TRANSFORMERS

Lara J. Martin (she/they)
TA: Aydin Ayanzadeh (he)

12/12/2023
CMSC 671

By the end of class today, you will be able to:

1. Identify how a transformer differs from an RNN

2. Interpret how different prompts affect generation

3. Evaluate the ethical considerations of ML algorithms
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RECAP: MULTI-LAYER NETWORKS:
GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have inputs, one or more hidden
layers, and an output layer:

* Number of inputs, outputs, and number and size of hidden layers can vary

* Combination of different weights and different structures represent different
functions

* We will treat each layer as fully-connected

* Each unit in one layer connects to every unit in the next layer
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ENCODER-DECODER

* Inputsequence: x;,..., Xt

X1,...,XT—1 Encoder Decoder —> P(Y; = i)

* Target sequence: yy,....yp

ENCODER Reply
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Incoming Email DECODER
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Are you free tomorrow?
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WHAT IS A TOKEN?

* The first step of building a neural language model is constructing a vocabulary

of valid tokens.

Vocab Type Example

ChﬁI&CKHJBVGI [)AJ, ) ), JhJ, JiJ’ ’PJ’ :pa, 303’ )P), JO), )tJ, Ja), JmJ,
ul, ’s’,? 7, la’, t?, ’e’, ’ 7, 'm’, )ya’ 2 h? ) 92,
)mJ, )e:, Jw), ,O’, Jr), JkJ’ J'J]

subword-level

word-level

[’A’, ’hip’, ’#i#tpop’, ’##ota’, ’##mus’, ’ate’, ’my’,
’homework’, ’.°]

[’A’, ’hippopotamus’, ’ate’, ’my’, ’homework’, ’.’]
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WHAT IS A TOKEN?

The first step of building a neural language model is constructing a vocabulary
of valid tokens.

Each token in the vocabulary is associated with a vector embedding, and these
are concatenated into an embedding matrix.

Vocabulary » Embedding matrix

the [ ]
ny

| ]
embedding dimension

vocab size

kitten] ]
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y17--- 9yt—1

INPUTS TO THE ENCODER

* The encoder takes as input the embeddings corresponding to each token in the
sequence.

Vocabulary » Embedding matrix
the | ]

- _ = / EnCOder \
ny
l |
embedding dimension

0 2

1 432 2019 1234

kitten] ] T T T T T

The hippo ate my homework

vocab size
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y17-~-9yt—1

OUTPUTS FROM THE ENCODER

The encoder outputs a sequence of vectors. These are called the hidden state of the
encoder.

enc enc
hl hT

L]

L]

432 2019 1234

O

The hippo ate my homework
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y17-~-9yt—1

INPUTS TO THE DECODER

The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

hEHC hE'HC 5I\t

L |

sy |]]||

m (Emted) (emod) [emed) [(Erbed) e oany
432 20109 2 1234 T T
T T T T T Le hippotame

The hippo ate my homework
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y17---9yt 1

OUTPUTS FROM THE DECODER

The decoder outputs an embedding y,. The goal is for this embedding to be as close
as possible to the embedding of the true next token.

|
N4

.
75

2421

t t

Le hippotame
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TURNING y, INTO A PROBABILITY
DISTRIBUTION

* We can multiply the predicted embedding y, by our vocabulary embedding matric
to get a score for each vocabulary word. These scores are referred to as logits.

* The softmax function then lets us turn the logits into probabilities.

logits
— ]
- 1 ]
vocab size

embedding
Decoder matrix E

Ve

exp(Ey,(i)
2.; exp(Ey,(i))

P(Yt = ilxl:T; Y1:t—1) =
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LOSS FUNCTION

T
L = _tzllogp(yt = i*lxl:T! Y1:t—1)

11
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LOSS FUNCTION

T
L = _tzllogp(yt — i*lxl:T! Y1:t—1)

12
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LOSS FUNCTION

T
L=- Z logP(Y: = 17 |X1.7 V1:6-1)

t=1 logits |
vocab s ize

r o exp(ERiD
og
S ITICAT)

=

exp(Ey, (i)
i exp(Ey, (i)

P(Y, = ilX1.1,¥1:6-1) = 5
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L

LOSS FUNCTION

T
— —tzllogP(Yt — i*lxl:T; Y1:t—1)

Ey.[i*
I AL

t=1 3 exp(EfHD

14
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GENERATING TEXT AT INFERENCE
TIME

* To generate text, we need an
algorithm that selects tokens given
the predicted probability

diStributiOHS. Unconditioned Language Model
i sampling chosen word for
Hhs e ’y’_' e=a agorithm position t+1
Examples:
e Ar gmax Conditioned Language Model

chosen word for
position t+1

sampling
agorithm

* Random sampling
Decoder PY; =i)—
e Beam search o AT e =1

YI,---,Yt—l
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RECURRENT NEURAL NETWORKS

Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

Sequence to Sequence Learning
with Neural Networks

Generating Sequences With

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasulgoogle.com vinyals@google.com gvl@google.com Recurrent Neural Networl{s
Abstract Alex Graves
Deep Neural Networks (DNNs) are powerful models that have achieved excel- Depa.rtment Of ComPUter SCIBHCB
lent performance on difficult learning tasks. Although DNNs work well whenever University Of Toronto
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence graveS@CS .toronto.edu

learning that makes minimal assumptions on the sequence structure, Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French

translation task from the WMT" 14 dataset, the translations produced by the LSTM Abstract

achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU

score was penalized on out-of-vocabulary words. Additionally, the LSTM did not This paper shows how Long Short-term Memory recurrent neural net-
have difficulty on long sentences. For comparison, a phrase-based SMT system : _ _
achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM works Can be used to‘ge_nerate complex ?equences _WIth lDl‘lg range Stru‘?
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its ture, simply by predicting one data point at a time. The approach is
BLEU score increases to 36.5, which is close to the previous best result on this demonstrated for text (where the data are discrete} and online handwrit-
task. The LSTM also learned sensible phrase and sentence representations that . B L
are sensitive to word order and are relatively invariant to the active and the pas- ing (where the data are real-valued). It is then extended to handwriting
sive voice. Finally, we found that reversing the order of the words in all source synthesis by allowing the network to condition its predictions on a text
sentences (but not target sentences) improved the LSTM’s performance markedly, . . . e .
because doing so introduced many short term dependencies between the sourco sequence. The resulting system is able to generate highly realistic cursive

amd tha tarcaot carntanca hinh madas tha mrmfirmsaat:nm menbhlar o e ar T R . SR S [ S S (N I (.
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P(y2|€;)

N\
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RECURRENT NEURAL NETWORKS

SINGLE LAYER DECODER ARCHITECTURE

P(ys|€2)

Decoder

€]

* The current hidden state is computed as a
function of the previous hidden state and
the embedding of the current word in the
target sequence.

h, = RNN(W;,y, + Wy;h¢_; +b,,)
 The current hidden state is used to predict
an embedding for the next word in the

target sequence.
e, =b,+ W, h,

This predicted embedding is used in the loss

function:
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WHAT IS THE “RNN” UNIT?

VvV

18
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WHAT IS THE “RNN” UNIT?

» LSTM stands for long short-term memory.

* An LSTM uses a gating concept to control how much

each position in the hidden state vector can be updated
at each step.

LSTMs were originally designed as a mean to keep
around information for longer in the hidden state as it
gets repeatedly updated.

input gate i = o (Wm'Xt + Wyhi_ 1+ Wgci—q + bz)
forget gate I = o (Wgrxe + Wpthy 1 + Wepci_1 +by)
cell state Cct = fici—1 + i tanh (Weexy + Wychi—1 + b

c)
> output gate 0; = 0 (Waoxt + Wpohy 1 + Weoer + by)
hidden state h, = o; tanh(cy)
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RNN MULTI-LAYER DECODER

ARCHITECTURE

* Computing the next hidden state:

* For the first layer:
hi = RNN(W,,y, + Wy, uhi_; + bp)
* For subsequent layers:
hi = RNN(W,,y, + Wy.-i,hi™" + Wy, he_; +bp)

Predicting an embedding for the next token in the
sequence:

L
é\t — be + 2 whleh%
=1

Each of the b and W are learned bias and weight matrices.
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RNN ENCODER-DECODER
ARCHITECTURES

How do we implement an encoder-decoder model?

enc ernc
hl hT

L] |

syey I]]II

432 2019 1234 75 2421

) t 1

The hippo ate my homework Le hippotame
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RNN ENCODER-DECODER
ARCHITECTURES

Simplest approach: Use the final hidden state from the encoder to initialize the first

hidden state of the decoder. P(nlé)  P(sléy)
h?“c hgnc Decoder
A A
Encoder
RNN RNN
hO ‘ l'll T h2 h%nc

|

yi Y2
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RNN ENCODER-DECODER
ARCHITECTURES

Better approach: an attention mechanism

- When predicting the next English
[The, hIPPOPOtamUS> e word, how much weight should the

model put on each French word in
the source sequence?

=
L
(@]
+—
S
L
(&}
-
g
(%)
&
©
—
|_

[, hippopotame, a, mangé¢, mes, devoirs]

23
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RNN ENCODER-DECODER

24

ARCHITECTURES

Better approach: an attention mechanism

[The, hippopotamus, ...

v

[, hippopotame, a, mang¢, mes, devoirs]

Compute a linear combination of the encoder hidden states.
I= 0:1I+a’2 H+a3l + ...+ a’TI
Ct

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.

I = fe(w)

€
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RNN ENCODER-DECODER
ARCHITECTURES

Compute a linear combination of the encoder hidden states.

I= a1I+a’2|]+a3I+... +aTI
C;

¢ a’t [Z] = SOftm aX( att_S corc ( hge ¢ ) hi S ) ) Decoder's prediction at position tis based on both the context

vector and the hidden state outputted by the RNN at that position.

 The ¢ context vector is computed as ¢, = H®"“q,

|] — fg(_)

5 5 5 dec
 There are a few different options for the attention . &
score:
HCHC — Il]
( g dot product
ht ec , hl@nc P

att_score(hge¢, h$"¢) = 4 hdec W _héne bilinear function

\Wq tanh( W,[heS, h{"]) MLP
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LIMITATIONS OF RECURRENT
ARCHITECTURE

* Slow to train.
« Can’t be easily parallelized.
* The computation at position t is dependent on first doing the computation at position t-1.

* Difficult to access information from many steps back.

* If two tokens are K positions apart, there are K opportunities for knowledge of the first token to
be erased from the hidden state before a prediction is made at the position of the second token.
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Since 2018, the field has
rapidly standardized on the
Transformer architecture

TRANSFORMERS

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
1lion@google.com

Noam Shazeer® Niki Parmar” Jakob Uszkoreit”
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez® | Fukasz Kaiser*
University of Toronto Google Brain
aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin® ¥
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to

ha cnimarar 11 analitv whila haino mare narallalizahla and reamisne ctontfBoant]yr

27
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TRANSFORMERS

The Transformer is a non-recurrent non-
convolutional (feed-forward) neural network
designed for language understanding that
introduces self-attention in addition to encoder-
decoder attention.

Output 28
Probabilities
|
|  Softmax |}
i
| Linear )
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Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Output 29
Probabilities
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TRANSFOR

logits Output 31
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ATTENTION MECHANISM —

[ Add & Norm J—~
. Feed
Multi-Head Forevfard
Attention 4 |
Linear s 1 \ | Add & Norm Je=~
T > Add & Norm Mult-Head
Feed Attention
CST cat Forward 7 ) Nx
| (——
N | Add & Norm Je=
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1. Attention Attention
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(shifted right)
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Output
Probabilities

t

|  Softmax |

33

MULTI-HEAD ATTENTION &=

Multi-Head
Attention 1

Linear

A

Concat

AR

Scaled Dot-Product
Attention

1

Split

Linear

f

K

Self-attention between a sequence of
hidden states and that same sequence

of hidden states.

[ Add & Norm J—~
Feed
Forward
r
I N\ [ Add & Norm Je~
AL R Mult-Head
Feed Attention
7 J 7 Nx
N Add & Norm
N Masked
Multi-Head Multi-Head
Attention Attention
— J L —
Positional Positional
Encod P ¢ |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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t

|  Softmax |

t

MULTI-HEAD ATTENTION ——_

[ Add & Norm J=~

Encoder-decoder attention, like what has been

Multi-Head standard in recurrent seq2seq models. Fgfﬁ:rd
Attention 4 | I
Linear s Add & Norm
T Aol & [Netine Multi-Head
Feed Attention
Concat Forward Nx
AN t F
N | Add & Norm Je=
Scaled Dot-Product * | ({Add & Norm ) Masked
Attention Multi-Head Multi-Head
1. Attention Attention
Split T
S — J U —
. Positional D ¢ Positional
Linear Encoding Encoding
1‘ Input Output
K Embedding Embedding
Inputs Outputs

(shifted right)
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Probabilities
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4 N
[ Add & Norm J—~
Multi-Head Scaled Dot-Product Attenti Feed
A u tl-. ca calc ot-I’'roduct Attention Forward
ttention 4 1 1 ,
Linear s 1 N\ | Add & Norm Je=~
T MatMul — o) Multi-Head
Y Feed Attention
Concat * Forward 7 ) Nx
.IUr ! SOﬁMaX | —
4 - (Add & Norm Je
Scaled Dot-Product * | ~{ Add & Norm ) X
Attenti Mask (opt.) ' Masked
ttention Multi-Head Multi-Head
A ‘f Attention Attention
Solit Scale 1 At
T S — J \ —
. Positional A Positional
Linear MatMull Encoding D ¢ Encoding
1‘ Input Output
K Embedding Embedding
Inputs Outputs

(shifted right)
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SCALED DOT-PRODUCT

ATTENTION

* The scaled dot-product attention
mechanism is almost identical to the

f'Scaled Dot-Product
Attention

) one we looked at, but let’s turn it
into matrix multiplications.
* The query: Q € RT*%
* The key: K € RT*%
) ¢ Thevalue: Ve ER

QKT) 1

* Attention(Q,K\V) 4 softmax(\/d—

Output 36
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SCALED DOT-PRODUCT

ATTENTION

* The scaled dot-product attention
mechanism is almost identical to the

f'Scaled Dot-Product
Attention

) one we looked at, but let’s turn it
into matrix multiplications.
* The query: Q € RT*%
* The key: K € RT*%
) ¢ Thevalue: Ve ER

KQK'I'\
\V dk/

 Attention(Q,K\V) = softmax Vv
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(shifted right)

The Vd, in the denominator prevents the dot product from getting too big
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SCALED DOT-PRODUCT -
ATTENTION

|  Linear |

([ Add & Norm J
QKT Feed
: . Forward
Attention(Q,K\V) = softmax( \/d_k) \' 1
e 1 \ | Add & Norm J~
[ Scaled Dot-Product A L Add < IOl ] Multi-Head
Attention Feed Attention
The rough algorithm: R 7 75 || ™
g g L[] ]
* For each vector in Q (query matrix), ~ | ey | || oL ton I
take the linear sum of the vectors in u-Head MultiHead
V (value matrix) (S ) IR (S ) J
g
* The amount to weigh each vector in  Positonal 2~ L &) Postiona
. « o - ’ Encoding Encoding
\ J V is dependent on how “similar” that o S
. Embedding Embedding
vector is to the query vector T
* “Similarity” is measured in terms of Inputs Outputs

(shifted right)
the dot product between the vectors
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SCALED DOT-PRODUCT
ATTENTION

|  Linear |

([ Add & Norm ]ﬁ\
QKT Feed
. . Forward
Attention(Q,KV) = softmax( \/d_) Vv 1
k - 1 ~ ( Add & Norm J~
[ Scaled Dot-Product A L Add < IOl ] Multi-Head
Attention . Feed Attention
For self-attention: Forward 7 7 7 || W
 — |
Keys, queries, and values all come from | L5 o) ‘ oot o J
. Multi-Head -
the outputs of the previous layer Ll Hea ikt ez
T i
— J . — )
For encoder-decoder attention: Cositiona & @& Positional
\ y , ncoding Encoding
Keys and values come from encoder’s e Sn
. mbedding Embedding
final output. Queries come from the ]
” > Inputs Outputs
previous decoder layer’s outputs. oy
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Attention
fl fr 1l
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| t t
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Output 40
Probatbilities
|  Softmax |
i
MULTI-HEAD ATTENTION —=
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Attention(Q,K\V) = softmax( \/d_) Vv Feed
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Forward Nx
7 7 7
( J~
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Instead of operating on Q, K, and V W | ~(AddE Nom) Vasked
. . . . Multi-Head Multi-Head
mechanism projects each input into a smaller Attention Attenion
. . o e . A
dimension. This is done 4 times. L s =)
The attention operation is performed on each of thesePositiona O & Positional
“heads.” and the results are concatenated. Encoding gl
Input Output
Embedding Embedding
Multi-head attention allows the model to jointly T
Inputs Outputs

attend to information from different representation

subspaces at different positions.

(shifted right)
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\
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Scaled Dot-Product

Attention

.

1 I 11
[ Split ] [ Split ] [ Split ]
1 t 1

[ I_inear] [Linear] [ I_inear]

\ K Q

MULTI-HEAD ATTENTION

Two different self-attention heads:
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INPUTS TO THE ENCODER = _
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THE ENCODER —
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THE DECODER

ngc — padding

l I
maximum sequence length

azis Buippaquwa

—token embeddings + position embeddings
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THE DECODER
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STRENGTHS OF THE
TRANSFORMER ARCHITECTURE

* Training is easily parallelizable

« Larger models can be trained efficiently.

* Does not “forget” information from earlier in the sequence.

* Any position can attend to any position.
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ETHICS OF ML
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EXPLAINABILITY AND
INTERPRETABILITY

* How clear is our agent’s decision making? Is it transparent or is it a black box?

« Can we make changes to the algorithm to make its decisions more explainable?

+ Can we develop tools that make the algorithm’s decisions easier to interpret?
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INEQUALITY

* Who has access to this Al agent?

* Could this create new inequality between groups that have access and do not have access?

* Is this system reinforcing existing structures that create inequality?

* Ifyes, is there regulation for this technology that can prevent this?
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JOB DISPLACEMENT

«  Will this algorithm displace human workers?
 If yes, is there a plan in place to help those displaced workers?

 Will this algorithm/agent create new jobs? Who will benefit?

S
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