-linear, depending on the "kernel" (Kernel SVM)
 - Choosing the right kernel can be hard

K-MEANS CLUSTERING

- 1. Specify how many clusters (k)
- 2. Cluster the points **x** such that each one has a minimal distance to its mean/centroid of the cluster μ_i

What would be our classes and features?

Is this supervised or unsupervised? Unsupervised

https://datascience.fm/k-means-clustering/

K-NEAREST NEIGHBOR (KNN)

- 1. Find the distance between the current point to every other point
- 2. Pick the top k closest points
- 3. Return the predicted class

https://www.researchgate.net/figure/Nearest-Neighbor-Classifier_fig1_221398952 https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering

DECISION TREES

MAKE A DECISION TREE

Datum	Features										Outcome (Label)	
	alternatives	bar	Friday	hungry	people	\$	rain	reservation	type	wait time	Wait?	Hints:
X ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes	• Try
X ₂	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No	mar
X ₃	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes	111u1
X ₄	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes	pos
X ₅	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No	leaf
X ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes	• You
X ₇	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No	mo
X ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes	• • •
X ₉	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No	1 t S
X ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	0-30	No	few
X ₁₁	No	No	No	No	None	\$	No	No	Thai	0-10	No	pos
X ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes	Г

Try to combine as many data points as possible into a single leaf

• You can use a feature more than once but it's better to make as few decisions as possible

LOGISTIC REGRESSION

Probability of passing exam versus hours of studying

 $p(x) = \frac{1}{1 + e^{-(x - \mu)/s}}$

μ is the midpoint of the curve s is the scale parameter (squish)

• Parameters are often estimated using MLE

What would be our classes and features?

Is this supervised or unsupervised? Supervised

HIDDEN MARKOV MODELS (HMM)

Observations

- Markovian probabilities to transition from one state to another
- Good for sequences

What would be our classes and features?

Is this supervised or unsupervised?

Semi-supervised

Diagram based off of https://www.sciencedirect.com/topics/mathematics/hidden-markov-mode