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https://homes.cs.washington.edu/~msap/acl2020-commonsense/

Learning Objectives

o Recall how neural networks and symbolic methods can be combined

o Follow examples of integrated and post-hoc knowledge graph integration
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Review: Definition of Common Sense

The basic level of practical knowledge and reasoning
concerning everyday situations and events
that are commonly shared among most people.

It's not OK to keep the

It's OK to keep the closet door :
open refrigerator doqr open because
the food might go bad
Essential for humans to live and Essential for Al to understand
interact with each otherin a human needs and actions
reasonable and safe way better
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Review:
Desirable properties for a commonsense resource

Coverage Useful
Large scale High quality knowledge
Diverse knowledge types Usable in downstream tasks

Multiple resources tackle different
knowledge types
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ATOMIC: knowledge of cause and effec
Humans have theory of mind, allowing us to
- make Iinferences about people’s mental states

- understand likely events that precede and follow
(Moore, 2013)

Al systems struggle with inferential reasoning
.- only find complex correlational patterns in data

- limited to the domain they are trained on
(Pearl; Davis and Marcus 2015; Lake et al. 2017; Marcus 2018)

M. Sap et al., “ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning,” AAAI Conference on Artificial Intelligence (AAAI), vol. 33, no. 1, pp. 3027-3035, 2019,
doi: 10.1609/aaai.v33i01.33013027.
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Review:

Ways of categorizing existing knowledge bases

Represented in symbolic logic
(e.g., LISP-style logic)

Represented in natural language i
(how humans talk and think)

NELL OpenCyc 4.0 ConceptNet 5.5
(Mitchell et al., 2015) (Lenat, 2012) (Speer et al., 2017)

Knowledge of “what”
(taxonomic: A isA B)

10/29/2024

Knowledge of “why” and
“h OW”

(inferential: causes and effects)

ATOMIC
(Sap et al., 2019)
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Review:
Some commonsense cannot be extracted

Text is subject to reporting bias >
(Gordon & Van Durme, 2013) . N
~ -~
Noteworthy gvents S : . o C
- Murdering 4x more & -~
common than exhaling \
Commonsense is not often
written found when extracting commonsense
. Grice's maxim of quantity knowledge on four large corpora using

Knext (Gordon & Van Durme, 2013)

When communicating, people try to be as
informative as they possibly can, and give as
much information as is needed, and no more.

10/29/2024 Neurosymbolic Knowledge Bases



Review:
Why combine [neural and symbolic methods]?

Neural Networks Symbolic Methods
Statistical patterns over data Structured information
Easy to generate new text from Easy for people to understand
Need a lot of data to train (and might (interpretable)
need to be labeled) Hard to make
Hard to control * Need experts or a lot of time

Limited set of information

Examples: sequence-to-sequence
networks, transformers (LLMSs) Examples: knowledge bases, planning
domains/problems, scripts
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Ways of combining them

o During training
> Such as in reinforcement learning or retrieval-augmented generation (RAG)

o After training
° Like a symbolic “wrapper” — helps validate what the NN is doing

o Others??
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Ways of combining them

o During training
> Such as in reinforcement learning or retrieval-augmented generation (RAG)

10/29/2024 NEUROSYMBOLIC KNOWLEDGE BASES 10




Adding neural networks to
knowledge bases




Katrina had the financial means to afford a new car
while Monica did not, since had a high paying job.

WINOGRANDE: An Adversarial Winograd Schema Challenge at Scale.
Keisuke Sakaguchi Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi AAAI 2020.
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Neural Architecture

[CLS] Katrina had the financial means to afford a new car

while Monica did not, since [SEP] Katrina had a high paying job. 0.51

0.49

[CLS] Katrina had the financial means to afford a new car
while Monica did not, since [SEP] Monica had a high paying job.

]
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Masked Language Models

Sentence:

Katrina had the financial means to afford a new car while Monica did not, since
[MASK] had a high paying job.
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Predictions:
11.8% +

8.8% She

6.3% |

6.2% S0

5.2% Monica
< Undo
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https://demo.allennlp.org/masked-lm
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Incorporating External Knowledge into
Neural Models

General Idea

0.57 | 0.43

Model

( spanamaney )< spandtototmoney ) Katrina had the financial means to afford a new
fs 5 while Monica did not, since had a

E=]
=

entails buy something thnt) '

costs a lot of money

cost alot of rnoney)
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Incorporating External Knowledge into
Neural Models

Recipe

oTask

Neural Component

Story ending,
Machine Comprehension

Social common sense
NLI

Pre/post pre-trained
language models

Knowledge Source Combination Method

@ Attention, pruning,

Knowlecige bases, word embeddings,

extracted from text, multi-task learning
hand-crafted rules N

=
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Story Ending Task (RocStories)

Agatha had always wanted pet birds.

So one day she purchased two pet finches.
Soon she couldn’t stand their constant noise.
And even worse was their constant mess.

\ 4

Agatha decided to buy two more. (Wrong)
Agatha decided to return them. (Right)

A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories. Nasrin Mostafazadeh, Nathanael Chambers,

Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli and James Allen. NAACL 2016.
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ConceptNet /P\O/

is used for =/

job make money

A

requires

<spend money>

A

requires

-

something to

is capable of
<cost a lot of money>< @

Conceptnet 5.5: An open multilingual graph of general knowledge. Robyn Speer, Joshua Chin, and Catherine Havasi. AAAI 2017.
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Other Knowledge Sources

WordNet
SentiWordNet
ATOMIC

\

Mining from Text

10/29/2024

=\

Mining script knowledge
from corpora, event
plausibility from corpora

| —

Knowledge Bases

NEUROSYMBOLIC KNOWLEDGE BASES

Knowledge base
embeddings, sentiment

analysis models, COMET

e o

Tools

20



Neural Component

[CLS] Katrina had the financial means to afford a new car
while Monica did not, since [SEP] Katrina had a high paying job.

0.51

0.49

[CLS] Katrina had the financial means to afford a new car
while Monica did not, since [SEP] Monica had a high paying job.

Neural

NEUROSYMBOLIC KNOWLEDGE BASES

10/29/2024



Combination Method

o Incorporate into scoring function

o Symbolic - vector representation
(+attention)

o Multi-task learning

Combined
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Incorporating External Knowledge into Neural Models

— | [CLS] Story: s, ... s, ... [SEP]Ending1l:e,,, ..., ey \ 0.51
- )@
[CLS] Story: s; ... S, ... [SEP] Ending 2:e,,, ..., €, 0.49

Example
g RocStories
= MCScript
o ConceptNet

O,/ .
1o

_/

L1

Incorporating Commonsense Reading Comprehension with Multi-task Learning.

10/29/2024

Sy
\

Multi-task Learning S, = restaurant  E; = food

1. Are they related? 2. What's the relation?

T

Aux Classifier 1 Aux Classifier 2

/\

/\
[ restaurant ][ food } [ restaurant ][ food ]

iangnan Xia, Chen Wu, and Ming Yan. CIKM 2019.
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Limitations of Knowledge Graphs

- |Insufficient Coverage

- Not 100% Accurate

- Limited expressivity

10/29/2024 NEUROSYMBOLIC KNOWLEDGE BASES 24




Limitations of Knowledge Graphs

o Situations rarely found as-is in commonsense knowledge graphs

(X goes to the mall,
Effect on X, buys
clothes)

ATOMIC

(X goes the mall,
Perception of X, rich)

(Sap et al., 2019)

(X gives Y some money,
Reaction of Y, grateful)
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Limitations of Knowledge Graphs

Kai knew that things were
getting out of control and
managed to keep his temper
in check
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Limitations of Knowledge Graphs

o Situations rarely found as-is in commonsense knowledge graphs

o Connecting to knowledge graphs can yield incorrect nodes

Kai knew that things were getting out
of contrgl and managed to keep his X keeps __under control
temper in check

G
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Limitations of Knowledge Graphs

o Situations rarely found as-is in commonsense knowledge graphs

o Connecting to knowledge graphs can yield incorrect nodes
o Suitable nodes are often uncontextualized

—
X keeps X's terw

Kai knew that things were getting out
i \
of control and managed to keep his Xkeeps __under control \“ X wants to show strength

temper in check
N S
X keeps X's ___in check X avoids a fight
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Challenge

oHow do we provide machines with large-scale
commonsense knowledge?
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Constructing Knowledge Graphs

Write commonsense Store facts in

Observe world knowledge facts knowledge graph

(person, CapableOf, buy)

10/29/2024
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Constructing Symbolic Knowledge
Graphs

Write commonsense Store facts in

Observe world knowledge facts knowledge graph

> T -

(person, CapableOf, buy)

-_—
o -
WORDNET, ;

©O©PEN
MIND
(Miller, 1995) (Singh et al., 2002)
@CYC
KB
—
(Lenat, 1995) (Sap et al., 2019)
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Challenges of Prior Approaches

o Commonsense knowledge is immeasurably vast, making it
impossible to manually enumerate
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Constructing Knowledge Graphs
Automatically

Gather Textual  Automatically extract
Corpus knowledge

Store in knowledge graph

John went to the grocery

store to buy some steaks. r

He was going to prepare

dinner for his daughter’s

birthday. She was turning 5

and would be starting
elementary school soon. : (person, CapableOf, buy)

(Schubert, 2002)
(Banko et al., 2007)

O An open, multilingual knowledge graph -
LLLY UL LR

(Speer et al., 2017)
(Tandon et al., 2019)

10/29/2024

NEUROSYMBOLIC KNOWLEDGE BASES 33




Encyclopedic vs. Commonsense

Knowledge
Encyclopedic Knowledge Commonsense Knowledge
Explicitly written in text Often assumed ety

Ontological Mentions

Deviations rarely written
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Encyclopedic vs
Knowledge

. Commonsense

Encyclopedic Knowledge

Commonsense Knowledge

Explicitly written in text
Ontological Mentions

Deviations rarely written

10/29/2024
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Often assumed

rice’s Maxim of Quantity

Complex Mentions

e.g., Causal If-Then Knowledge
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Encyclopedic vs
Knowledge

. Commonsense

Encyclopedic Knowledge

Commonsense Knowledge

Explicitly written in text
Ontological Mentions

Deviations rarely written

10/29/2024

Often assumed

rice’s Maxim of Quantity

Complex Mentions

e.g., Causal If-Then Knowledge

Reporting Bias

murders 4x more common than breating

NEUROSYMBOLIC KNOWLEDGE BASES
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Challenges of Prior Approaches

* Commonsense knowledge is immeasurably vast, making it
impossible to manually enumerate

* Commonsense knowledge is often implicit, and often can’t be
directly extracted from text
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Constructing Knowledge Graphs
Automatically

Gather Textual  Automatically extract
Corpus knowledge

Store in knowledge graph

John went to the grocery

store to buy some steaks. r

He was going to prepare

dinner for his daughter’s

birthday. She was turning 5

and would be starting
elementary school soon. : (person, CapableOf, buy)

(Schubert, 2002)
(Banko et al., 2007)

O An open, multilingual knowledge graph -
LLLY UL LR

(Speer et al., 2017)
(Tandon et al., 2019)

10/29/2024
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Knowledge Base Completion

Gather training set Learn relationships

L Predi lationshi i
of knowledge tuples  among entities redict new relationships  Store in knowledge graph

(person, CapableOf, )7

(person, CapableOf, buy)

(Socher et al., 2013)

(Bordes et al., 2013)
(Riedel et al., 2013)
(Toutanova et al., 2015)
(Yang et al., 2015)
(Trouillon et al., 2016)
(Nguyen et al., 2016)
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Commonsense Knowledge Base
Completion

True / False

|

Only high confidence predictions
) are validated

t t
i J

1 1
[T [T Low Novelty

@ilinear Model

( person,  CapableOf, buy )

head . tail
relation

entity entity

i ., 201
Li et al., 2016 Jastrzebski et al., 2018
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Commonsense Knowledge Base Completion and

Generation!

Knowledge base completion model

scordt,r,t2)

i

r:HP play game

10/29/2024

Knowledge base generation model

Attention-based encoder-decoder model

encoder decoder
know

NEUROSYMBOLIC KNOWLEDGE BASES
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Challenges of Prior Approaches

* Commonsense knowledge is immeasurably vast, making it impossible to
manually enumerate

* Commonsense knowledge is often implicit, and often can’t be directly
extracted from text

* Commonsense knowledge resources are quite sparse, making them difficult to
extend by only learning from examples
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Solution Outline

* Leverage manually curated commonsense knowledge resources

* Learn from the examples to induce new relationships

* Scale up using language resources

=)

Learn word embeddings Retrofit word embeddings Learn knowledge-
from language corpus on semantic resource aware embeddings
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Structure of Knowledge Tuple

relation

: <requires>
person sails

buy a boat

dCross oceans

head entity tail entity

(entity to generate)
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Learning Structure of Knowledge

o Given a seed entity and a relation, L = —YlogP (target words|seed words, relation)

learn to generate the target entity tail entity

buy a boat

I I
a A

Language Model

1 ] 1 1 1

person sails across oceans <requires>
head entity relation
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Learning Structure of Knowledge

o Language Model = Knowledge Model: generates knowledge of the structure
of the examples used for training

tail entity

= TEToTT
Xow o
¥ fosts protact others
L as a result, e
as a result, e —— ¥ feels Crr— = o=
¥ feels weak as a result, comed ) | yenorx o _Xeemenin

o el

x >

X reacts to

's co ent

X feels fore, X
sult, x""’"' ause X n
Is wal to
e D
on X has an X
efends
cton Y as a result,
e a X wants against Y's attac|
P~
e J
races
| X geins a0
enemy
asa s a result.’ has an
¥ falls back T Yv /—a X feels effect on X
A Cdlls 101 Jusuce = 5 patmone / Hrhes e
X needs to <5
X wantes 1 o knaw
protect athars seif-datanse

1 1 1 1 1

person sails across oceans <requires>

nnnnnn

nnnnnnn
X needs.

X is brave

head entlty relatlon (Bosselut et al., 2019)

10/29/2024 NEUROSYMBOLIC KNOWLEDGE BASES



X needs 1o

train hard

X wants to file a
palice report

X is skilled \as a result, =
X needs to T X is X wanted to o vt ko vt X is brave X wants
train hard Ty — protect others e . Hwantstoleave™y o —
self-defense X is strong the scens |
X is strong X wanted to S &) i
bossy save themseives X feels
X feels
wanted t % is angry
e themsaivey
seen as Xis X feels
because X before, X eenias X needs to tired
wanted to needed to SR before, X train hard
police report
X pushes ..\ wanted to  needed to

X reacts to
Y's comment

nts to file a
ce report

~————as a result,

a—  Xwants
rants to leave
the scene

as a result,
X feels

X feels
angry
has an

effect on X

X feels
tired

Generate com
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ny input
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X wanted to
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COMET - ATOMIC

X perceived as
smart

Before, X needed

- to be a teacher
o
Y <
PersonX gives

- — |
a tutorial l

A

~ Others will want
to thank PersonX

gain knowledge

Others then




COMET - ConceptNet

location

classroom

motivated b
you be smart

listen to
tutorial

— starts with
' l— Sit down

‘ oy ) has prerequisite
listen carefully
causes
good grade




Question

Why does this work?




Transfer Learning from Language




Transfer Learning from Language
- N

4 ‘ IS 3
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Transfer Learning from Language
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Transfer Learning from Language

‘ IS 3

] m——— {1t

mango — '

used for

mango m—- —5 3 |S 3

ConceptNet

PR

Same Model Is a
Mango I ' Not Pretrained . » spice

on language




Question

Can’t a off-the-shelf language model do the
same thing?




Unsupervised Commonsense Probing
( Dante, <born_in>, ? )

map relation to one or more
natural language sentences

“Dante was born in [MASK]|.”
> A VY 2 r

Neural LM
LM — —> F'lorence
Memory Access
e.g. ELMo/BERT
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Do Language Models know this?

Sentence: Predictions:
2.1% great
mangois a

1.9% very
1.2% new
1.0% good
1.0% small

< Undo




Do Language Models know this?

Sentence: Predictions:
2.1% great

mango is a 1.9% very

1.2% new
1.0% good
1.0% small
2 < Undo

4.2% good

amangoisa 4.0% very

2.5% great
2.4% delicious
1.8% sweet

< Undo

10/29/2024
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Do Language Models know this?

Sentence: Predictions:
2.1% great

mango is a 1.9% very
1.2% new
1.0% good
1.0% small

< Undo

Sentence: Predictions:
4.2% good

amangoisa 4.0% very
2.5% great
2.4% delicious
1.8% sweet

< Undo

Sentence: Predictions:
4.2% fruit

Amangoisa 3.5% very
2.5% sweet
2.2% good
1.5%

< Undo

delicious
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Do Masked Language Models know this?

Sentence: Mask 1 Predictions:
69.7% .

mango is a [MASK] 9.3% ;
1.7% !
0.8% vegetable
0.7% ?

Sentence: Mask 1 Predictions:
7.6% staple

mango is a [MASK]. 7.6% vegetable
4.6% plant
3.5% tree
3.5% fruit

Sentence: Mask 1 Predictions:
16.0% banana

A mango is a[MASK]. 12.1% fruit
5.9% plant
5.5% vegetable
2.5% candy
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Sensitivity to cues

Candidate Sentence S; log p(.S;)
“musician can playing musical instrument” —5.7
“musician can be play musical instrument” —4.9
“musician often play musical instrument” —9.9
“a musician can play a musical instrument” —2.9
Feldman et al., 2019
Prompt Model Predictions
A ___ has fur. dog, cat, fox, ...
A ____ has fur, is big, and has claws.  cat, bear, lion, ...
A ____ has fur, is big, has claws, has  bear, wolf, cat, ...

teeth, is an animal, eats, is brown,
and lives in woods.

Weir et al., 2020
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Commonsense Transformers

- Language models implicitly represent knowledge

M ) S S S

Block Block m u Fll‘k (Bllm ,BIldH
1311331
@@ . @ w».@

‘Iput‘ ‘Iputl ‘Iput‘ llpu‘t‘ ‘Input‘ ‘Inpul‘ ‘Input‘ ‘hput‘

Pre-trained
Language Model
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Commonsense Transformers

- Language models implicitly represent knowledge
- Re-train them on knowledge graphs to learn structure of knowledge

‘Vcab‘ ‘Vocab‘ ‘Vmb‘ ‘Vcab‘ ‘Vcab‘ ‘Vocab‘ ‘Vocab‘ ‘Vocab‘
P P P by
|%£/| :B_IrEkIIfEEk/\\?L_k/ |%;/k\\alu IBIk\\BI:k\ ::
|w | Blo k) Block (Blk IfBIk\ @Tu) |Blk\ @:Ek ;L”
=T T =
«f
B P i R~ %) I 3
lﬁ/‘ |\¥\ ilk/ ‘&l Bloc k) Block “y."l IBIIk\ '-’-_H
@u_”m_'uﬁ.u_| ”m_u’sﬁt (Block | [ Block | -=w
e T ; - : . i
‘Inpu.t‘ ‘Input‘ ‘Iput‘ ‘Iput‘ ‘Inpm‘ ‘Inpul‘ ‘Input‘ ‘Input‘
Pre-trained Seed Knowledge

Language Model Graph Training
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Commonsense Transformers

- Language models implicitly represent knowledge
- Re-train them on knowledge graphs to learn structure of knowledge
- Resulting knowledge model generalizes structure to other concepts

o] ] ot s o] oct] ot et

(Block) [Block| (Block) (Block)]  [Block) [Block) [Block) [Block |

T o T T T T

I:—k) :IT—I(/‘ @1—9 \El'_k/ @l:ik) Block \\flc;c_kjl @ijw _
I\ FL'\ IFL'\ puZy IKL'\ e s L + —

kBIckI\BIkI BIk BI' \ IBIk\ Block BI \ \Blk,

o] [ [ o o] [ | ] o
Pre-trained Seed Knowledge COM ET
Language Model Graph Training

10/29/2024

NEUROSYMBOLIC KNOWLEDGE BASES 64



Question

What are the implications of this
knowledge representation?




Commonsense Knowledge for any
Situation

o transformer-style architecture — input format is natural language

- event can be fully parsed

e
Kai knew that things were ' ‘
getting out of control and '
managed to keep his temper .
in check '
o
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Commonsense Knowledge for any
Situation

o transformer-style architecture — input format is natural language

- event can be fully parsed

- knowledge generated dynamically from neural knowledge model

Kai wants to avoid trouble
Kai knew that things were

getting out of control and
managed to keep his temper
in check

Kai intends to be calm
Kai stays calm

Kai is viewed as cautious
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But sometimes LMs can’t be trusted

BEREAKING

Lawyer Used ChatGPT In
Court—And Cited Fake
Cases. A Judge Is

Considering Sanctions

Molly Bohannon Forbes Staff

Molly Bohannon has been a Forbes news reporter m
sinee 2023.

10/29/2024
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https://www.forbes.com/sites/mollybohannon/2023/06/08/lawyer-used-chatgpt-in-court-and-cited-fake-cases-a-judge-is-considering-sanctions/

Ways of combining them

O

(@]

o After training
° Like a symbolic “wrapper” — helps validate what the NN is doing
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VerbNet v3.4

o https://verbs.colorado.edu/verbnet/

Full Class View

o Verb classes based on Beth Levin
(1993)

- Data Source: hand-crafted
o Languages: English

o Use: raw data or my code

o Demo: https://uvi.colorado.edu/uvi search

Member Verb Lemmas:

get-13.5.1 .
get-13.5.1-1 Class HlefafChV ATTAIN BODK BUY caLL CATCH CHARTER CHOOSE FIND
Membersl HRre LEASE ORDER PHONE PICK PLUCK PROCURE PULL

RENT RESERVE TAKE WIN

ROLES
Agent [ +animate | +organization ]
Theme

Roles Source [ +concrete |

Beneficiary [ +animate | +organization |
Asset [ -location & -region ]

GATHER

REACH

Frames

NP V NP

NP V NP PPsource
NP V NP PP beneficiary
NP V NPbeneficiary NP

NPV NP PRasset

10/29/2024

NFP.asset V NP

NP V NP PP.source NP.asset

NEUROSYMBOLIC KNOWLEDGE BASES

EXAMPLE:

Carmen bought a dress.

SHOW DEPENDENCY PARSE TREE

SYNTAX:

Agent VERB Theme  Syntax of this frame (NP V NP) with roles

SEMANTICS:

HAS_POSSESSION( e1, ?Source , Theme )

-~ HAS_POSSESSION( e1, Agent, Theme )
TRANSFER( e2, Agent, Theme, ?Source )
CAUSE(e2,e3)

HAS_POSSESSION( e3, Agent, Theme)

-~ HAS_POSSESSION( e3, ?Source, Theme )

Predicates

K. Kipper Schuler, “VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon,” University of Pennsylvania, 2005.
Levin, B. (1993) “English Verb Classes and Alternations: A Preliminary Investigation”, University of Chicago Press, Chicago, IL.



https://verbs.colorado.edu/verbnet/
https://uvi.colorado.edu/nlp_applications
https://uvi.colorado.edu/uvi_search

Using VerbNet

Jen sent the book to Remy from Baltimore.
ROLES Agent Theme Destination Initial_Location

has_location(el\book, Baltimore) /
do(e2, Jen)

Initial_Location : location

cause(e2, e3)

motion(e3, book) Theme : concrete

lhas_location(e3, book, Baltimore)

has_location(e4, book, Remy) - Agent : animate or organization

PREDICATES SELECTIONAL RESTRICTIONS
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https://smartech.gatech.edu/handle/1853/64643

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects
has_location(el, book, Baltimore) =s=mmr=—torTtion
do(e2, Jen)

cause(e2, e3) book : concrete

motion(e3, book) Jen : animate or organization

lhas_location(e3, book, Baltimore)
has location(e4, book, Remy)
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https://smartech.gatech.edu/handle/1853/64643

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects
has_location(el, book, Baltimore) -eefez3err——
Baltimore : location -eatseteZed)—

-FReteR{e3—+—==
lhas_location(e3, book, Baltimore)

book : concrete
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https://smartech.gatech.edu/handle/1853/64643

Pre-Conditions and Effects

Jen sent the book to Remy from Baltimore.

Pre-Conditions Effects
has_location(book, Baltimore) m lhas_location(book, Baltimore)

Baltimore : location has_location(book, Remy)
nook : concrete
Jen : animate or organization
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https://smartech.gatech.edu/handle/1853/64643

Resulting State Representation

Jen sent the book to Remy from Baltimore.

Baltimore : location

book : concrete

Jen : animate or organization
lhas_location(book, Baltimore)
has_location(book, Remy)

10/29/2024 NEUROSYMBOLIC KNOWLEDGE BASES 75



https://smartech.gatech.edu/handle/1853/64643

How does a neural network fit in here?

Jen sent the book to

— Remy from Baltimore.
Event;
Event,
Event
’ has_location(book, Baltimore)
Event Baltimore : location

S nook : concrete
Jen : animate or organization

10/29/2024 NEUROSYMBOLIC KNOWLEDGE BASES
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