NEURAL NETWORKS

Lara J. Martin (she/they) TA: Aydin Ayanzadeh (he)

> 12/7/2023 CMSC 671

By the end of class today, you will be able to:

- 1. Perform feed-forward propagation for a given simple neural network
- 2. Describe how feed-forward networks can be used for classification
- 3. Extract features & follow backpropagation

Modified from slides by Dr. Cassandra Kent & Dr. Chris Callison-Burch

Q: What types of problems do perceptrons struggle with?

A: Non-linearly separable problems

REVIEW: NEURON UNIT ACTIVATION FUNCTIONS

g(x) =

 $1 + \rho^{-x}$

Step function (hard threshold): $(1 \ x > 0)$

$$g(x) = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases}$$

WHAT HAPPENS WHEN WE HAVE MORE THAN ONE HIDDEN LAYER?

MULTI-LAYER NETWORKS: GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer:**

MULTI-LAYER NETWORKS: GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have **inputs**, one or more **hidden layers**, and an **output layer:**

- Number of inputs, outputs, and number and size of hidden layers can vary
- Combination of different weights and different structures represent different functions
- We will treat each layer as **fully-connected**
 - Each unit in one layer connects to every unit in the next layer

MULTI-LAYER NETWORKS: GENERAL STRUCTURE EXAMPLE

7

MULTI-LAYER NETWORKS

- Mutli-layer neural networks can effectively classify data that's not linearly separable.
- Example: restaurant task

COMPUTING VALUES: FORWARD PROPAGATION

Forward propagation calculates the output values for a given set of input values

Algorithm

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

FORWARD PROPAGATION EXAMPLE

• Calculate the output of the network below, assuming each neuron uses a sigmoid activation function, given 0.05 and 0.1 as inputs.

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

FORWARD PROPAGATION EXAMPLE

• Calculate inputs to the hidden layer (units h1 and h2):

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

 $in_{h1} = w_1i_1 + w_2i_2 + b_1$ = .15(.05)+.2(.1)-.35 = .0075+.02-.35 = -.3225

$$in_{h2} = w_3i_1 + w_4i_2 + b_2$$

= .25(.05)+.3(.1)-.35
= .0125+.03-.35
= -.3075

FORWARD PROPAGATION EXAMPLE

• Calculate outputs to the hidden layer (units h1 and h2):

How do we do this? Use our activation function!

$$g(x) = \frac{1}{1 + e^{-x}}$$

What will be our *x*? $in_{h1} = -.3225$ $in_{h2} = -.3075$

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

$$\begin{aligned}
\text{put}_{h1} &= g(in_{h1}) \\
&= \frac{1}{1 + e^{-in_{h1}}} \\
&= \frac{1}{1 + e^{-(-.3275)}} \\
&= .4188
\end{aligned}$$

$$out_{h2} = g(in_{h2}) \\ = \frac{1}{1 + e^{-in_{h2}}} \\ = \frac{1}{1 + e^{-(-.3075)}} \\ = .4237$$

YOUR TURN: FORWARD PROPAGATION EXAMPLE

1. What would the input and output values be for the **output layer**?

For each layer:

- 1. Calculate the weighted sum of inputs to each neuron unit
- 2. Evaluate the activation function to determine the output of each neuron unit
- 3. Use outputs as inputs for the next layer

HOW ARE NEURAL NETWORKS USED?

- Are neural networks supervised or unsupervised learning?
 - Inputs to the network are features of our data set
 - Outputs to the network are our labels
- Can they be used for classification or regression?
 - Either!

EXAMPLE – IMAGE CLASSIFICATION

Example:

• Classifying images of dogs and muffins (it's harder than you might think)

EXAMPLE – IMAGE CLASSIFICATION

(dog likelihood) (muffin likelihood)

• What does are training data look like?

600

Input

.05

Output1

.99

Output2

.01

TRAINING

• For each training example, take a network with some **initial weights**, and use forward propagation to see what outputs we get:

• Then learn new weights for the network so that we get the outputs that we expect!

EXAMPLE – SENTIMENT CLASSIFICATION

Identify whether a given piece of text (like a review) is positive or negative:

Input: "Spiraling away from narrative control as its first three episodes unreel, this series, about a post-apocalyptic future in which nearly everyone is blind, wastes the time of Jason Momoa and Alfre Woodard, among others, on a story that starts from a position of fun, giddy strangeness and drags itself forward at a lugubrious pace."

Output: positive (1) or negative (0)

Variable	Definition	Value
x ₁	Count of positive lexicon words	
x ₂	Count of negative lexicon words	
x ₃	Does "no" appear? (binary feature)	
x ₄	Number of 1st and 2nd person pronouns	
X ₅	Does ! Appear? (binary feature)	
x ₆	Log of the word count for the document	

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	
x ₃	Does "no" appear? (binary feature)	
x ₄	Number of 1st and 2nd person pronouns	
X ₅	Does ! Appear? (binary feature)	
x ₆	Log of the word count for the document	

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	2
X ₃	Does "no" appear? (binary feature)	
x ₄	Number of 1st and 2nd person pronouns	
X ₅	Does ! Appear? (binary feature)	
X ₆	Log of the word count for the document	

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	2
X ₃	Does "no" appear? (binary feature)	1
x ₄	Number of 1st and 2nd person pronouns	
X ₅	Does ! Appear? (binary feature)	
X ₆	Log of the word count for the document	

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	2
X ₃	Does "no" appear? (binary feature)	1
x ₄	Number of 1st and 2nd person pronouns	3
X ₅	Does ! Appear? (binary feature)	
X ₆	Log of the word count for the document	

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	2
x ₃	Does "no" appear? (binary feature)	1
x ₄	Number of 1st and 2nd person pronouns	3
X ₅	Does ! Appear? (binary feature)	0
X ₆	Log of the word count for the document	

It's hokey. There are virtually no surprises, and the writing is second-rate. So why was it so enjoyable? For one thing, the cast is great. Another nice touch is the music. I was overcome with the urge to get off the couch and start dancing. It sucked me in, and it'll do the same to you.

Word count = 64, $\ln(64) = 4.15$

Variable	Definition	Value
x ₁	Count of positive lexicon words	3
x ₂	Count of negative lexicon words	2
x ₃	Does "no" appear? (binary feature)	1
x ₄	Number of 1st and 2nd person pronouns	3
x ₅	Does ! Appear? (binary feature)	0
X ₆	Log of the word count for the document	4.15

CALCULATING "IN"

$$in = \sum_{i} w_i x_i + b$$

$$in = 0.805$$

 $\sigma(0.805) = 0.69$

Variable	Definition	Value	Weight	Product
x ₁	Count of positive lexicon words	3	2.5	7.5
x ₂	Count of negative lexicon words	2	-5	-10
X ₃	Does "no" appear? (binary feature)	1	-1.2	-1.2
x ₄	Number of 1st and 2nd person pronouns	3	.5	1.5
X ₅	Does ! Appear? (binary feature)	0	2	0
x ₆	Log of the word count for the document	4.15	.7	2.905
b	Bias	1	.1	.1

https://playground.tensorflow.org/