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By the end of class today, you will be able to:
1. Identify how a transformer differs from an RNN
2. Interpret how different prompts affect generation
3. Evaluate the ethical considerations of ML algorithms

Modified from slides by Dr. Daphne Ippolito



RECAP: MULTI-LAYER NETWORKS: 

GENERAL STRUCTURE

Mutli-layer perceptrons (aka neural networks) will have inputs, one or more hidden 
layers, and an output layer:

• Number of inputs, outputs, and number and size of hidden layers can vary

• Combination of different weights and different structures represent different 
functions

• We will treat each layer as fully-connected
• Each unit in one layer connects to every unit in the next layer
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• Input sequence: x1,…,xT

• Target sequence: y1,…,yT'

ENCODER-DECODER
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https://www.linkedin.com/pulse/explanation-attention-based-encoder-decoder-deep-keshav-bhandari/



WHAT IS A TOKEN?

• The first step of building a neural language model is constructing a vocabulary 
of valid tokens.
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WHAT IS A TOKEN?

• The first step of building a neural language model is constructing a vocabulary 
of valid tokens.

• Each token in the vocabulary is associated with a vector embedding, and these 
are concatenated into an embedding matrix.
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INPUTS TO THE ENCODER

• The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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OUTPUTS FROM THE ENCODER

The encoder outputs a sequence of vectors. These are called the hidden state of the 
encoder.
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INPUTS TO THE DECODER

The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.
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ෝ𝒚𝒕



OUTPUTS FROM THE DECODER

The decoder outputs an embedding ෝ𝒚𝒕 
. The goal is for this embedding to be as close 

as possible to the embedding of the true next token.
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• We can multiply the predicted embedding ෝ𝒚𝒕 
by our vocabulary embedding matric 

to get a score for each vocabulary word. These scores are referred to as logits.

• The softmax function then lets us turn the logits into probabilities.
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TURNING ෝ𝒚𝒕 INTO A PROBABILITY 

DISTRIBUTION 

Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 



LOSS FUNCTION
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LOSS FUNCTION
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LOSS FUNCTION
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𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 



LOSS FUNCTION
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GENERATING TEXT AT INFERENCE 

TIME
• To generate text, we need an 

algorithm that selects tokens given 
the predicted probability 
distributions.

Examples:
• Argmax

• Random sampling

• Beam search
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RECURRENT NEURAL NETWORKS

• Up until 2017 or so, neural language models were mostly built using recurrent 
neural networks.
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RECURRENT NEURAL NETWORKS
SINGLE LAYER DECODER ARCHITECTURE
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• The current hidden state is computed as a 
function of the previous hidden state and 
the embedding of the current word in the 
target sequence.

𝐡𝑡 = RNN(𝐖𝑖ℎ𝐲𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ )

• The current hidden state is used to predict 
an embedding for the next word in the 
target sequence.

ො𝐞𝑡 = 𝐛𝑒 + 𝐖ℎ𝑒𝐡𝑡

This predicted embedding is used in the loss 
function:

Usually the 
zero-vector



WHAT IS THE “RNN” UNIT?

18

?
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WHAT IS THE “RNN” UNIT?

• LSTM stands for long short-term memory.

• An LSTM uses a gating concept to control how much 
each position in the hidden state vector can be updated 
at each step.

• LSTMs were originally designed as a mean to keep 
around information for longer in the hidden state as it 
gets repeatedly updated.
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LSTM

https://en.m.wikipedia.org/wiki/File:Hyperbolic_Tangent.svg



RNN MULTI-LAYER DECODER 

ARCHITECTURE
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• Computing the next hidden state:

• For the first layer:
𝐡𝑡

1 = RNN(𝐖𝑖ℎ 
𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡−1

1 + 𝐛ℎ
1 )

• For subsequent layers:

𝐡𝑡
𝑙 = RNN(𝐖𝑖ℎ 

𝐲𝑡 + 𝐖ℎ ℎ 𝐡𝑡
𝑙−1 + 𝐖ℎ ℎ 𝐡𝑡−1

𝑙 + 𝐛ℎ
𝑙 )

Predicting an embedding for the next token in the 
sequence:

ෝ𝐞𝑡 = 𝐛𝑒 + 

𝑙=1

𝐿

𝐖ℎ 𝑒
𝐡𝑡

𝑙

Each of the b and W are learned bias and weight matrices.

𝑙 − 1 𝑙𝑙 𝑙 𝑙

1 1 1

𝑙



RNN ENCODER-DECODER 

ARCHITECTURES

How do we implement an encoder-decoder model?
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RNN ENCODER-DECODER 

ARCHITECTURES

Simplest approach: Use the final hidden state from the encoder to initialize the first 
hidden state of the decoder.
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RNN ENCODER-DECODER 

ARCHITECTURES

Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

23

When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence?

T
ra

n
sl

a
te

 F
r 

to
 E

n
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Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]
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RNN ENCODER-DECODER 

ARCHITECTURES



RNN ENCODER-DECODER 

ARCHITECTURES
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• The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

• 𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖

enc))

• There are a few different options for the attention 
score: 

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) = 

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎
1

⟙ tanh( 𝐖𝑎𝟐[𝐡𝑡
dec,  𝐡𝒊

enc ])

dot product

bilinear function

MLP



LIMITATIONS OF RECURRENT 

ARCHITECTURE

• Slow to train.
• Can’t be easily parallelized.

• The computation at position t is dependent on first doing the computation at position t-1.

• Difficult to access information from many steps back.
• If two tokens are K positions apart, there are K opportunities for knowledge of the first token to 

be erased from the hidden state before a prediction is made at the position of the second token.
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TRANSFORMERS
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Since 2018, the field has 
rapidly standardized on the 
Transformer architecture



TRANSFORMERS

The Transformer is a non-recurrent non-
convolutional (feed-forward) neural network 
designed for language understanding that 
introduces self-attention in addition to encoder-
decoder attention.
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TRANSFORMERS

29

Encoder
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TRANSFORMERS

30

Decoder
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TRANSFORMERS
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ATTENTION MECHANISM

32

Multi-Head
Attention
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MULTI-HEAD ATTENTION

33

Self-attention between a sequence of 
hidden states and that same sequence 
of hidden states.

Multi-Head
Attention
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MULTI-HEAD ATTENTION

34

Encoder-decoder attention, like what has been 
standard in recurrent seq2seq models.Multi-Head

Attention
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ATTENTION MECHANISM

35

Multi-Head
Attention

Scaled Dot-Product Attention
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• The scaled dot-product attention 
mechanism is almost identical to the 
one we looked at, but let’s turn it 
into matrix multiplications.

• The query: Q ∈ 𝑅𝑇𝑥𝑑
𝑘

• The key: K ∈ 𝑅𝑇'𝑥𝑑
𝑘

• The value: V ∈ 𝑅𝑇𝑥𝑑
𝑘

• Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

SCALED DOT-PRODUCT

 ATTENTION

36

Scaled Dot-Product 
Attention

This is the α vector we 
learned about before.
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The 𝑑𝑘 in the denominator prevents the dot product from getting too big

• The scaled dot-product attention 
mechanism is almost identical to the 
one we looked at, but let’s turn it 
into matrix multiplications.

• The query: Q ∈ 𝑅𝑇𝑥𝑑
𝑘

• The key: K ∈ 𝑅𝑇'𝑥𝑑
𝑘

• The value: V ∈ 𝑅𝑇𝑥𝑑
𝑘

• Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

SCALED DOT-PRODUCT

 ATTENTION

37

Scaled Dot-Product 
Attention

This is the dot-
product scoring 
function from 
previous slides
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Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), 
take the linear sum of the vectors in 
V (value matrix)

• The amount to weigh each vector in 
V is dependent on how “similar” that 
vector is to the query vector

• “Similarity” is measured in terms of 
the dot product between the vectors

SCALED DOT-PRODUCT

 ATTENTION

38

Scaled Dot-Product 
Attention
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Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from 
the outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s 
final output. Queries come from the 
previous decoder layer’s outputs.

SCALED DOT-PRODUCT

 ATTENTION

39

Scaled Dot-Product 
Attention
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Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

Instead of operating on Q, K, and V

mechanism projects each input into a smaller 
dimension. This is done h times. 

The attention operation is performed on each of these 
“heads,” and the results are concatenated.

Multi-head attention allows the model to jointly 
attend to information from different representation 
subspaces at different positions.

MULTI-HEAD ATTENTION

4012/12/2023 – Transformers

Multi-Head
Attention

MultiHeadAtt(Q,K,V) = 
 Concat head1, … headℎ WO



MULTI-HEAD ATTENTION
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Two different self-attention heads:

Multi-Head
Attention



INPUTS TO THE ENCODER

• The input into the encoder looks like:

42

= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:
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THE ENCODER
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Multi-Head

Attention



THE ENCODER
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention



THE ENCODER

45

Feed

Forward <=>
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm



THE ENCODER

46

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)
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Feed

Forward
Add & Norm



THE DECODER

47

= token embeddings + position embeddings

+
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THE DECODER
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Masked Multi-

Head Attention



THE DECODER
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention



THE DECODER
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention



THE DECODER
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(  +  )Multi-Head

Attention
Add & Norm



THE DECODER
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(  +   )Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(                   + )
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)



STRENGTHS OF THE 

TRANSFORMER ARCHITECTURE

• Training is easily parallelizable
• Larger models can be trained efficiently.

• Does not “forget” information from earlier in the sequence.
• Any position can attend to any position.
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ETHICS OF ML
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EXPLAINABILITY AND 

INTERPRETABILITY

• How clear is our agent’s decision making?  Is it transparent or is it a black box?

• Can we make changes to the algorithm to make its decisions more explainable?

• Can we develop tools that make the algorithm’s decisions easier to interpret?
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INEQUALITY
• Who has access to this AI agent?

• Could this create new inequality between groups that have access and do not have access?

• Is this system reinforcing existing structures that create inequality?
• If yes, is there regulation for this technology that can prevent this?
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JOB DISPLACEMENT
• Will this algorithm displace human workers?

• If yes, is there a plan in place to help those displaced workers?

• Will this algorithm/agent create new jobs? Who will benefit?
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