
TRANSFORMERS

Lara J. Martin (she/they)

TA: Aydin Ayanzadeh (he)

12/12/2023

CMSC 671

By the end of class today, you will be able to:
1. Identify how a transformer differs from an RNN
2. Interpret how different prompts affect generation
3. Evaluate the ethical considerations of ML algorithms

Modified from slides by Dr. Daphne Ippolito

RECAP: MULTI-LAYER NETWORKS:

GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have inputs, one or more hidden
layers, and an output layer:

• Number of inputs, outputs, and number and size of hidden layers can vary

• Combination of different weights and different structures represent different
functions

• We will treat each layer as fully-connected
• Each unit in one layer connects to every unit in the next layer

212/12/2023 – Transformers

• Input sequence: x1,…,xT

• Target sequence: y1,…,yT'

ENCODER-DECODER

312/12/2023 – Transformers

https://www.linkedin.com/pulse/explanation-attention-based-encoder-decoder-deep-keshav-bhandari/

WHAT IS A TOKEN?

• The first step of building a neural language model is constructing a vocabulary
of valid tokens.

412/12/2023 – Transformers

WHAT IS A TOKEN?

• The first step of building a neural language model is constructing a vocabulary
of valid tokens.

• Each token in the vocabulary is associated with a vector embedding, and these
are concatenated into an embedding matrix.

512/12/2023 – Transformers

INPUTS TO THE ENCODER

• The encoder takes as input the embeddings corresponding to each token in the
sequence.

612/12/2023 – Transformers

OUTPUTS FROM THE ENCODER

The encoder outputs a sequence of vectors. These are called the hidden state of the
encoder.

712/12/2023 – Transformers

INPUTS TO THE DECODER

The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

812/12/2023 – Transformers

ෝ𝒚𝒕

OUTPUTS FROM THE DECODER

The decoder outputs an embedding ෝ𝒚𝒕
. The goal is for this embedding to be as close

as possible to the embedding of the true next token.

912/12/2023 – Transformers

• We can multiply the predicted embedding ෝ𝒚𝒕
by our vocabulary embedding matric

to get a score for each vocabulary word. These scores are referred to as logits.

• The softmax function then lets us turn the logits into probabilities.

1012/12/2023 – Transformers

TURNING ෝ𝒚𝒕 INTO A PROBABILITY

DISTRIBUTION

Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

LOSS FUNCTION

1112/12/2023 – Transformers

LOSS FUNCTION

1212/12/2023 – Transformers

LOSS FUNCTION

1312/12/2023 – Transformers

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

LOSS FUNCTION

1412/12/2023 – Transformers

GENERATING TEXT AT INFERENCE

TIME
• To generate text, we need an

algorithm that selects tokens given
the predicted probability
distributions.

Examples:
• Argmax

• Random sampling

• Beam search

1512/12/2023 – Transformers

RECURRENT NEURAL NETWORKS

• Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

1612/12/2023 – Transformers

RECURRENT NEURAL NETWORKS
SINGLE LAYER DECODER ARCHITECTURE

1712/12/2023 – Transformers

• The current hidden state is computed as a
function of the previous hidden state and
the embedding of the current word in the
target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ)

• The current hidden state is used to predict
an embedding for the next word in the
target sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss
function:

Usually the
zero-vector

WHAT IS THE “RNN” UNIT?

18

?

12/12/2023 – Transformers

WHAT IS THE “RNN” UNIT?

• LSTM stands for long short-term memory.

• An LSTM uses a gating concept to control how much
each position in the hidden state vector can be updated
at each step.

• LSTMs were originally designed as a mean to keep
around information for longer in the hidden state as it
gets repeatedly updated.

1912/12/2023 – Transformers

LSTM

https://en.m.wikipedia.org/wiki/File:Hyperbolic_Tangent.svg

RNN MULTI-LAYER DECODER

ARCHITECTURE

2012/12/2023 – Transformers

• Computing the next hidden state:

• For the first layer:
𝐡𝑡

1 = RNN(𝐖𝑖ℎ
𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1)

• For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ

𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡
𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1

𝑙 + 𝐛ℎ
𝑙)

Predicting an embedding for the next token in the
sequence:

ෝ𝐞𝑡 = 𝐛𝑒 +

𝑙=1

𝐿

𝐖ℎ 𝑒
𝐡𝑡

𝑙

Each of the b and W are learned bias and weight matrices.

𝑙 − 1 𝑙𝑙 𝑙 𝑙

1 1 1

𝑙

RNN ENCODER-DECODER

ARCHITECTURES

How do we implement an encoder-decoder model?

2112/12/2023 – Transformers

RNN ENCODER-DECODER

ARCHITECTURES

Simplest approach: Use the final hidden state from the encoder to initialize the first
hidden state of the decoder.

2212/12/2023 – Transformers

RNN ENCODER-DECODER

ARCHITECTURES

Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

23

When predicting the next English
word, how much weight should the
model put on each French word in
the source sequence?

T
ra

n
sl

a
te

 F
r

to
 E

n

12/12/2023 – Transformers

Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

2412/12/2023 – Transformers

T
ra

n
sl

a
te

 F
r

to
 E

n

RNN ENCODER-DECODER

ARCHITECTURES

RNN ENCODER-DECODER

ARCHITECTURES

2512/12/2023 – Transformers

• The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

• 𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖

enc))

• There are a few different options for the attention
score:

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) =

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎
1

⟙ tanh(𝐖𝑎𝟐[𝐡𝑡
dec, 𝐡𝒊

enc])

dot product

bilinear function

MLP

LIMITATIONS OF RECURRENT

ARCHITECTURE

• Slow to train.
• Can’t be easily parallelized.

• The computation at position t is dependent on first doing the computation at position t-1.

• Difficult to access information from many steps back.
• If two tokens are K positions apart, there are K opportunities for knowledge of the first token to

be erased from the hidden state before a prediction is made at the position of the second token.

2612/12/2023 – Transformers

TRANSFORMERS

2712/12/2023 – Transformers

Since 2018, the field has
rapidly standardized on the
Transformer architecture

TRANSFORMERS

The Transformer is a non-recurrent non-
convolutional (feed-forward) neural network
designed for language understanding that
introduces self-attention in addition to encoder-
decoder attention.

2812/12/2023 – Transformers

TRANSFORMERS

29

Encoder

12/12/2023 – Transformers

TRANSFORMERS

30

Decoder

12/12/2023 – Transformers

TRANSFORMERS

3112/12/2023 – Transformers

ATTENTION MECHANISM

32

Multi-Head
Attention

12/12/2023 – Transformers

MULTI-HEAD ATTENTION

33

Self-attention between a sequence of
hidden states and that same sequence
of hidden states.

Multi-Head
Attention

12/12/2023 – Transformers

MULTI-HEAD ATTENTION

34

Encoder-decoder attention, like what has been
standard in recurrent seq2seq models.Multi-Head

Attention

12/12/2023 – Transformers

ATTENTION MECHANISM

35

Multi-Head
Attention

Scaled Dot-Product Attention

12/12/2023 – Transformers

• The scaled dot-product attention
mechanism is almost identical to the
one we looked at, but let’s turn it
into matrix multiplications.

• The query: Q ∈ 𝑅𝑇𝑥𝑑
𝑘

• The key: K ∈ 𝑅𝑇'𝑥𝑑
𝑘

• The value: V ∈ 𝑅𝑇𝑥𝑑
𝑘

• Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

SCALED DOT-PRODUCT

 ATTENTION

36

Scaled Dot-Product
Attention

This is the α vector we
learned about before.

12/12/2023 – Transformers

The 𝑑𝑘 in the denominator prevents the dot product from getting too big

• The scaled dot-product attention
mechanism is almost identical to the
one we looked at, but let’s turn it
into matrix multiplications.

• The query: Q ∈ 𝑅𝑇𝑥𝑑
𝑘

• The key: K ∈ 𝑅𝑇'𝑥𝑑
𝑘

• The value: V ∈ 𝑅𝑇𝑥𝑑
𝑘

• Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

SCALED DOT-PRODUCT

 ATTENTION

37

Scaled Dot-Product
Attention

This is the dot-
product scoring
function from
previous slides

12/12/2023 – Transformers

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix),
take the linear sum of the vectors in
V (value matrix)

• The amount to weigh each vector in
V is dependent on how “similar” that
vector is to the query vector

• “Similarity” is measured in terms of
the dot product between the vectors

SCALED DOT-PRODUCT

 ATTENTION

38

Scaled Dot-Product
Attention

12/12/2023 – Transformers

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from
the outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s
final output. Queries come from the
previous decoder layer’s outputs.

SCALED DOT-PRODUCT

 ATTENTION

39

Scaled Dot-Product
Attention

12/12/2023 – Transformers

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

Instead of operating on Q, K, and V

mechanism projects each input into a smaller
dimension. This is done h times.

The attention operation is performed on each of these
“heads,” and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.

MULTI-HEAD ATTENTION

4012/12/2023 – Transformers

Multi-Head
Attention

MultiHeadAtt(Q,K,V) =
 Concat head1, … headℎ WO

MULTI-HEAD ATTENTION

4112/12/2023 – Transformers

Two different self-attention heads:

Multi-Head
Attention

INPUTS TO THE ENCODER

• The input into the encoder looks like:

42

= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:

12/12/2023 – Transformers

THE ENCODER

4312/12/2023 – Transformers

Multi-Head

Attention

THE ENCODER

4412/12/2023 – Transformers

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

THE ENCODER

45

Feed

Forward <=>

12/12/2023 – Transformers

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm

THE ENCODER

46

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

12/12/2023 – Transformers

Feed

Forward
Add & Norm

THE DECODER

47

= token embeddings + position embeddings

+

12/12/2023 – Transformers

THE DECODER

4812/12/2023 – Transformers

Masked Multi-

Head Attention

THE DECODER

4912/12/2023 – Transformers

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

THE DECODER

5012/12/2023 – Transformers

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention

THE DECODER

5112/12/2023 – Transformers

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

THE DECODER

5212/12/2023 – Transformers

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(+)
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)

STRENGTHS OF THE

TRANSFORMER ARCHITECTURE

• Training is easily parallelizable
• Larger models can be trained efficiently.

• Does not “forget” information from earlier in the sequence.
• Any position can attend to any position.

5312/12/2023 – Transformers

ETHICS OF ML

5412/12/2023 – Transformers

EXPLAINABILITY AND

INTERPRETABILITY

• How clear is our agent’s decision making? Is it transparent or is it a black box?

• Can we make changes to the algorithm to make its decisions more explainable?

• Can we develop tools that make the algorithm’s decisions easier to interpret?

12/12/2023 – Transformers 55

INEQUALITY
• Who has access to this AI agent?

• Could this create new inequality between groups that have access and do not have access?

• Is this system reinforcing existing structures that create inequality?
• If yes, is there regulation for this technology that can prevent this?

12/12/2023 – Transformers 56

JOB DISPLACEMENT
• Will this algorithm displace human workers?

• If yes, is there a plan in place to help those displaced workers?

• Will this algorithm/agent create new jobs? Who will benefit?

12/12/2023 – Transformers 57

	Slide 1: Transformers
	Slide 2: Recap: Multi-layer Networks: General Structure
	Slide 3: Encoder-Decoder
	Slide 4: What is a token?
	Slide 5: What is a token?
	Slide 6: INPUTs TO THE ENCODER
	Slide 7: OUTPUTS FROM THE ENCODER
	Slide 8: INPUTS TO the DECODER
	Slide 9: OUTPUTS FROM THE DECODER
	Slide 10: Turning open paren bold italic y bold italic t close paren hat into a Probability Distribution
	Slide 11: Loss function
	Slide 12: Loss function
	Slide 13: LOSS FUNCTION
	Slide 14: LOSS FUNCTION
	Slide 15: GENERATING TEXT AT INFERENCE TIME
	Slide 16: Recurrent NEURAL NETWORKS
	Slide 17: Recurrent NEURAL NETWORKS SINGLE LAYER DECODER ARCHITECTURE
	Slide 18: What is the “RNN” unit?
	Slide 19: What is the “RNN” Unit?
	Slide 20: RNN Multi-Layer Decoder Architecture
	Slide 21: RNN Encoder-Decoder Architectures
	Slide 22: RNN Encoder-Decoder Architectures
	Slide 23: RNN Encoder-Decoder Architectures
	Slide 24: RNN Encoder-Decoder Architectures
	Slide 25: RNN Encoder-Decoder Architectures
	Slide 26: Limitations of Recurrent architecture
	Slide 27: Transformers
	Slide 28: Transformers
	Slide 29: Transformers
	Slide 30: Transformers
	Slide 31: Transformers
	Slide 32: Attention Mechanism
	Slide 33: Multi-Head Attention
	Slide 34: Multi-Head Attention
	Slide 35: Attention Mechanism
	Slide 36: Scaled Dot-Product Attention
	Slide 37: Scaled Dot-Product Attention
	Slide 38: Scaled Dot-Product Attention
	Slide 39: Scaled Dot-Product Attention
	Slide 40: Multi-Head Attention
	Slide 41: Multi-Head Attention
	Slide 42: Inputs to the Encoder
	Slide 43: The encoder
	Slide 44: The encoder
	Slide 45: The encoder
	Slide 46: The encoder
	Slide 47: The Decoder
	Slide 48: The Decoder
	Slide 49: The Decoder
	Slide 50: The Decoder
	Slide 51: The Decoder
	Slide 52: The Decoder
	Slide 53: Strengths of the Transformer Architecture
	Slide 54: Ethics of ML
	Slide 55: Explainability and Interpretability
	Slide 56: Inequality
	Slide 57: Job Displacement

