Interactive Fiction and Text
Generation

Lara J. Martin (she/they)

https://laramartin.net/interactive-fiction-class
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Learning Objectives

Consider when to use various sampling algorithms

Distinguish between finetuning and prompting
Distinguish between few-shot and zero-shot prompting

Examine the ways GPT’s parameters affect sampling
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Review: Transformers

[ Llnear )

-
| Add & Norm ]ﬁ\
Feed
Forward
__
r I N\ [ Add & Norm =~
> Add & Norm Multi-Head
Feed Attention
Forward T 77 Nx
A
[ Add & Norm Je=,
Encoder > Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
At
. — )
Positional 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
shifted right

9/10/2024 OUTPUT




Review: Transformers
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Review: Strengths of the
Transformer Architecture

Training is easily parallelizable
o Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
° Any position can attend to any position.
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Review: Weaknesses of the
Transformer Architecture

We can use a lot of data to train = expensive (money, time)

Can’t actually remember things, just looks back




Review: Generating Text

To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

Also sometimes called decoding =~

Examples:
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Greedy Search (Argmax)
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Random Sampling
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Top-K Sampling
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A. Holtzman, ). Buys, W. Forbes, and Y. Choi, “The Curious Case of Neural Text Degeneration,” in Internotiona! Conference on Leoming Representotions (ICLR), 2020, p. 1&.
https-//openreview.net/forum?id=ryg GOyrFvH
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Top-P Sampling
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Think-Pair-Share

When might you want to use one sampling algorithm over the other?
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Finetuning

Once upon a time
there was an
adventurous dog...

Dogs are a type of
mammal who have lived
with humans for years...

=)

Update weights to
adapt model to your
data

Prompt

Your dataset Pre-trained model (GPT) New model (GPT+Stories)
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Prompting

Once upon a time
there was an
adventurous dog...

Your dataset

Dogs are a type of
mammal who have lived
with humans for years...

l Pre-trained model (GPT)

Prompt
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/ero-shot Prompting

You are a helpful assistant.
You will be tagging the parts
of speech in sentences.

Instructions

—> )  output

Task

Sentence:
The dog ate the giant fish.
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Few-shot Prompting

Instructions Task Example Output
Ve ar.e d helpfu.l assistant. Sentence: The dog ate the giant fish.
You will be tagging the parts The dog ate the giant fish. D N V D Adj N

of speech in sentences.

Instructions

Task
Example Output

”Shot” {

4  Model ) oupu

Task
Example Output

2-shot prompt
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Prompting

"A child playing on a sunny happy beach, their laughter as
they build a simple sandcastle, emulate Nikon D6 high shutter
speed action shot, soft yellow lighting."

Generated with Midjourney.
via https://zapier.com/blog/ai-art-prompts/

Need to be really specific
(also match the training data)
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Dealing with any language model

Likelihoods =2 Not cause & effect

What is probable might not be possible.




Lara’s Language Model Tradeoft

Coherence Originality




There’s even an explicit knob in GPT

Playground Save  Viewcode  Share

Mode

W=

Does it always rain on Tuesdays?

No, it does not always rain on Tuesdays. Model

text-curie-001

Temperature

Mode
Does it always rain on Tuesdays?

(=]

No, Wednesday is the normal precipitation day. However, Tuesday can occasionally experience light rain oreven a thunderstorm.| Model

text-curie-001

Temperature

24



Chain-of-Thought Prompting

Q: The cafeteria had 23 apples. If they used 20 to make lunch
and bought 6 more, how many apples do they have?

Standard Prompting Chain-of-Thought Prompting

bought 6 more apples, so they have 3 + 6 =9. The

answer is 9.

9/10/2024

Part of Figure 1 from J. Wei et al., “Chain of Thought Prompting Elicits Reasoning in Largabwge Models,”
rleans,

A & Online, Jun. 2022. doi: 10.48550/arXiv.2201.11903.

in International Conference on Neural Information Processing Systems (NeurlPS), New O


https://doi.org/10.48550/arXiv.2201.11903

CO R R P U S (Code Representations to Reason & Prompt over for Understanding in Stories)
2 )

Amy’s laptop is in the library. Query

: : GPT-3
Original Story Amy is carrying her laptop. Where is Amy’s |1aptop? mmali?]e 111 Pad
Amy goes to the dorm.

Then, Amy goes to the cafeteria.

& p

CoRRPUS Prompting

Amy.laptop.location = library
Generated Amy.carry = [laptop]
Python | Amy.go(location="“dorm”) Where is Amy’s 1aptop? mmeal %1 AERA
RESSER  Amy.go(location="cafeteria”)

Dong, Y. R., Martin, L. J., & Callison-Burch, C.
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“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.



CoRRPUS Chain-of-Thought Prompting

Three versions that are initialized the same:

Comment Specific Functions Abstract Functions

def story(self): self.Mary_moved_to_the_bathroom() def go(self, character, location):
## Mary moved to the bathroom. self.Mary_got_the_football_there() character.location = location
self.Mary.location = “bathroom” self.John_went_to_the kitchen() for item in character.inventory:
## Mary got the football there. self.Mary_went_back_to_the_garden() item.location = location

self.Mary.inventory.append(“football”) def pick_up(): ...

def Mary_moved_to_the_bathroom()
self.Mary.location="“bathroom” def story(self):
def Mary_got_the_football there(): ## Mary moved to the bathroom.
self.go(character=self.Mary,
location = “bathroom”)

Dong, Y. R., Martin, L. J., & Callison-Burch, C.
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“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.



Tested On 2 Tasks

bAbl (Weston et al. 2015)

o Task 2: Stories tracking objects that characters carry

Re3 (Yang et al. 2022)

o |dentifying inconsistencies in stories (e.g., descriptions of characters’ appearances,
relationships)

o Stories were generated from a list of facts (the premise). They also generated premises with a
contradiction.

Dong, Y. R., Martin, L. J., & Callison-Burch, C.
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“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.



bADI (Weston et al. 2015)
Wethod | sshor | Acouay®

Random - 25%

GPT-3 1 56.5%
Chain of Thought (Creswell et al. 2022) 1 46.4%
Selection-Inference (Creswell et al. 2022) 1 29.3%
Dual-System (Nye et al. 2021) 10 100%
CoRRPUS (comment) 1 67.0%
CoRRPUS (specific) 1 78.7%
CoRRPUS (abstract) 1 99.1%

Dong, Y. R., Martin, L. J., & Callison-Burch, C.
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“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.



Re3

The task is to see what stories match what premises based on the
facts extracted from both.

Joan Westfall premise Joan Westfall in story
o Jvaive [ ciove  |vaue
entails

Gender Female ()  Gender Female
Occupation Teacher . Father Jason Westfall
entails
Brother Brent Westfall () Brother Brent Westfall
contradicts

Appearance Blue eyes )  Appearance Brown eyes
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R63 (Yang et al. 2022)
L N T S

Random 0.5
GPT-3 0.52
Entailment (Yang et al. 2022) 0.528
Entailment with Dense Passage Retrieval (Yang et al. 2022) 0.610
Attribute Dictionary = Sentence (Yang et al. 2022) 0.684
CoRRPUS (comment) 0.751
CoRRPUS (specific) 0.794
— CoRRPUS (abstract) 0.704

——— Probably because functions like set age (self, character, age)complicate more than they help.

Dong, Y. R., Martin, L. J., & Callison-Burch, C.
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“CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding.” Findings of ACL 2023.



Tricks of the Trade

Instruction-tuned models like GPT-3.5 and Mistral-7B-Instruct like to be given a
“role” first (e.g., “You are a helpful writing assistant.”)

The more defined the task, the better
> More details

° One thing to do at a time

LLMs are overly confident (like people on the internet)
> To “objectively” have the model evaluate something, you should have another instance judge

Chain-of-thought prompting helps models come up with better answers

They will “Yes and...” your prompt
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In-Class Activity

Use GPT-40 (or GPT-40 mini) to generate descriptions of the rooms of the game
you made.

Experiment with different types of prompting styles.

https://laramartin.net/interactive-fiction-class/in class activities/openai-
playground/room-descriptions.html
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