
A Collection of Benchmark Problems
for the Sabre Narrative Planner

Technical Report
November 18, 2023

Stephen G. Ware and Rachelyn Farrell
Narrative Intelligence Lab

Department of Computer Science
University of Kentucky

Abstract

We have compiled a collection of story planning problems from several authors
to test the Sabre narrative planner. This report identifies the origins of these
problems, describes the modifications we made translating them into Sabre’s
syntax, and gives recommended settings when searching for solutions.

Contents
Introduction 2

Planners for Narrative vs. Narrative Planners 2
About Sabre . 3
About this Collection . 4

Methodology 4
Spirit Over Structure . 4
Fixing Bugs . 5
Goals as Utility . 5
One Problem, Few Versions . 6
Belief . 7
Intention . 7
Guided by Exemplar Stories . 8
Recommended Search Settings . 9

Problems 10
Bribery . 10
Deer Hunter . 11
Secret Agent . 13
Aladdin . 14
Hospital . 16
Basketball . 18
Western . 20
Fantasy . 22
Space . 24
Raiders of the Lost Ark . 26
Treasure Island . 28
Save Gramma . 30
Jailbreak . 32
Lovers . 34

Acknowledgments 35

Bibliography 36

1

Introduction
Storytelling algorithms have existed since at least Meehan’s seminal 1977 paper
on Tale-Spin [9], which generated short stories similar to Aesop’s Fables. These
algorithms can be classified according to several features [6]. For this report,
we focus on story planning algorithms. Planning algorithms perform a search
to determine whether a story meeting certain requirements is possible. Story
planning algorithms can be contrasted with reactive algorithms (like ABL [8] and
other descendants of the Oz Project [7]), which decide on the next story event
based on the current state and perform little or no lookahead when making their
decisions. Reactive storytelling systems scale well but produce emergent stories
that may be hard to control. Planning systems are expensive but can guarantee
constraints on a story’s content and structure.

Young [24] was perhaps the first to suggest that AI planning algorithms would
be suitable for interactive storytelling in computer systems. A planning algorithm
is a symbolic, logical system that takes as input (1) a description of the initial
state, (2) a goal, and (3) a set of possible actions which have preconditions that
must hold before they occur and effects which modify the world state. A planning
algorithm, or planner, searches for a plan—a sequence of actions executable in the
initial state that achieves the goal [23]. Young observed that planners provide a
formal, generative model of action and can reason about narratively important
properties like causality.

Planners for Narrative vs. Narrative Planners
To oversimplify the research landscape, there are two broad approaches to
planning stories. The first uses off-the-shelf planners for storytelling purposes.
Their advantage is that advances in planning research can immediately be
leveraged for storytelling. Their disadvantage is that all narrative reasoning must
be encoded into the preconditions and effects of actions, or into other features
provided by a planner that was not designed for storytelling. This approach is
often used by Marc Cavazza and his academic descendants [1, 10].

The second approach modifies planning algorithms to reason directly about
narrative phenomena. In this approach, the preconditions and effects of actions
are limited to the most basic constraints; other features of the planner decide
when they should occur based on explicit narrative reasoning. Their advantage
is a richer set of storytelling features in the algorithm; their disadvantage is
that it becomes difficult to integrate advances in planning research into these
systems. This approach is often used by R. Michael Young and his academic
descendants [25].

2

About Sabre
The Sabre narrative planner [19] arose from the second school of thought. Though
none of its individual features is unique, it is the first algorithmwith this particular
set of features:

• Intentionality: A character can only take an action if they believe it will
further their goals.

• Conflict: Characters can thwart one another’s plans, and stories can contain
failed or partially-executed character plans.

• Arbitrary Theory of Mind: It reasons about what is actually true, what
character 𝑥 believes, what 𝑥 believes character 𝑦 believes, what 𝑥 believes 𝑦
believes 𝑧 believes, and so on, arbitrarily.

• No Uncertainty: Beliefs can be wrong, but characters always commit to their
beliefs. They can believe 𝑝when ¬𝑝 is the case, but they cannot believe 𝑝∨𝑞.
This limitation increases the size of the problems Sabre can solve at the cost
of a feature some might find desirable.

This set of features was chosen based on the needs of the interactive narratives
we are developing at the Narrative Intelligence Lab at the University of Kentucky.
We make no claim that they are the most desirable in general.

Sabre begins at the initial state of a storytelling problem and performs a
forward heuristic search through the space of states until it finds a state where
the author’s goal for the story is achieved. Every action taken on the way to
that goal must be explained for each of the characters1 who takes the action
(called the consenting characters). An action is explained for a character when that
character can imagine a plan that starts with the action and which, according to
that character’s beliefs, will lead to a better state for that character and contains
only explained actions. Sabre should be cited as follows:

Stephen G. Ware and Cory Siler. Sabre: A narrative planner
supporting intention and deep theory of mind. In Proceedings of the
17th AAAI conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 99–106, 2021

1Sabre uses the term character, instead of agent, because they are not independent decision-
makers. The planner is the only agent. It acts like a puppetmaster, omniscient but attempting to
make each character seem like it has its own goals and limited, possibly wrong beliefs.

3

About this Collection
Sabre provides several search methods and heuristics. To test them, we have
written several problems. We also want to compare Sabre’s performance on
problems written by others, so we have collected what problems we can from
the narrative planning literature. Many of these problems were created for other
planning systems, so we have had to translate them into Sabre’s syntax, a process
which has certainly introduced some bias.

In an attempt to partially mitigate that bias, the next section details the process
we followedwhen translating problems for testing in Sabre. The third section gives
details about each problem and explains their origins.

It is our hope that this collection of problems will serve as a repository of
benchmark problems for those interested in narrative planning. However, we
also want to offer a word of caution learned from the AI planning community.
Performance on this suite of problems should not be considered an authoritative
measure of whether a planner is state-of-the-art. A planner should not be judged
uninteresting because it fails to perform well on these tests. In other words, we
want these benchmarks to encourage comparison across planners without limiting
the richness of narrative planning research.
This report can be cited as follows:

Stephen G. Ware and Rachelyn Farrell. A collection of benchmark
problems for the Sabre narrative planner. Technical report, Narrative
Intelligence Lab, University of Kentucky, November 2023

Methodology
While some of the problems in this collectionwere initially created for Sabre, many
were originally made for other systems with different features2. We want to show
that Sabre can generalize enough to solve problems established by other systems,
but we recognize that translating these problems has changed them. This section
explains the guidelines we followed when translating problems.

Spirit Over Structure
Our translations have attempted to maintain the spirit of a problem as we
understood it rather than its exact formal structure. The goal was to write the

2Most problemswe translatedwere originallywritten in PDDL, the PlanningDomainDefinition
Language [4], or something similar to it.

4

problem as if the original author had designed it for Sabre from the beginning. For
example, many early planning systems use only Boolean predicates, whereas Sabre
supports multi-valued fluents. We could have “directly” translated these problems
by using only Boolean fluents in Sabre, but this makes the problem artificially
harder. Consider representing a character’s location when there are 𝑐 = {𝑐1, 𝑐2, ...}

characters and 𝑝 = {𝑝1, 𝑝2, ...} places. A Boolean fluent like 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐1, 𝑝1) means
“character 𝑐 is at place 𝑝,” and we need |𝑐| ⋅ |𝑝| of these fluents, exactly one of which
is true in any state. Sabre can use a single fluent 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑐) which can have any
place as its value. When possible, we used multi-valued fluents like this, even
though it results in a less exact translation of the problem.

Fixing Bugs
Some problems had mistakes which we have fixed. In some cases, we contacted
the original authors (or we were the original authors), so we are confident in these
changes. Some were judgment calls based on our understanding of the spirit of the
problem. For example, one of the key events in the Hospital problem is a stressed
doctor misdiagnosing a patient. The effects of the mistake-assess action never
appear as preconditions of any other action or in the problem goal; we believe
this was a mistake in the original problem, and we have modified it to allow a
mistaken diagnosis to lead to a patient’s death. Similar bugs have been fixed in
other problems and are noted in the details for that problem in this report.

Goals as Utility
Most planners use propositions to define the goals of a planning problem. Sabre
uses utility functions—numeric expressions to be maximized. Sabre defines an
author utility, which the solution plan itself should maximize, and one character
utility function per character, which those characters each try to maximize. Some
narrative planners do not represent character goals at all. Some do, but allow
characters to adopt and drop their goals during a plan. Sabre’s utility functions
cannot be changed during a plan, though their values can be conditional. For
all of these reasons, translating the goals of problems into Sabre utility functions
required some significant interpretation. Consider the Western problem, where a
character can be bitten by a snake, causing everyone who loves that character to
adopt the goal of healing the snakebite. When it is healed, the goal is dropped.
We represent this in Sabre using numeric fluents like 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝(𝑐1, 𝑐2). When 𝑐1

loves 𝑐2 and 𝑐2 is healthy, the value of this fluent is 1. If 𝑐1 does not love 𝑐2, or if
𝑐2 is sick, the value is 0. Each character’s relationships contribute to their utility

5

function. When 𝑐1 loves 𝑐2 and 𝑐2 is bitten by a snake, 𝑐1’s utility decreases by 1,
and any plan which restores 𝑐2’s health raises 𝑐1’s utility by 1.

One Problem, Few Versions
The benchmark problems used in the AI planning community typically distinguish
between a domain and a problem. A domain defines the actions while a problem
defines a set of objects, an initial state, and a goal. There are typically many
problems per domain. There seems to be less of a need for this distinction
in storytelling systems. Many storytelling domains have only one associated
problem, or a few very similar problems. There is less variation in their initial
states and goals. Sabre defines everything—actions, objects, initial state, and
goals—in the same unit, called a problem. This does not mean a Sabre problem can
tell only a single story. Complex utility functions and disjunctive goals can give
rise to many stories. Consider the Save Gramma problem, where Tom represents
the player character in an interactive narrative game. The author’s utility is 0 in
the initial state, 1 when Tom is dead, and 2when Tom achieves his goal of returning
homewith medicine for his grandmother. There are manyways for Tom to die and
for Tom to complete his goal, so a wide variety of stories can still be told when
solving this problem.

We can represent several versions of a Sabre problem (what other planning
researchers might call many problems in the same domain) by setting a higher goal
for the author utility. In Save Gramma, a goal of reaching author utility 1 means
any plan that ends in either Tom’s death or the successful completion of Tom’s
quest can be accepted as a solution. This corresponds to the benchmark problem
gramma_any. By setting a goal of author utility 2, only solutions where Tom
completes his quest are accepted. This corresponds to the benchmark problem
gramma_win.

When a problem’s goal has multiple parts, we typically made each of these
parts contribute independently to the author’s utility. This allows the same Sabre
problem to be used in many benchmark tasks simply by settings a higher goal
for the author’s utility. Consider Aladdin. The original problem has a goal with
two parts: Jasmine is married to Jafar and the Genie is dead. In our version of
the problem, the author gains 1 point of utility for each of these. The benchmark
problem aladdin_any can be solved by any story that marries Jasmine to Jafar or
kills the genie, whereas both goals must be achieved in aladdin_both.

Some problems, likeHospital, Basketball, and Lovers, were designed as domains
with multiple problems in mind. In those cases, we have chosen a single problem
to implement, usually the smallest and simplest. This reduces the richness and
variety of the original problems, but our objective with this suite of benchmarks

6

is to test many types of stories rather than many stories of the same type.

Belief
Sabre tracks what is actually true, what each agent believes, what they believe
others believe, and so on arbitrarily. Sabre provides three ways that beliefs are
updated. First, each action has an observation function which defines when a
character notices an action occur. When a character observes an action, they
update their beliefs (and their beliefs about the beliefs of others who observed
it, etc.). Sabre also provides triggers, which are like actions except they must occur
when they can. Triggers are frequently used for belief updates. For example, one
commonly used trigger can be read as “When character 𝑐1 is at the same location as
character 𝑐2, but 𝑐1 believes 𝑐2 is somewhere else, 𝑐1 now realizes that 𝑐2 is at their
location.” Finally, Sabre actions can update character beliefs directly. The report
action in Save Gramma, where one character tells the guard they have seen the
bandit, and the tell action in Lovers, where one character tells another what item
they want, are two actions with examples of direct belief updates.

When translating problems that did not originally model beliefs, we tried to
use semantics informed by the stories being modeled. Most problems have some
concept of a location, so generally characters observe any action that happens at
their location. Most problems include triggers that allow characters to observe the
people, places, and things, at their location.

Some problems originally designed for planners that do no model belief
occasionally used predicates that clearly represented beliefs. For example, the
knows-location predicate in the original version of Raiders of the Lost Ask has
been removed and replaced with Sabre’s model of belief about a location.

Any wrong beliefs that characters have in the initial state must be specified;
otherwise Sabre assumes their beliefs reflect the real world. For most problems
that did not originally model belief we assumed no wrong beliefs, unless they
were obvious from the semantics, such as the knows-location predicate above.

Intention
Intentionality is the tendency of intelligent agents to act in service of their own
goals, or in Sabre’s case, to raise their own utilities. Each Sabre action has a list
of characters, called the consenting characters, who must have a reason to take
the action. A Sabre plan can only contain an action if it is explained for all its
consenting characters. An action is explained for a character if that action is the
first in a sequence of actions which that character believes they can take, will
result in a higher utility for them, and is composed only of actions which that

7

character believes are also explained for all their consenting characters. Note that
intention is linked to belief—characters can take actions they think will help, but
wrong beliefs may cause their actions to go awry. In Raiders of the Lost Ark, the
Nazis believe opening the Ark of the Covenant will grant them immortality, so
they open it; in reality, it kills them.

An action with no consenting characters is called an author-only action and
represents a deux ex machina—an action that the author can choose for the sole
reason that it advances the plot. Characters cannot expect them to happen.

When translating problems that did not originallymodel intention, we used the
semantics of the verbs the actions modeled. Typically any characters mentioned
in an action were made consenting characters, with some obvious exceptions. For
example, in Basketball, the thief is the only consenting character for steal; clearly
this action is reasonable even when the victim does not want it.

Guided by Exemplar Stories
Problems generally had known solutions provided by the original author. While
translating problems, we ensured these example solutions, or something very
similar in spirit, could be produced by the Sabre version of the problem. These
exemplar solutions are listed in the section for each problem, but this does not
imply that they are the only solutions that exist, or even the best solutions.

Occasionally, ensuring these solutions were possible required us to violate
the guidelines. For example, in Western we assume that characters only observe
actions that occur at their location. This means the town sheriff (who starts at
the saloon) will not notice Hank’s robbery of the general store. To ensure the
exemplar solution was still possible, we modified the take action so the sheriff
always observes it no matter his location.

Occasionally it was impossible to ensure exemplar solutions were possible
due to Sabre’s minimality constraint. A plan is minimal if no actions can be left
out without lowering the utility it achieves or causing other actions to become
unexplained. Sabre requires plans for characters and the author to be minimal3,
but some exemplar stories were not minimal. The original Space story is about
a misunderstanding between a starship captain and an alien. They battle to a
stalemate and flee when a volcano starts to erupt. The battle sequence can be left
out without changing the outcome, so even though that sequence of actions exists
for Sabre and is explained, it is not considered a solution.

3A minimal plan does not need to be the shortest possible plan, but it cannot contain any steps
that could be left out. In other words, if some subsequence of a plan is also explained and achieves
the same utility, that subsequence is the solution, not the longer plan.

8

Just as we designed problems to produce ideal solutions, we sometimes
modified them to avoid producing problematic ones, even if they were valid
solutions to the original problem. In the original Western, after being bitten by
a snake, Timmy could tie up his father, drag him to the jailhouse, then walk to
the general store to steal the antivenom himself. His path via the jailhouse, and
his dragging a prisoner around with him, are an unnecessarily long yet still valid
and minimal path to the general store. It also happens to be a convenient way to
achieve the author’s goal. We have modified the problem to rule out this strange
solution.

Recommended Search Settings
There are three important limits that can be imposed on Sabre’s search. The author
temporal limit is the maximum number of actions in the author’s plan—that is, the
actual actions that will be executed to raise the author’s utility. The character
temporal limit is the maximum number of actions in a plan a character imagines
when justifying an action. Consider this solution to the Save Gramma problem:

Tom walks to the crossroads.
The bandit walks to the crossroads.
The bandit kills Tom.

It can be found with an author temporal limit of 3, since the plan contains only 3
actions, but it cannot be found unless the character temporal limit is higher. This
is because Tom needs to imagine a longer plan to justify why he would want to
walk to the crossroads:
Tom walks to the crossroads.
Tom walks to the market.
Tom buys the medicine from the merchant.
Tom walks to the crossroads.
Tom walks to the cottage.

Only the first action in Tom’s plan actually happens in the story before he is
interrupted by the bandit. Still, he has to have a reason to walk to the crossroads
before he can act, and the planner cannot find this reason unless the character
temporal limit is set to 5 or higher.

The third limit is the epistemic limit, which constrains how deeply Sabre will
search into a character’s theory of mind. It is important to note that Sabre always
has an infinitely deep theory of mind, and beliefs are always modeled the same
way regardless of this limit. The epistemic limit only affects which states will be

9

explored by the search. In other words, setting this limit to 0 does not remove
or alter Sabre’s theory of mind; it only limits which solutions can be found. It is
also important to note that Sabre can still reason deeper than this limit without
necessarily searching deeper than this limit. Tom’s plan to buy the medicine from
the merchant requires reasoning 2 layers deep, because Tom has to anticipate that
the merchant will sell him the medicine. Sabre has to reason about what Tom
believes the merchant believes (2 layers). However, the solution can still be found
with an epistemic limit of 1. The state that represents the merchant’s beliefs after
buying themedicine is generated even though it is never visited. Not visitedmeans
Sabre never considers building longer plans starting in that state, but because the
merchant’s utility is instantly improved in that state, Sabre does not need a longer
plan to recognize it as good for the merchant. An epistemic limit of 1 is sufficient
to find this explanation, even though it reasons about a belief at layer 2.

For each problem, we list recommended settings for the author temporal limit,
character temporal limit, and epistemic limit. These limits allow all of the exemplar
solutions described for that problem. For some problems, we recommend a higher
epistemic limit than what is strictly required to produced the example solutions
because those problems allow interesting behavior that can only happen at higher
epistemic limits. For example, in Save Gramma, characters will never report the
bandit’s location to the guard unless they can imagine the guard chasing after the
bandit, so while the exemplar solutions can be found with an epistemic limit of 1,
we recommend 2 for that problem to allow actions like report to be explored.

Problems
This section explains the origin of each benchmark problem, mentions any
important details about how we translated it, and recommends search settings
for using the problem as a benchmark in Sabre.

Bribery
This is the first of four problems detailed in the appendix of Mark O. Riedl’s
dissertation. His dissertation is one of the seminal works on narrative planning
that established the model of intention used in several future planners.

Mark O. Riedl. Narrative planning: Balancing plot and character. PhD
thesis, North Carolina State University, 2004

The problem is small and describes how a villain gains control over the president
using a bribe. It has three characters: the villain, the president, and a hero who

10

the villain can manipulate into robbing a bank to obtain the money needed for
the bribe. The two solutions to this problem were originally meant to highlight
a feature of Riedl’s Fabulist system [13] that allowed characters to act contrary
to their personalities if given sufficient motivation. In this problem, the usually
lawful hero can rob a bank if they are first coerced by the villain.

Riedl’s planner models intention but not belief. It also has a feature that allows
one character to delegate its goals to another, whichwas used in the coerce action.
There is no easy way to translate this notion of goal delegation into Sabre’s utility
functions. To maintain the minimality and simplicity of the original problem, we
have modified the coerce action to cause the coerced character to want an item to
be at a specific location. In the example below, coerce(Villain, Hero, Money)

makes the hero want the villain to have the money.
Solution 1: The villain robs the bank themselves.
steal(Villain, Money, Bank)

bribe(Villain, President, Money)

Solution 2: The villain coerces the hero into robbing the bank.
threaten(Villain, Hero)

coerce(Villain, Hero, Money)

steal(Hero, Money, Bank)

give(Hero, Villain, Money)

bribe(Villain, President, Money)

Version Goal Utility
bribery 1

Setting Value
Author Temporal Limit 5
Character Temporal Limit 5
Epistemic Limit 2

Deer Hunter
This is the second of four problems detailed in the appendix of Riedl’s dissertation.

Mark O. Riedl. Narrative planning: Balancing plot and character. PhD
thesis, North Carolina State University, 2004

The problem illustrates how actions can be reused for multiple goals. The
protagonist, Bubba, owns a gun and some ammunition. He can become greedy
and use his gun to rob a bank. He can also become hungry and use his gun to hunt
a deer.

11

Riedl’s planner models intention but not belief. In the original problem,
author-only actions caused Bubba to adopt the goal of having money or not being
hungry. This allowed the planner to choose either or both goals for the story.
We have preserved that structure by changing the decide_to_get_money action
to increase Bubba’s greed (allowing him to raise his utility by stealing money)
and the decide_to_eat action to make Bubba hungry (lowering his utility, and
allowing him to raise it again by eating). The author gains 1 point of utility when
Bubba gets money and 1 point when the deer is eaten.
Solution 1: Bubba robs a bank.
(Shortest known plan for author utility 1)
decide_to_get_money(Bubba)

pickup(Bubba, Rifle, House)

pickup(Bubba, Ammo, House)

load(Bubba, Rifle, Ammo)

go(Bubba, House, Bank)

steal(Bubba, Clerk, Rifle, Bank)

Solution 2: Bubba hunts a deer.
(Alternative solution for author utility 1)
decide_to_eat(Bubba)

pickup(Bubba, Rifle, House)

pickup(Bubba, Ammo, House)

load(Bubba, Rifle, Ammo)

go(Bubba, House, Forest)

shoot(Bubba, Bambi, Rifle, Forest)

eat(Bubba, Bambi, Forest)

Solution 3: Bubba does both.
(Shortest known plan for author utility 2)
decide_to_get_money(Bubba)

decide_to_eat(Bubba)

pickup(Bubba, Rifle, House)

pickup(Bubba, Ammo, House)

load(Bubba, Rifle, Ammo)

go(Bubba, House, Bank)

steal(Bubba, Clerk, Rifle, Bank)

go(Bubba, Bank, Forest)

shoot(Bubba, Bambi, Rifle, Forest)

eat(Bubba, Bambi, Forest)

12

Version Goal Utility
deerhunter_any 1
deerhunter_both 2

Setting Value
Author Temporal Limit 10
Character Temporal Limit 6
Epistemic Limit 1

Secret Agent
This is the third of four problems detailed in the appendix of Riedl’s dissertation.

Mark O. Riedl. Narrative planning: Balancing plot and character. PhD
thesis, North Carolina State University, 2004

The problem requires a secret agent to enter the compound of an evil mastermind
and assassinate him. To enter, he must be unarmed, but to assassinate the
mastermind he needs a gun, which he can find in the compound.

Riedl’s planner models intention but not belief. It also has a feature that allows
the planner to decide some parts of the initial state that the author intentionally
left unspecified. In this example, the location of the gun was unspecified, and the
planner could place it at any location. We have preserved this feature by adding
the find action, which allows the agent to find an item at their current location
as long as the item’s location has not yet been set. Note the find action has the
secret agent as a consenting character. It cannot be an author-only action; if so the
agent would not believe it is possible to find a gun after entering the compound
and would never act.
Solution 1: The secret agent assassinates the mastermind.
move(SecretAgent, Headquarters, Dropbox)

pickup(SecretAgent, Papers, Dropbox)

move(SecretAgent, Dropbox, Courtyard)

move(SecretAgent, Courtyard, Lobby)

find(SecretAgent, Gun, Lobby)

pickup(SecretAgent, Gun, Lobby)

move(SecretAgent, Lobby, Office)

kill(SecretAgent, Mastermind, Gun, Office)

Version Goal Utility
secretagent 1

Setting Value
Author Temporal Limit 8
Character Temporal Limit 8
Epistemic Limit 1

13

Aladdin
This is the fourth and largest of four problems detailed in the appendix of Riedl’s
dissertation. It was also detailed in a journal article about Riedl’s IPOCL planner,
so we suggest using that citation when referring to this problem.

Mark O. Riedl and R. Michael Young. Narrative planning: Balancing
plot and character. Journal of Artificial Intelligence Research, 39(1):217–
268, 2010

The problem is an alternative version of the tale of Aladdin, which was added
to a later edition of One Thousand and One Nights and later adapted into a 1992
Disney film. Many elements have been changed. Jafar is king, not adviser to the
king. A dragon has been added. The end of the story has been changed. These
modifications were likely due to the fact that Riedl’s planner did not support
conflict, the ability for an agent to partially execute a plan which then fails.
Support for conflict was added in a later algorithm by Ware et al. [22] which
enabled new solutions to this problem.

Riedl’s and Young’s planner models intention but not belief. It also has a
feature that allows one character to delegate its goals to another, which was used
in the original order and command actions. There is no easy way to translate this
notion of goal delegation into Sabre’s utility functions. To maintain their spirit, we
have replaced them with the command_kill, command_love, and command_bring

actions, which model a requester assigning a task to a worker. The tasks require
the worker to kill a character, bring an item, or cause another character to love the
requester respectively. Characters gain utility by completing tasks.

The original problem goal has two parts: Jasmine should be married to Jafar
and the genie should be dead. The author gains 1 point of utility for each, allowing
two versions of this problem.

Solution 1: Aladdin is frightened by the genie and slays it.
(Shortest known plan for author utility 1)
fall_in_love(Aladdin, Jasmine, Castle)

travel(Aladdin, Castle, Mountain)

slay(Aladdin, Dragon, Mountain)

pillage(Aladdin, Dragon, Lamp, Mountain)

summon(Aladdin, Genie, Lamp, Mountain)

appear_threatening(Genie, Aladdin, Mountain)

slay(Aladdin, Genie, Mountain)

14

Solution 2: Jafar uses a love spell to marry Jasmine.
(Alternative solution for author utility 1)
fall_in_love(Jafar, Jasmine, Castle)

travel(Jafar, Castle, Mountain)

slay(Jafar, Dragon, Mountain)

pillage(Jafar, Dragon, Lamp, Mountain)

travel(Jafar, Mountain, Castle)

summon(Jafar, Genie, Lamp, Castle)

command_love(Jafar, Genie, Jasmine, Castle)

love_spell(Genie, Jasmine, Jafar)

marry(Jafar, Jasmine, Castle)

Solution 3: Jafar marries Jasmine and Aladdin slays the genie.
(Shortest known plan for author utility 2)
fall_in_love(Jafar, Jasmine, Castle)

travel(Jafar, Castle, Mountain)

slay(Jafar, Dragon, Mountain)

pillage(Jafar, Dragon, Lamp, Mountain)

travel(Jafar, Mountain, Castle)

summon(Jafar, Genie, Lamp, Castle)

command_love(Jafar, Genie, Jasmine, Castle)

love_spell(Genie, Jasmine, Jafar)

marry(Jafar, Jasmine, Castle)

appear_threatening(Genie, Aladdin, Castle)

slay(Aladdin, Genie, Castle)

15

Solution 4: Story used by Riedl and Young to evaluate IPOCL [14].
(Alternative solution for author utility 2)
fall_in_love(Jafar, Jasmine, Castle)

command_bring(Jafar, Aladdin, Lamp, Castle)

travel(Aladdin, Castle, Mountain)

slay(Aladdin, Dragon, Mountain)

pillage(Aladdin, Dragon, Lamp, Mountain)

travel(Aladdin, Mountain, Castle)

give(Aladdin, Jafar, Lamp, Castle)

summon(Jafar, Genie, Lamp, Castle)

command_love(Jafar, Genie, Jasmine, Castle)

love_spell(Genie, Jasmine, Jafar)

marry(Jafar, Jasmine, Castle)

appear_threatening(Genie, Aladdin, Castle)

slay(Aladdin, Genie, Castle)

Version Goal Utility
aladdin_any 1
aladdin_both 2

Setting Value
Author Temporal Limit 13
Character Temporal Limit 10
Epistemic Limit 2

Hospital
This problem was first used by a storytelling system called NetworkING, which
focuses on the relationships between characters and how they change as a driving
force for narrative generation.

Julie Porteous, Fred Charles, and Marc Cavazza. NetworkING:
using character relationships for interactive narrative generation. In
Proceedings of the international conference on Autonomous Agents and
Multi-Agent Systems, pages 595–602, 2013

The problem describes a medical drama where hospital staff navigate fraught
relationships as they treat patients. A version of the problem was provided by
Julie Porteous on her website.

https://porteousjulie.bitbucket.io/

16

https://porteousjulie.bitbucket.io/

The version on her website is simpler than the one described in the paper. Actions
like spread-malicious-gossip and show-appreciation-treatment-advice

are missing, with this simpler version focusing on a stressed doctor who can make
a mistake when treating too many patients.

Porteous et al. use an off-the-shelf planner which does not reason about
intention or belief. We have added these concepts based on our understanding
of medical dramas. Because Sabre models belief, we were able to combine the
assess and mistake-asses action into a single action. The doctor can diagnose
a patient with the wrong illness if they are overworked. The effects of our assess
action are that the doctor and patient believe the patient has a certain illness, but
these beliefs can be wrong.

We have also fixed what we suppose to be two bugs. In the original, the
effects of the mistake-assess action were never used in the preconditions of
other actions or in the goal. Also, the preconditions of the die and recover

action were not constrained by the patient’s diagnosis. This meant patients who
got the correct treatment could still die and those who got the wrong treatment
could still recover. This may have been intended, but we modified the problem
so that patients who get the correct treatment always recover and those who get
the wrong treatment always die. In doing this, we removed the die and recover

actions and added a conditional effect to treat.
The original problem was specified as a PDDL domain with 10 associated

problems. We used the first problem in our translation, which has a single doctor
and 3 patients. Because they are not needed in that problem, we removed the move,
get-work-help, and lose-consciousness actions from our version. Each of the
original 10 problems had different goals. In our version, the author gains 1 point
of utility if some patient has been healed and 1 point if some patient has died.

Solution 1: Dr. Hathaway treats a single patient.
(Shortest known plan for author utility 1)
admit(Hathaway, Jones, PatientRoomA)

walk(Jones, Admissions, PatientRoomA)

assess(Hathaway, Jones, SymptomA, PatientRoomA)

treat(Hathaway, Jones, TreatmentA, PatientRoomA)

17

Solution 2: Dr. Hathaway admits too many patients and misdiagnoses Jones.
(Alternative solution for author utility 1)
admit(Hathaway, Jones, PatientRoomA)

admit(Hathaway, Ross, PatientRoomB)

admit(Hathaway, Young, PatientRoomC)

walk(Jones, Admissions, PatientRoomA)

assess(Hathaway, Jones, SymptomB, PatientRoomA)

treat(Hathaway, Jones, TreatmentB, PatientRoomA)

Solution 3: Dr. Hathaway makes one incorrect and one correct diagnosis.
(Shortest known plan for author utility 2)
admit(Hathaway, Jones, PatientRoomA)

admit(Hathaway, Ross, PatientRoomB)

admit(Hathaway, Young, PatientRoomC)

walk(Jones, Admissions, PatientRoomA)

assess(Hathaway, Jones, SymptomB, PatientRoomA)

treat(Hathaway, Jones, TreatmentB, PatientRoomA)

walk(Ross, Admissions, PatientRoomA)

walk(Ross, PatientRoomA, PatientRoomB)

walk(Hathaway, PatientRoomA, PatientRoomB)

assess(Hathaway, Ross, SymptomA, PatientRoomB)

treat(Hathaway, Ross, TreatmentA, PatientRoomB)

Version Goal Utility
hospital_any 1
hospital_both 2

Setting Value
Author Temporal Limit 11
Character Temporal Limit 5
Epistemic Limit 3

Basketball
This problem was introduced by Kartal et al. in an experiment that used Monte
Carlo Tree Search and a model of believable actions for planning-based story
generation.

Bilal Kartal, John Koenig, and Stephen J Guy. User-driven narrative
variation in large story domains using Monte Carlo Tree Search. In
Proceedings of the international conference on Autonomous Agents and
Multiagent Systems, pages 69–76, 2014

18

It describes a crime drama where characters can commit theft and murder while
investigators search for clues and arrest criminals. Characters get angry when
their items are stolen but can let off steam by playing basketball. The version of
the problem we translated was provided by Julie Porteous on her website.

https://porteousjulie.bitbucket.io/

The version on her website differs slightly from the one described in the paper.
The earthquake action is missing, and some additional concepts are present, like
vehicles. This PDDL domain was provided with 10 different problems whose
objects and initial states are similar but whose goals specify a variety of outcomes,
like what crimes should be committed, who should be angry, who should be
arrested, etc. We used a small set of objects: three civilians, one detective,
three locations, and two items. We did not include earthquake, since this was
meant to be an unbelievable action, and we did not include vehicles. Though we
implemented the shareClues action, there is only one inspector, so this action
will never occur.

The original problemwas created for a traditional planner, so it did not include
character goals. We gave each of the citizens different utility functions: Alice starts
angry and wants to be calm. Bob is calm and wants everyone to be calm. Charlie
starts angry and wants Alice to be dead. The author gains 1 point of utility if fewer
than two citizens are angry and 1 point if someone has been arrested.

The original problem also did not model belief, but the knows-clue predicate
and findClues action have obvious belief semantics. The investigator gains 1
point of utility for every location they investigate and every criminal they arrest.

Solution 1: Bob calms Alice by playing basketball with her.
(Shortest known plan for author utility 1)
travel(Bob, HomeB, BasketballCourt)

travel(Alice, Downtown, BasketballCourt)

play_basketball(Bob, Alice, BasketballCourt)

Solution 2: Sherlock arrests Charlie for murder.
(Alternative solution for author utility 1)
kill(Charlie, Alice, Bat, Downtown)

find_clues(Sherlock, Murder, Bat, Downtown)

suspect_of_crime(Sherlock, Charlie, Murder, Bat, Downtown)

arrest(Sherlock, Charlie, Downtown, Murder)

19

https://porteousjulie.bitbucket.io/

Solution 3: Alice is calmed by basketball but arrested for theft.
(Shortest known plan for author utility 2)
travel(Bob, HomeB, BasketballCourt)

travel(Alice, Downtown, BasketballCourt)

travel(Sherlock, Downtown, BasketballCourt)

steal(Alice, Bob, Basketball, BasketballCourt)

play_basketball(Alice, Bob, BasketballCourt)

suspect_of_crime(Sherlock, Alice, Theft, Basketball,

BasketballCourt)

arrest(Sherlock, Alice, BasketballCourt, Theft)

Version Goal Utility
basketball_any 1
basketball_both 2

Setting Value
Author Temporal Limit 7
Character Temporal Limit 5
Epistemic Limit 2

Western
This is the first of three narrative planning problems used by Ware et al. to study
perceptions of conflict in automatically generated stories.

Stephen G. Ware, R. Michael Young, Brent Harrison, and David L.
Roberts. A computational model of narrative conflict at the fabula
level. IEEE Transactions on Computational Intelligence and Artificial
Intelligence in Games, 6(3):271–288, 2014

The problem is detailed in the appendix of Ware’s dissertation.

Stephen G.Ware. A plan-based model of conflict for narrative reasoning
and generation. PhD thesis, North Carolina State University, 2014

It tells the story of rancher Hank in the American old West whose son Timmy is
bitten by a snake. Hank robs the town general store to get some antivenom but is
then arrested by Will, the town sheriff.

This planning domain and its one associated problem were created for Ware’s
and Young’s Glaive narrative planner [20] which was designed to allow conflict.
The story cannot be told unless characters form plans that are thwarted before
they are complete. For example, Hank’s plan to steal the antivenom is thwarted
by the sheriff.

20

Glaive supports intention but not belief. We used a default model of belief
where characters observe the actions that happen at their location, with one
exception. The sheriff needs to observe all instances of the take action or else
he will only be aware of crimes committed at his location. We also fixed a bug in
the initial state of this problem where no sheriff had been specified.

In the original problem, the travel action specified where the traveler was
leaving from and where they were going to. The force-travel action moved
both the traveler and a helpless prisoner. Since moving alone and moving
with a prisoner both required one action, and since the travel actions specified
their origin, it was possible for characters to take meandering routes to their
destinations. For example, once bitten by a snake, Timmy could tie up his father,
move both of them to the jailhouse, and them travel by himself to the general store
to steal the antivenom. This path is minimal in the sense that no actions can be
left out, but it is strange. We have modified the travel and force-travel actions
so they no longer include their origin. We have also changed the force-travel
action to move only the prisoner. This avoids unnecessarily long paths that are a
convenient but strange way to achieve the author’s goal.

Like IPOCL [14], Glaive allows characters to adopt and drop goals. We
translated these concepts into utility functions by using relationships. Every
character has a numeric relationship, including a relationship with themselves.
When someone a character loves is healthy, the relationship has a value of 2. When
someone the character loves is sick, the relationship has a value of 1. Otherwise,
relationships have a value of 0. All characters love themselves. Thus, when
a character is bitten by a snake, their utility goes down, as does the utility of
everyone who loves them. That utility can be restored by healing the sick loved
one, or permanently lost if the loved one dies. The author’s utility is 1 if Timmy
is dead and Hank is tied up in the jailhouse, otherwise the author utility is 0.

Solution 1: Story used in the study by Ware et al. [22].
snakebite(Timmy, Ranch)

travel(Hank, GeneralStore)

tie_up(Hank, Carl, GeneralStore)

take(Hank, Antivenom, Carl, GeneralStore)

travel(Will, GeneralStore)

tie_up(Will, Hank, GeneralStore)

force_travel(Will, Hank, Jailhouse)

die(Timmy, Snakebite, Ranch)

21

Version Goal Utility
western 1

Setting Value
Author Temporal Limit 8
Character Temporal Limit 5
Epistemic Limit 1

Fantasy
This is the second of three narrative planning problems used by Ware et al. to
study perceptions of conflict in automatically generated stories.

Stephen G. Ware, R. Michael Young, Brent Harrison, and David L.
Roberts. A computational model of narrative conflict at the fabula
level. IEEE Transactions on Computational Intelligence and Artificial
Intelligence in Games, 6(3):271–288, 2014

The problem is detailed in the appendix of Ware’s dissertation.

Stephen G.Ware. A plan-based model of conflict for narrative reasoning
and generation. PhD thesis, North Carolina State University, 2014

It tells a Medieval story of princess Talia and two potential suitors: the poor Rory
whom she loves and the rich Vince whom she does not love. There is also a nearby
dragon who has treasure that can be stolen but is on the lookout to increase her
hoard.

This planning domain and its one associated problem were created for Ware’s
and Young’s Glaive narrative planner [20]. Glaive supports intention but not belief.
We used a default model of belief where characters observe the actions that happen
at their location.

The author’s utility is based on Talia’s happiness. She wants to be married
to someone she loves and she wants to be rich—the wealthier the better. Each
character has a different utility function to add some variety to the possible stories.
Talia wants to be happily married and wealthy; she does not care about hunger.
Rory wants to be happily married, fed, and rich. Vince wants to be happily married
and fed; he does not care about money. The dragon wants to be wealthy and fed;
she does not care about marriage.

Solution 1: Talia gets rich.
(Shortest known plan for author utility 1)
travel(Talia, Village, Cave)

pickup(Talia, Treasure, Cave)

22

Solution 2: Talia marries for love.
(Alternative solution for author utility 1)
propose(Rory, Talia, Village)

accept(Talia, Rory, Village)

marry(Rory, Talia, Village)

Solution 3: Talia marries for money.
(Alternative solution for author utility 1)
propose(Vince, Talia, Village)

accept(Talia, Vince, Village)

marry(Vince, Talia, Village)

Solution 4: Talia finds love and wealth.
(Shortest known plan for author utility 2)
propose(Rory, Talia, Village)

accept(Talia, Rory, Village)

marry(Rory, Talia, Village)

travel(Talia, Village, Cave)

pickup(Talia, Treasure, Cave)

Solution 5: Story used in the study by Ware et al. [22].
(Alternative plan for author utility 2)
propose(Rory, Talia, Village)

accept(Talia, Rory, Village)

travel(Rory, Village, Cave)

steal(Rory, Gargax, Treasure, Cave)

travel(Rory, Cave, Village)

marry(Rory, Talia, Village)

Solution 6: Talia has it all.
(Shortest known plan for author utility 3)
propose(Rory, Talia, Village)

accept(Talia, Rory, Village)

marry(Rory, Talia, Village)

get_hungry(Gargax)

travel(Gargax, Cave, Village)

eat(Gargax, Vince, Village)

take(Talia, Money, Vince, Village)

travel(Talia, Village, Cave)

pickup(Talia, Treasure, Cave)

23

Version Goal Utility
fantasy_any 1
fantasy_two 2
fantasy_all 3

Setting Value
Author Temporal Limit 9
Character Temporal Limit 3
Epistemic Limit 2

Space
This is the third of three narrative planning problems used by Ware et al. to study
perceptions of conflict in automatically generated stories.

Stephen G. Ware, R. Michael Young, Brent Harrison, and David L.
Roberts. A computational model of narrative conflict at the fabula
level. IEEE Transactions on Computational Intelligence and Artificial
Intelligence in Games, 6(3):271–288, 2014

The problem is detailed in the appendix of Ware’s dissertation.

Stephen G.Ware. A plan-based model of conflict for narrative reasoning
and generation. PhD thesis, North Carolina State University, 2014

It tells the story of starship captain Zoe who wants to befriend the reptilian
guardian of an alien planet which features a volcano that might erupt at any time.
Zoe does not know that the guardian will get angry if she walks on the planet’s
surface, and conflict may ensue.

This planning domain and its one associated problem were created for Ware’s
and Young’s Glaive narrative planner [20]. Glaive supports intention but not belief.
We used a default model of belief where characters observe the actions that happen
at their location, with one exception. When someone sets foot on a location for
which someone is the guardian, the guardian observes the action and gets angry.
Otherwise, the exemplar stories that involve conflict between Zoe and the lizard
beast are not possible.

We fixed a bug in this problem that prevented characters from traveling
between locations on the planet.

A dead character always has a utility of 0. Otherwise, characters get 1 point
of utility for being healthy and 1 point for being in a safe location. They also
gain 1 point for each friend they have and lose 1 point for each enemy. Zoe can
make an enemy of the lizard beast by visiting the planet, but the two can become
friends via the make_peace action. The author goal in the original problem could
be achieved without taking any character actions, so we have made the author’s
utility a little more complex to encourage a variety of stories. The author gets

24

1 point for making the surface of the planet uninhabitable, 1 point for each dead
character, and 3 points if Zoe is friends with the lizard beast. Note it is not possible
to achieve author utility 6 because Zoe’s friendship toward the lizard beast ends if
Zoe dies.

The original solution to this problem used by Ware et al. in their study is
not a solution in our translated problem because Sabre requires that solutions be
minimal (that is, no actions can be left out without decreasing author utility). The
original story involved an interesting but unnecessary fight between Zoe and the
lizard beast. That plan is still a valid sequence of explained actions in our problem,
but because the fight can be left out, Sabre does not consider it a solution.

Solution 1: The volcano erupts.
(Shortest known plan for author utility 1)
begin_erupt(Surface)

erupt(Surface)

Solution 2: Zoe dies from the volcano.
(Shortest known plan for author utility 2)
teleport_from_ship(Zoe, Ship, Surface)

begin_erupt(Surface)

erupt(Surface)

Solution 3: Zoe and the lizard beast make peace.
(Shortest known plan for author utility 3)
teleport_from_ship(Zoe, Ship, Surface)

walk(Zoe, Surface, Cave)

make_peace(Zoe, Lizard, Cave)

Solution 4: Zoe and the lizard beast make peace, then the volcano erupts.
(Shortest known plan for author utility 4)
teleport_from_ship(Zoe, Ship, Surface)

walk(Zoe, Surface, Cave)

make_peace(Zoe, Lizard, Cave)

begin_erupt(Surface)

erupt(Surface)

25

Solution 5: Zoe and the lizard beast make peace, then the beast dies.
(Shortest known plan for author utility 5)
teleport_from_ship(Zoe, Ship, Surface)

walk(Lizard, Cave, Surface)

make_peace(Zoe, Lizard, Surface)

begin_erupt(Surface)

teleport_to_ship(Zoe, Surface, Ship)

erupt(Surface)

Plan 6: Story used in the study by Ware et al. [22].
teleport_from_ship(Zoe, Ship, Surface)

walk(Lizard, Cave, Surface)

attack(Lizard, Zoe, Surface)

stun(Zoe, Lizard, Surface)

begin_erupt(Surface)

teleport_to_ship(Zoe, Surface, Ship)

break_free(Lizard, Surface)

walk(Lizard, Surface, Cave)

erupt(Surface)

Version Goal Utility
space_any 1
space_two 2
space_three 3
space_four 4
space_all 5

Setting Value
Author Temporal Limit 9
Character Temporal Limit 3
Epistemic Limit 1

Raiders of the Lost Ark
This problemwas used as an example of a story that cannot be toldwithout conflict
in Ware and Young’s paper on the Glaive narrative planner.

StephenG.Ware and R.Michael Young. Glaive: A state-space narrative
planner supporting intentionality and conflict. In Proceedings of the
10th AAAI conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 80–86, 2014

A slightly expanded version of the problem is detailed in the appendix of Ware’s
dissertation.

26

Stephen G.Ware. A plan-based model of conflict for narrative reasoning
and generation. PhD thesis, North Carolina State University, 2014

It describes the plot of the 1981 film by the same name. Indiana Jones is the only
one who knows where to find the Ark of the Covenant. He travels to Tanis to
excavate it, but before he can return home he is intercepted by the Nazis. They
believe the Arkwill grant them power and open it, but instead its angelic guardians
kill the Nazis, leaving Jones free to retake it and return home.

This planning domain and its one associated problem were created for the
Glaive narrative planner [20] which supports intention but not belief. The original
problem used a knows-location predicate to ensure only Jones could dig up the
Ark. We have replaced that with Sabre’s model of belief. Because the Nazis
could not have wrong beliefs about the outcome of opening the Ark, their goal
in the original problem is that the Ark be open. In our version, their goal is to
be immortal, and they have a wrong belief about the danger of opening the Ark,
which is more in line with the film the problem is based on.

The author’s utility is a straightforward translation of the original film’s ending
and the original problem’s goal: 1 point if both the US Army has the Ark and the
Nazis are dead, otherwise 0. Jones and the US Army have the same goal, that the
US Army should have the Ark. The problem cannot be solved without reasoning
about conflict—the ability of characters to form and begin executing plans and
then be thwarted by others. Jones is the only one who can excavate the ark. He
does so hoping to bring it to the Army, but before he can finish his plan the Nazis
steal it.
Solution 1: Seemingly unnecessary travel.
(Shortest known solution)
travel(Jones, USA, Tanis)

dig(Jones, Ark, Tanis)

take(Nazis, Ark, Jones, Tanis)

travel(Nazis, Tanis, USA)

open(Nazis, Ark, USA)

take(USArmy, Ark, Nazis, USA)

The shortest solution deviates from the plot of the original film by having the Nazis
travel to the US before opening the Ark. Their plan is unnecessarily long, but still
valid. At first, it may seem to violate Sabre’s minimality constraint, because they
could omit the travel action and still complete their plan, but they cannot omit the
travel action and still open the Ark in the US. This situation highlights a problem
with putting a location parameter in the signature of each action—open(Nazis,

27

Ark, USA) and open(Nazis, Ark, Tanis) are different actions, though we tend
to think of them as the same.
Solution 2: Plot of the original film.
(Alternative solution)
travel(Jones, USA, Tanis)

dig(Jones, Ark, Tanis)

take(Nazis, Ark, Jones, Tanis)

open(Nazis, Ark, Tanis)

take(Jones, Ark, Nazis, Tanis)

travel(Jones, Tanis, USA)

give(Jones, Ark, USArmy, USA)

Version Goal Utility
raiders 1

Setting Value
Author Temporal Limit 7
Character Temporal Limit 4
Epistemic Limit 1

Treasure Island
This problem was used as a minimal example of a story demonstrating intention,
conflict, wrong beliefs, and communication in the paper that introduced Sabre’s
model of belief.

Alireza Shirvani, Stephen G. Ware, and Rachelyn Farrell. A possible
worlds model of belief for state-space narrative planning. In
Proceedings of the 13th AAAI conference on Artificial Intelligence and
Interactive Digital Entertainment, pages 101–107, 2017

It is a simplified version of Robert Louis Stevenson’s story by the same name. Jim
Hawkins inherits a treasure map detailing the location of buried pirate treasure,
but he has no ship to reach the island. Long John Silver has a ship but does not
know the location of the treasure. First, Hawkins spreads a rumor that the treasure
is buried on Treasure Island. Silver sails them both to the island. Hawkins digs
up the treasure. Both characters hope to end up with the treasure, but Hawkins
succeeds in the end.

The problem was designed before Sabre was implemented, and once tested we
found it had two bugs which demonstrate the complexity of belief reasoning and
whichwe have fixed. In the original, Silver begins the story believing the treasure’s

28

location is unknown: believes(Silver, location(Treasure))=?. This uses
Sabre’s unknown constant ?, which behaves more like null than true uncertainty,
so it might be more accurate to say that Silver believes the treasure is nowhere.
Missing from the original problem, but added in our translation, is the additional
fact that Hawkins believes Silver believes the treasure is nowhere. If this is not
specified, then Sabre will assume Hawkins believes that Silver believes the same
as he—that is, Hawkins will believe Silver knows the location of the treasure. If
Silver already knows the location of the treasure, there is no need for the rumor
action.

The second bug in the original was that Hawkins was the only character who
observed rumor. At first this does not seem like a bug, because the effects of rumor
directlymodify Silver’s beliefs so that he thinks the treasure is buried on the island.
However, if Silver does not also observe the action, Silver will not believe that
Hawkins believes the treasure is on the island. Silver can only expect Hawkins to
sail with him to the island if Silver believes Hawkins believes there is treasure to
be had there. In our translation, Silver also observes rumor.

Utility functions are simple. Characters get 1 point for having the treasure
and otherwise have a utility of 0. The author gets 1 point for Hawkins having the
treasure, otherwise 0.

This problem is small and simple, perhaps trivially so. We added it to this
collection because it demonstrates many of Sabre’s features, including intention,
conflict, belief, and belief updates. It can be a valuable debugging tool. It is also
interesting because it requires an epistemic limit of 3 or higher to solve.

Solution 1: The plot of the original story.
(Shortest known solution)
rumor()

sail()

dig()

take(Hawkins, Treasure)

Version Goal Utility
treasure 1

Setting Value
Author Temporal Limit 4
Character Temporal Limit 4
Epistemic Limit 3

29

Save Gramma
This problem was originally based on a narrative planning domain for the game
The Best Laid Plans [21], a prototype interactive narrative driven by the Glaive
narrative planner [20]. Ware details the full original domain and two associated
problems in his dissertation [16]. Solutions in the original are long due to a large
map of mostly empty locations. For future experiments, Ware et al. distilled the
most interesting parts of this problem into a smaller problem called Save Gramma
which was the basis for a game used to validate that Sabre’s model of character
behavior was believable.

Stephen G. Ware, Edward T. Garcia, Mira Fisher, Alireza Shirvani, and
Rachelyn Farrell. Multi-agent narrative experience management as
story graph pruning. IEEE Transactions on Games, 15(3):378–387, 2022

This version of the problem, originally written for Sabre, is meant to be as small
as possible while still offering a wide variety of possible stories. The player takes
the role of Tom, who is given a coin by his sick grandmother. Tom can walk to the
market to buy some medicine. Tom wins if he can return home with the medicine.
He loses if he dies along the way. The problem also includes a bandit who wants
to steal items and a town guard who wants to punish criminals.

There are several ways to win and lose. Tom can be killed by the bandit during
a robbery. He can buy the medicine and return home. He can use his coin to buy a
sword and resort to robbery to get the medicine, though he then risks being killed
by the guard. Tom can also steal the coin from the bandit’s camp to buy both a
sword and the medicine. Tom can report the bandit’s location to the guard, either
to get the guard’s help or to get the guard to leave his post so Tom can rob the
merchant with no witnesses.

Tom gets 1 point of utility for being homewith the potion; otherwise his utility
is 0. The merchant gets 2 points for every coin she has, as long as she is not a
criminal. The merchant also gets 1 point for being at the market, her preferred
location. The guard gets 2 points of utility when the bandit is dead, as long as the
guard is not a criminal. The guard also gets 2 points of utility if Tom is a criminal,
Tom is dead, and the guard is not a criminal. The guard gets 1 point for being at
the market, his preferred location. The bandit gets 2 points for each coin she has
(her coin can remain in the chest at her camp). The bandit also gets 2 points for
having the medicine. The bandit gets 1 point for being at the camp, her preferred
location.

The author gets 1 point when Tom is dead but 2 points if Tom is home with the
medicine. Thus, the author will accept any story that ends, but prefers for Tom to
win.

30

Solution 1: Tom dies in a robbery.
(Shortest known plan for author utility 1)
walk(Tom, Cottage, Crossroads)

walk(Bandit, Camp, Crossroads)

attack(Bandit, Tom, Crossroads)

Solution 2: Tom buys the medicine.
(Shortest known plan for author utility 2)
walk(Tom, Cottage, Crossroads)

walk(Tom, Crossroads, Market)

buy(Tom, Medicine, TomCoin, Market)

walk(Tom, Market, Crossroads)

walk(Tom, Crossroads, Cottage)

Solution 3: Tom turns to crime and pays the price.
(Alternative solution for author utility 1)
walk(Tom, Cottage, Crossroads)

walk(Tom, Crossroads, Market)

buy(Tom, MerchantSword, TomCoin, Market)

rob(Tom, Medicine, Merchant, Market)

attack(Guard, Tom, Market)

Solution 4: Sometimes crime does pay.
(Alternative solution for author utility 2)
walk(Tom, Cottage, Crossroads)

walk(Tom, Crossroads, Market)

buy(Tom, MerchantSword, TomCoin, Market)

rob(Tom, Medicine, Merchant, Market)

walk(Tom, Market, Crossroads)

walk(Tom, Crossroads, Cottage)

This problem has many other plans made of explained actions which Sabre does
not consider solutions because they are not minimal (that is, some actions could
be removed without lowering the author utility). These plans are still interesting
because this problemwas designed to be interactive, with a player controlling Tom
and the planner constantly rewriting the story in response. Here is one example
of an interesting but non-minimal plan where Tom reports the bandit’s location
to the guard.

31

Plan 5: Tom gets help from the guard.
walk(Tom, Cottage, Crossroads)

walk(Bandit, Camp, Crossroads)

rob(Bandit, TomCoin, Tom, Crossroads)

walk(Tom, Crossroads, Market)

report(Tom, Crossroads, Market)

walk(Guard, Market, Crossroads)

attack(Guard, Bandit, Crossroads)

walk(Tom, Market, Crossroads)

loot(Tom, TomCoin, Bandit, Crossroads)

walk(Tom, Crossroads, Market)

buy(Tom, Medicine, TomCoin, Market)

walk(Tom, Market, Crossroads)

walk(Tom, Crossroads, Cottage)

Though all four exemplar solutions can be found with an epistemic limit of 1,
we recommend setting the epistemic limit to 2 for this problem because some
interesting actions (like report) are only possible when one character anticipates
the actions of another.

Version Goal Utility
gramma_any 1
gramma_win 2

Setting Value
Author Temporal Limit 6
Character Temporal Limit 5
Epistemic Limit 2

Jailbreak
This problem was used in a series of experiments by Farrell, Ware, and Baker to
investigate which events people remember and expect during an interactive story.

Rachelyn Farrell, Stephen G. Ware, and Lewis J. Baker. Manipulating
narrative salience in interactive stories using Indexter’s Pairwise
Event Salience Hypothesis. IEEE Transactions on Games, 12(1):74–85,
2020

The authors later implemented the story in Sabre. It is about two prison inmates,
Ernest and Roy. They steal a pack of cigarettes and become the target of the prison
bully who threatens to kill them. Ernest plans escape by stealing some civilian
clothes to flee down the highway. Roy plans revenge on the bully by stealing a

32

knife to stab him in the gym. In the original experiment, both make preparations
for their plans and meet at the air vents. The vents lead both to the highway (for
escape) and the gym (for revenge). The guards come running, and one inmatemust
give himself up so the other can succeed. The experiment altered the characters,
timing, and locations of events to measure which events players remembered and
which ending they chose.

Both Ernest and Roy gain 2 points of utility for stealing the cigarettes. They
each take a -1 penalty if they have been threatened by the bully. They can avoid
that penalty by escaping or killing the bully. They also gain a -3 penalty for being
dead. The bully gains 1 point for being in the gym, his preferred location. He takes
a -1 penalty if someone he has threatened is alive. He can remove that penalty
by killing the people he has threatened. The author gains 1 point for each dead
inmate. The author also gains 3 points when the cigarettes have been stolen and
the threat to each inmate has been neutralized.
Solution 1: The bully kills an inmate.
(Shortest known plan for author utility 1)
steal(Ernest, Cigarettes, Cells)

confiscate(Ernest, Cigarettes, Cells, Gym)

recreation(Bully, Gym)

kill(Bully, Ernest, Gym)

Solution 2: Ernest escapes.
(Shortest known plan for author utility 3)
steal(Ernest, Cigarettes, Cells)

chores(Ernest, Laundry)

steal(Ernest, Clothes, Laundry)

confiscate(Ernest, Cigarettes, Laundry, Highway)

disguise(Ernest, Clothes, Highway)

escape(Ernest, Highway)

Solution 3: Roy gets revenge.
(Shortest known plan for author utility 6)
steal(Roy, Cigarettes, Cells)

recreation(Bully, Gym)

chores(Roy, Kitchen)

steal(Roy, Knife, Kitchen)

confiscate(Roy, Cigarettes, Kitchen, Gym)

lock_gym(Roy, Gym)

revenge(Roy, Bully, Gym)

33

There were many versions of the story used in Farrell et al.’s experiments that
varied in the order and content, but all of them were a mix of the escape and
revenge plans with only one inmate succeeding at the end. The actions in these
plans are explained but not minimal (that is, actions can be removed without
decreasing the author’s utility), so Sabre does not consider them solutions.

Version Goal Utility
jailbreak_lose 1
jailbreak_escape 3
jailbreak_revenge 6

Setting Value
Author Temporal Limit 7
Character Temporal Limit 6
Epistemic Limit 1

Lovers
This problem was proposed by Farrell and Ware as a randomizable setting for
testing belief and intention recognition using an early version of Sabre.

Rachelyn Farrell and Stephen G. Ware. Narrative planning for belief
and intention recognition. In Proceedings of the 16th AAAI conference
on Artificial Intelligence and Interactive Digital Entertainment, pages
52–58, 2020

The problem is a grid world filled with agents and items. Each character wants one
of the items. A character is happy if they have the item they want. Each character
also loves one other character. A character gets 1 point of utility for being happy
and 1 point if the character they love is happy. The author picks two characters.
If both are happy, the author gets 1 point; otherwise the author utility is 0.

The initial locations of agents and items can be randomized. Whom characters
love and which two the author wants to be happy can be randomized. Characters
can also have random wrong beliefs about where items are or who wants which
items.

Characters can move around, pick up items, trade items with others, and tell
other characters they want an item. Characters can lie about what item they want.

This problem was designed to feature intention, belief, conflict, communica-
tion, and deception but in practice communication is rarely part of an optimal
solution because characters can usually correct their wrong beliefs while moving
around. Many randomized versions of this problem were used in the original
experiments. For our version, we engineered the problem so the shortest solu-
tion requires deception.

34

In the solution, character C1 lies to C2, claiming towant I3 which C2 is holding.
C2 will give I3 to C1 because C2 loves C1. That love is unrequited, because C1
trades it to its lover, C3 so both will have the items they want.

Solution 1: C1 lies to C2 to get the item C3 wants.
(Shortest known solution)
move(C1, R11, R12)

tell(C1, C2, I3, R12)

give(C2, I3, C1, R12)

move(C1, R12, R22)

trade(C1, I3, C3, I1, R22)

Though the solution can be found with an epistemic limit of 1, we recommend
setting the epistemic limit to 2 for this problem because many interesting
behaviors are only possible when one character anticipates the actions of another.

Version Goal Utility
lovers 1

Setting Value
Author Temporal Limit 5
Character Temporal Limit 5
Epistemic Limit 2

Acknowledgments
The original research on the Sabre narrative planner, and on these benchmark tests
for it, was supported in part by the U.S. National Science Foundation. The opinions
and recommendations expressed in this technical report are those of the authors
and do not necessarily reflect the views of the National Science Foundation.
We would also like to thank the authors of all the original problems that we
translated into Sabre syntax for their contributions to the narrative planning
research community.

Grant #2145153 Grant #1911053

35

Bibliography
[1] Marc Cavazza, Fred Charles, and Steven J. Mead. Character-based interactive

storytelling. IEEE Intelligent Systems special issue on AI in Interactive
Entertainment, 17(4):17–24, 2002.

[2] Rachelyn Farrell and Stephen G. Ware. Narrative planning for belief and
intention recognition. In Proceedings of the 16th AAAI conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 52–58, 2020.

[3] Rachelyn Farrell, Stephen G. Ware, and Lewis J. Baker. Manipulating
narrative salience in interactive stories using Indexter’s Pairwise Event
Salience Hypothesis. IEEE Transactions on Games, 12(1):74–85, 2020.

[4] Malik Ghallab, Adele Howe, Craig Knoblock, Drew McDermott, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL: The
Planning Domain Definition Language. Technical report, Yale Center for
Computational Vision and Control, 1998.

[5] Bilal Kartal, John Koenig, and Stephen J Guy. User-driven narrative variation
in large story domains using Monte Carlo Tree Search. In Proceedings of the
international conference on Autonomous Agents andMultiagent Systems, pages
69–76, 2014.

[6] Quinn Kybartas and Rafael Bidarra. A survey on story generation techniques
for authoring computational narratives. IEEE Transactions on Computational
Intelligence and Artificial Intelligence in Games, 9(3):239–253, 2016.

[7] Michael Mateas. An Oz-centric review of interactive drama and believable
agents. InArtificial Intelligence Today: Recent Trends and Developments, pages
297–328. Springer, 2001.

[8] Michael Mateas and Andrew Stern. A Behavior Language: Joint action and
behavioral idioms. In Life-Like Characters: Tools, Affective Functions, and
Applications, pages 135–161. Springer, 2004.

[9] James R. Meehan. Tale-Spin, an interactive program that writes stories. In
Proceedings of the 5th International Joint Conference on Artificial Intelligence,
pages 91–98, 1977.

[10] Julie Porteous, Marc Cavazza, and Fred Charles. Applying planning to
interactive storytelling: Narrative control using state constraints. ACM
Transactions on Intelligent Systems and Technology, 1(2):1–21, 2010.

36

[11] Julie Porteous, Fred Charles, and Marc Cavazza. NetworkING: using
character relationships for interactive narrative generation. In Proceedings of
the international conference on Autonomous Agents and Multi-Agent Systems,
pages 595–602, 2013.

[12] Mark O. Riedl. Narrative planning: Balancing plot and character. PhD thesis,
North Carolina State University, 2004.

[13] MarkO. Riedl and R.Michael Young. Story planning as exploratory creativity:
Techniques for expanding the narrative search space. New Generation
Computing, 24:303–323, 2006.

[14] Mark O. Riedl and R. Michael Young. Narrative planning: Balancing plot and
character. Journal of Artificial Intelligence Research, 39(1):217–268, 2010.

[15] Alireza Shirvani, Stephen G. Ware, and Rachelyn Farrell. A possible
worlds model of belief for state-space narrative planning. In Proceedings
of the 13th AAAI conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 101–107, 2017.

[16] Stephen G. Ware. A plan-based model of conflict for narrative reasoning and
generation. PhD thesis, North Carolina State University, 2014.

[17] Stephen G. Ware and Rachelyn Farrell. A collection of benchmark problems
for the Sabre narrative planner. Technical report, Narrative Intelligence Lab,
University of Kentucky, November 2023.

[18] Stephen G. Ware, Edward T. Garcia, Mira Fisher, Alireza Shirvani, and
Rachelyn Farrell. Multi-agent narrative experience management as story
graph pruning. IEEE Transactions on Games, 15(3):378–387, 2022.

[19] Stephen G. Ware and Cory Siler. Sabre: A narrative planner supporting
intention and deep theory of mind. In Proceedings of the 17th AAAI conference
on Artificial Intelligence and Interactive Digital Entertainment, pages 99–106,
2021.

[20] Stephen G. Ware and R. Michael Young. Glaive: A state-space narrative
planner supporting intentionality and conflict. In Proceedings of the
10th AAAI conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 80–86, 2014.

[21] Stephen G. Ware and R. Michael Young. Intentionality and conflict in The
Best Laid Plans interactive narrative virtual environment. IEEE Transactions

37

on Computational Intelligence and Artificial Intelligence in Games, 8(4):402–
411, 2015.

[22] Stephen G. Ware, R. Michael Young, Brent Harrison, and David L. Roberts.
A computational model of narrative conflict at the fabula level. IEEE
Transactions on Computational Intelligence and Artificial Intelligence in
Games, 6(3):271–288, 2014.

[23] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93, 1999.

[24] R. Michael Young. Notes on the use of plan structures in the creation of
interactive plot. In Proceedings of the AAAI Fall Symposium on Narrative
Intelligence, pages 164–167, 1999.

[25] R. Michael Young, Stephen G. Ware, Bradly A. Cassell, and Justus Robertson.
Plans and planning in narrative generation: A review of plan-based
approaches to the generation of story, discourse and interactivity in
narratives. Sprache und Datenverarbeitung, Special Issue on Formal and
Computational Models of Narrative, 37(1-2):41–64, 2013.

38

	Introduction
	Planners for Narrative vs. Narrative Planners
	About Sabre
	About this Collection

	Methodology
	Spirit Over Structure
	Fixing Bugs
	Goals as Utility
	One Problem, Few Versions
	Belief
	Intention
	Guided by Exemplar Stories
	Recommended Search Settings

	Problems
	Bribery
	Deer Hunter
	Secret Agent
	Aladdin
	Hospital
	Basketball
	Western
	Fantasy
	Space
	Raiders of the Lost Ark
	Treasure Island
	Save Gramma
	Jailbreak
	Lovers

	Acknowledgments
	Bibliography

