Interactive Fiction and Text
Generation

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class
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Learning Objectives

Become acquainted with language models

Compare sequence-to-sequence RNNs to transformers

Consider the strengths and weaknesses of LLMs/transformers
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Class Announcements

| will post a Google Form for Reading Presentations (grad only) sign up

| plan to create an accelerated deadline for the class project

o |[EEE ToG due December 1

SPECIAL ISSUE ON LARGE LANGUAGE MODELS AND GAMES

Large Language Models (LLMs) have recently demonstrated significant potential in Game Al research in terms of playing games with abstract or negotiable rules and winning conditions,
enriching interactive dialogue systems, and assisting in the development of complex game worlds. On the one hand, there is a growing interest within both academia and industry in
leveraging LLMs to autonomously or semi-autonomously generate game elements such as stories, characters, dialogue, quests, and world-building. The use of LLMs to design better game
content has attracted a strong following among academics, industry professionals, and enthusiasts. On the other hand, LLMs have shown promise in controlling both Al agents playing the
game to win, and as NPCs with both conversational and emotive constraints. Finally, LLMs can be used in all aspects of a game, such as acting as a core game mechanic, or even as a tool for
viewership by automating or assisting eSports commentary. While promising, LLMs have been met with criticisms, especially concerning their energy usage and the way that their training data
is often procured.

This special issue aims to motivate further research in these directions and welcomes submissions in all applications of LLMs in games. We invite submissions focused on LLMs with over 100M
parameters, based on Transformer architectures, utilizing text as both input and output. Submissions should include enough detail to allow for replication of results. Ideally, this would include
access to the raw data (or detailed instructions on how to obtain it), a clear description of the methodology (including any preprocessing steps), prompts used, and code used for the analysis.
Authors are encouraged to open-source their code, adhering to open science principles. The above safeguards (model size, prompt and code availability, availability of results, replicability) will
be checked on each submission, and may lead to desk rejection if they are not met.

Topics:
Topics include but are not limited to:

+ LLM methods for generating game content such as narratives, dialogue, character development, quests, and world-building.
« LLM methods for evaluating, validating, and testing existing or generated game content.

« Tools and human-computer interfaces that use LLM techniques for game content design, game development, and game programming.
« Applications of LLM technologies in real-world settings such as the game industry, including post-mortems.

« Models of designer aesthetics, style, goals, and processes based on LLMs.

« Paradigms of human or computational creativity in LLM-assisted or LLM-based game content design.

« User studies of humans interacting with LLMs for game-playing agents or game design tools.

« Opinion papers or theory papers on the use of LLMs in games.

« Analyses of potential risks of applying LLMs to games and possible safeguards to prevent them.

« Game-playing agents powered, in part or in full, by LLMs.

« Applications of LLMs as conversational agents within the game, such as Non-Player-Characters or Game Masters.

https://transactions.games/special-issue/special-issue-on-
large-language-models-and-games
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Old-School
Interactive Fiction

Limited
Action
Space

Full Action
Space

Tabletop Choose-Your-Own
Roleplaying Adventures
Games
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Review: Components of Interactive
-iction Games

The parser, which is the component
that analyzes natural language input in
an interactive fiction work.

The world model, which is setting of
an interactive fiction work.

NICK MONTFORT s
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1
. These commands are very common:

You just started up a game ! : '
and now you're staring at ( ) i EXAMINE it PUSH it
text and a blinking cursor | TAKE ”_f PULL "f
and you don’t know what to do! , DROP it TURN it

’ < 1:  OPEN it FEEL it

Don't pamie kids— | PUT it IN something

Crazy Uncle Zarfis here to help you ! puT it ON something
get started... !

_________________

Fr=——===- P ———

You can try all sorts of commands ' You could also try:
on the ithings:you see. | EAT CLIMB it
ST i DRINK it WAVE it
Try the commands that make sense! 1 o, ;. WEAR it
1
Doors are for opening; buttons are for pushing; 1+ gMELL it TAKE it OFF
pie is for eating. (Mmm, pic.) : LISTEN TO it TURN it ON
1
OO0 ! BREAK it DIGIN it
If you meet a person, these should work:  BURN it ENTER it
TALK TO name | LOOK UNDER it SEARCH it
ASK name ABOUT something ! UNLOCK it WITH something
TELL name ABOUT something ' Or even:
GIVE something TO name R —
: LISTEN JUMP
SHOW something TO name ! SLEEP PRAY
1
Each game has slightly different commands, ' WAKE UP CURSE
' UNDO SING

but they all look pretty much like these.

: Take back one move — handy!

Does the game intro suggest

ABOUT, INFO, HELP?
Try them first!
N (“Go north.”)
NwW NE
B w E
g
2. sw SE Also:
B Up, Down,
E S IN, and OUT
“Whatif I only want to
type one or two letters?”
0000

N/E/S/W/NE/SE/NW/SW: GO
in the indicated compass direction.
L: LOOK
around to see what is nearby.
X: EXAMINE
a thing in more detail.
I: take INVENTORY
of what you possess.
Z: WAIT
a turn without doing anything.
G: do the same thing AGAIN

0000

A service of the
People’s Republic of Interactive Fiction:

l|




Review: Why were parsers so bad?

LJ§ Limited computational resources. Computers had <128 KB of memory

Q Language is difficult. There are many things that make human languages genuinely
challenging for a computer to process.

ss  Keyword-based commands. Only exact matches worked properly. No synonyms, no
“  paraphrases.

Everything was manual. Game developers had to anticipate all possible commands, and
manually code the responses.

He

g No machine learning. This was prior to the advent of machine learning based natural
- language processing
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Review: Components of Interactive
-iction Games
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an interactive fiction work.

NICK MONTFORT
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Review: World Model

It represents the physical environment, and things like

e Settings or locations

e Physical objects in each setting

e The player’s character

e Non-player characters

It also represents and simulates the physical laws of the environment.



Language Models

9/3/2024 NEURAL LANGUAGE MODELS & ATTENTION 11




Making a neural language model




Using a neural language model

I am so excited to have the opportunity to work with you

sorry = 20.11%

excited =1492%

proud = 8.33%

| am so excited
happy = 6.31%
glad = 517%
Probable next words Total: -1.20 logprob on 1tokens
30.00% (54.84% probability covered in top 5 logits)
20.00%
10.00% I I
0.00% i n=
Q QD s
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Quick Poll

1. Select which classes you have taken (can be either at UMBC or another
institution).

a) Introduction to Al/Principles of Al
b) Natural Language Processing

c) Machine Learning

d) Any statistics course

2. Have you used an LLM (e.g., GPT, Llama, Gemini, Mistral) before?

a) Yes, | do research/work with them

b) Yes, | use them frequently (for fun/to help me)
c) VYes, I've played around with them a few times
d) No, | haven’t had the chance

e) No, I don’t know what that is

9/3/2024
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Sequence-to-Sequence RNNSs

Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

Sequence to Sequence Learning
with Neural Networks

Generating Sequences With

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasulgoogle.com vinyals@google.com gvl@google.com Recurrent Neural Networks
Abstract Alex Graves
Deep Neural Networks (DNNs) are powerful models that have achieved excel- Depa:[‘tment Of ComPUter SCIBHCB
lent performance on difficult learning tasks. Although DNNs work well whenever University Of Toronto
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence graves @cs.toronto.edu

learning that makes minimal assumptions on the sequence structure, Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French

translation task from the WMT" 14 dataset, the translations produced by the LSTM Abstract

achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU

score was penalized on out-of-vocabulary words. Additionally, the LSTM did not This paper shows how Long Short-term Memory recurrent neural net-
have difficulty on long sentences. For comparison, a phrase-based SMT system . .

achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM works can be used ta‘ge.nera,te camplex §equenoes _WIth lCll'lg range Stru“}
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its ture, simply by predicting one data point at a time. The approach is
BLEU score increases to 36.5, which is close to the previous best result on this demonstrated for text (where the data are discrete} and online handwrit-
task. The LSTM also learned sensible phrase and sentence representations that . B L
are sensitive to word order and are relatively invariant to the active and the pas- ing (where the data are real-valued). It is then extended to handwriting
sive voice. Finally, we found that reversing the order of the words in all source synthesis by allowing the network to condition its predictions on a text

ANGUAGE MO

sentences (but not target sentences) improved the LSTM’s performance markedly,
because doing so introduced many short term dependencies between the source

and tha tarnmet asmntatrcns miriank nads tha asitrmioetiass vl ases Saadas

sequence. The resulting system is able to generate highly realistic cursive

T R . SR S [ S S (N I (.

v:1409.3215v3 [cs.CL] 14 Dec 2014
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Sequence-to-Sequence / Encoder-Decoder Models

Can be
LSTM Predictions
Encoder T T T T
| Y, Yo Yn-1 Yn
I |9 —
Iy
GRU | | GRU | | GRU | | GRU | @ GRU GRU GRU GRU
\ ,J |x ,J |\ ,J |\ ,J ‘g L J M J
U
N f 1L O O
X1 X2 Xn-1 Xn | |
Historical data Decoder

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurlPS),
Montréal, Canada, 2014, pp. 3104-3112. https://proceedings.neurips.cc/paper files/paper/2014/hash/aldac55a4f27472c5d894eclc3c743d2-Abstract.html
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https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

X1sues XT w P(Y, =1i)
Inputs to the Encoder

The encoder takes as input the embeddings corresponding to each token in the
seguence.

Vocabulary » Embedding matrix
the [ ]

a D = / Encoder \
ny s

| ]
embedding dimension

vocab size

1 432 2019 1234
kitten] ] T T T T T
The hippo ate my homework
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Xlseuos XT w PY, =)
Outputs from the Encoder

The encoder outputs a sequence of vectors. These are called the hidden state of
the encoder.

enc enc
hl hT

L]

L]

() (o) Ceond) (o) (owood)

432 2019 1234

O

The hippo ate my homework
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Xlseuos XT w PY;, =)
lnputs to the

The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

hénc hénc 5’}

HEEE |

sy ||]||

m (Cmoot] (Emtes) [(Embes [Embos) 75 v
432 20109 2 1234 T T
T T T T T Le hippotame

The hippo ate my homework



Xlseuos XT IIEH=HIlI Il!%EHHII PY, =)
Outputs from the

The decoder outputs an embedding yt . The goal is for this embedding to be as
close as possible to the embedding of the true next token.

Decoder /

2421

T t

Le hippotame
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Turning Yt into a Probability Distribution

We can multiply the predicted embedding yt by our vocabulary embedding

matric to get a score for each vocabulary word. These scores are referred to as
logits.

The softmax function then lets us turn the logits into probabilities.

vocab size

embedding
Decoder matrix E
Il] I I y\t Softmax function
. Veli]
‘ P(Y, = i|X1.1,¥1:t-1) = —
2421 ]

Le hippotame
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Loss Function

T
L= —tZ:llOgP(Yt =@|X1:T, Vi:t—1)

The index of the true
tth word in the target
sequence.
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Loss Function

T
L=—)>lo
t=1

The probability the language model
assigns to the true tth word in the
target sequence.
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Loss Function

Score for word at

71 index i~
L = — lOgP(Yt = i*le:T, yl:t—l)
t=1 =:::::::: _-IOQHS {‘
empecars |
[ *]) 2
L eX 1
= — ) log p

t=1 Zj eXp(Ej}t []])

exp(Eyi1)

P(Y, = i|Xy7 Vitq) =

Zj exp(Ey,i1)




Loss Function

T
L = _tzllogp(yt = 1"|X1.7) V1:t-1)

T exp(Ey[i"])

e~
t=1




Also sometimes called decoding = —

Generating Text

To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

Examples:

Argmax

Random Sampling Ky o KT w PY, =i)— sz:rFthlri]l’:g Chscs):irt‘i;o;f:or
Beam search Vi eeos Vet

9/3/2024
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RNNs - Single Layer Decoder

The current hidden state is computed as a function

P(y]8)) P(y3]&,) of the previous hidden state and the embedding of
/\ /\ the current word in the target sequence.
Decoder € e,

h, = RNN(W,y,+ W, h;_; +b,)

The current hidden state is used to predict an
embedding for the next word in the target

sequence.
ﬂ I e, =b,+W, h,
Usually the
zero-vector ; v This predicted embedding is used in the loss
1 function:

E &
probabilities
A = softmax = —
vocab size
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What is the “RNN” unit?

?




STMs/GRUs

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

LSTMs were originally designed to keep
around information for longer in the hidden
state as it gets repeatedly updated.

GRU: Gated Recurrent Unit (Cho et al., 2014) el el
( \a N \ \
yit] imesamp 11 [T ® - P imesiamp =1+ 1
\ T ForgetGate | | @D
ht-1] > 2 2 + > hlt] )

w1 e D i

~ Hidden state input | idden state
f Z[t]l >|( h[t] timesta(:;:::»n1= t-1) L/ )-b time(;ltg?rl\gfg;d-1

> 0 |>» o |)tanh]
) J

Y

Input Data;

. Timestamp = t
g J
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RNN Multi-Layer Decoder
Architecture

Computing the next hidden state:

For the first layer:

h% — RNN(Wihl Yt + Whl hlh%_l + b:}ll)

Decoder

For subsequent layers:
h! = RNN(W,, y, + W, -1 yhi™t + Wy bl + b))
Predicting an embedding for the next token in the sequence:

é\t —_ be + Z%J:l Whlehfl:

Each of the b and W are learned bias and weight matrices.
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RNN Encoder-Decoder
Architectures

How do we implement an encoder-decoder model?

enc ernc
hl hT

L] |

syey Il]II

gm@@mmm @

432 2019 1234 2421
: o fo A !
The hippo ate my homework Le hippotame
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RNN Encoder-Decoder
Architectures

Simplest approach: Use the final hidden state from the encoder to initialize the
first hidden state of the decoder.

P(y>l€;) P(y3|e>)

Decoder € &
hfl!nC heznc
A A
Encoder
RNN RNN
hy ’ h; ' h;
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RNN Encoder-Decoder
Architectures

[The, hippopotamus, ...

=
L
(@]
-+
S
(W
(&}
o+
g
(%]
(S
©
—
|_

L, hippopotame, a, mangé, mes, devoirs]

34
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Attention

Better approach: an attention mechanism

Compute a linear combination of the encoder hidden states.

[The, hippopotamus, ...

I= 0:1I+0:2 ‘oz + ... + ar
C;

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.

=
L
(@]
-+
—
(W
(&}
o+
g
(%]
(S
©
—
|_

—  — —

= fo( )
hdec C;

L, hippopotame, a, mangé, mes, devoirs] t

€

9/3/2024 NEURAL LANGUAGE MODELS & ATTENTION 35




RNN Encoder-Decoder
Architectures |-l el o]

The tth context vector |S Computed as Ct = Hencat Decoder's prediction at position tis based on both the context

vector and the hidden state outputted by the RNN at that position.

at[i] = softmax(att_score(hd¢¢, hi®"c)) I = fo(ee——m—)

There are a few different options for the attention score: H™ = Il]

( dot product
h<tiec ] h:_enc P
att_score(hge¢, h&"¢) = hde¢ Wa héne bilinear function
kWaT1 tanh( Wa2[h$¢¢, h§"°]) mLp
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Attention Decoder

Decoder
Input .
Hidden
L ] L

Attention

Encoder ouputs ~ UEHB B

T T ¥ r ¥

https://pytorch.org/tutorials/intermediate/seg2seq translation tutorial.html
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Limitations of Recurrent
architecture

Slow to train.

o Can’t be easily parallelized.
> The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
o |f two tokens are K positions apart, there are K opportunities for knowledge of the first token
to be erased from the hidden state before a prediction is made at the position of the second

token.

38
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Transformers

Since 2018, the field has rapidly standardized on the Transformer architecture

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit®
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones* Aidan N. Gomez" ' Fukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* ¥
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to

39
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Transformers

Output
Probabilities

t

| Softmax |

t

|  Linear )

The Transformer is a non-recurrent non-convolutional

(feed-forward) neural network designed for language
understanding

e introduces self-attention in addition to encoder-
decoder attention

9/3/2024 NEURAL LANGUAGE MODELS & ATTENTION

g A
| Add & Norm J—~
Feed
Forward
|
e 1 \ | Add & Norm Je=~
> Add & Norm J Multi-Head
Feed Attention
Forward 7 7 ) Nx
‘ ( J~
Add & Norm
Nx I
~—| Add &_ Norm | N asked
Multi-Head Multi-Head
Attention Attention
At At 2
— J ——
Positional Positional
Encodl P 2 i
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

shifted right
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