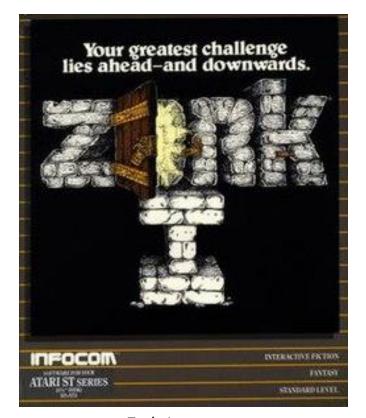
BERALL: Towards Generating Retrieval-augmented State-based Interactive Fiction Games

Rachel Chambers, Naomi Tack, Eliot Pearson, Lara J. Martin, Francis Ferraro (UMBC)

Presented by: Dylan Lang

The Core Problem

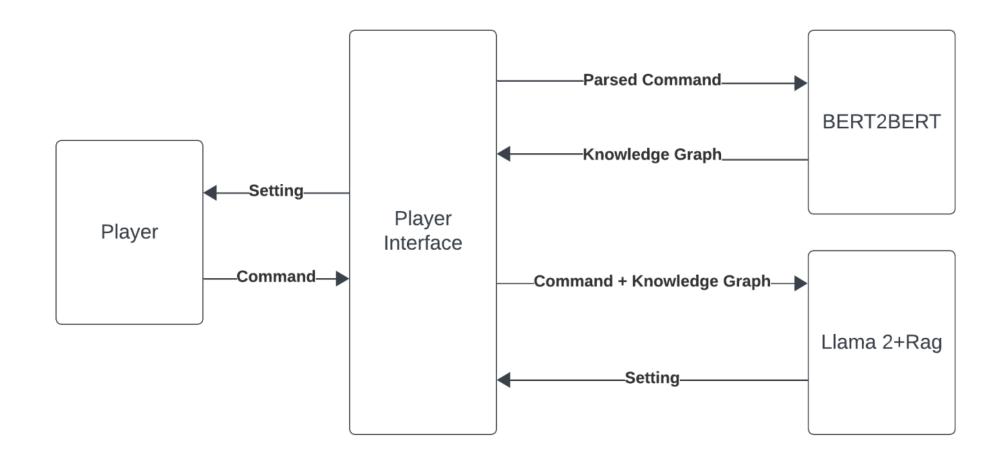
- LLMs Generate Creative Text
- However, Lose Coherence Quickly
- TAGs need consistent state tracking
 - (TAGs: Text Adventure Games)



Zork 1 cover art

• Must Remember: Locations, inventory, world state, etc.

System Architecture

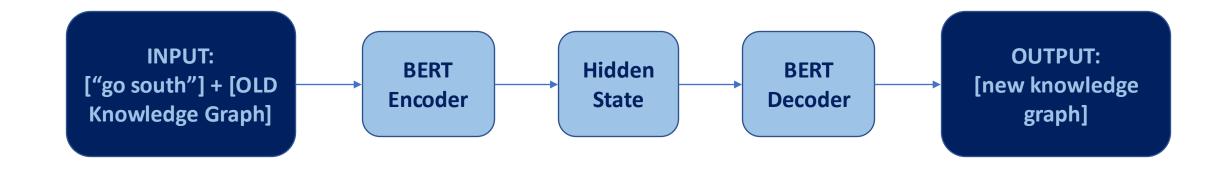


Knowledge Graph: Representing Game State

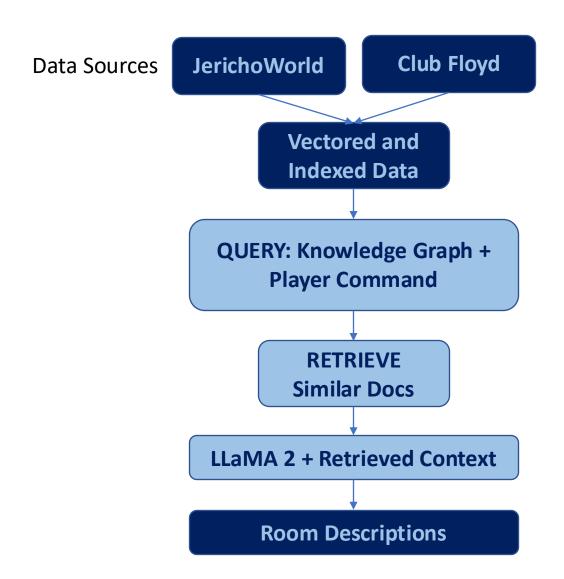
```
['you', 'in', 'Castle']
   Knowledge
                         ['sword', 'in', 'Castle']
 Graph / Game
                        ['Dark Elf', 'in', 'Castle']
      State
                     ['Castle Entrance', 'is', 'south']
                         ['you', 'have', 'shield']
Player Command
                               "Go South"
                         BERT2BERT Processing
                      ['you', 'in', 'Castle Entrance'] <
                                                            Changed
Updated Game
                          ['Castle', 'is', 'north'] 	
                                                            Changed
      State
                         ['you', 'have', 'shield'] 	
                                                             Same
```

BERT2BERT: State Tracker

- Model: Encoder-decoder architecture
- Input: Previous graph + command
- Output: Updated Graph
- Details: Warm-start from BERT, Beam search (width=4)
- Sizes Tested: Tiny (~4.4M), Medium (~41M), Base-Uncased (~110M)



LLaMA 2 + RAG: Description Generator



Results

Model	ROUGE-P	ROGUE-R	ROGUE-F1
BERT-Tiny	6.4	13.1	7.8
BERT-Medium	12.2	18.2	13.7
BERT-Base	10.3	18.2	11.6

^{*} without weight sharing *

Natural, coherent descriptions

Appropriate responses to commands

State doesn't always update correctly

Occasionally generates unwanted options

Strengths

- Neurosymbolic Design
 - Interpretable, Debuggable
- RAG Approach
 - LLM Generated in similar style
- Modular Architecture
 - Components are independent
- Captures TAG style
 - Natural language with similar tone

Weaknesses

- No Puzzle / Special Action / Win Conditions in Generation
 - Core element to TAGs is missing
- Poor State Tracking
 - F1 = 13.7
- Insufficient Evaluation
 - No User Studies or Baselines
- Lacks Causal Understanding
 - Doesn't understand command effects
- Limited Dataset
 - ~500 transcriptions (Club Floyd) may be insufficient

Broader Context, Future Work

- This work concludes:
 - First neurosymbolic approach to TAG generation
 - RAG can provide stylistic grounding
 - State consistency remains unsolved
- Future Directions:
 - Improved prompt engineering
 - Dataset diversity
 - Incorporate planning techniques