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Abstract

-trained langu: models have been shown to store factual knowledge
in their parameters, and ieve state-of-the-art results when fine-tuned on down-
stream NLP tasks. However, their ability to access and precisely manipulate
knowledge is still limited, and hence on knowledge-intensive tasks, their perfor-

ags behind task-specific architectures. Additionally, providing provenance
for their decisions and updating their world knowledge remain open research prob-
lems. Pre-trained models with a differentiable access mechanism to expli
parametric memory can overcome this issue, but have so far been only investi
for extractive downstream tasks. We explore a general-purpose fine-tuning recipe
for retrieval-augmented generation (RAG) — models which combine pre-trained
parametric and non-parametric memory for lar e generation. We introduce

AG models where the parametric memory is a pre-tra eq2

the non-parametric memory is a dense vector index of Wikipedia, accessed with
a pre-trained neural retriever. compare two RAG formulations, one which
conditions on the same retrieved passages across the whole generated sequence,
and another which can use different pas s per token. We fine-tune and evaluate
our models on a wide range of knowledge-intensive NLP tasks and set the state of
the art on three open domain QA tasks, outperforming parametric seq2seq models
and task-specific retrieve-and-extract architectures. For lang neration tasks,
we find that RAG models generate more specific, diverse and factual language than
a state-of-the-art parametric-only seq2seq baseline.

1 Introduction

Pre-trained neural language models have been shown to learn a substantial amount of in-depth knowl-
edge from data [47]. They can do so without any access to an external memory, as a parameterized
implicit knowledge base [S1.52]. While this development is exciting, such models do have down-
sid hey cannot easily expand or revise their memory, can’t straightforwardly provide insight into
their predictions, and may produce “hallucinations” [38]. Hybrid models that combine parametric
memory with non-parametric (i.e., retrieval-based) memories [20} 261 48] can address some of these
issues because knowledge can be directly revised and expanded, and accessed knowledge can be
inspected and interpreted. REALM [20] and ORQA [31]], two recently introduced models that
combine masked language models [8] with a differentiable retriever, have shown promising results,
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When discussing downsides of pre-trained

ﬁ neural language models

They cannot easily expand or revise
their memory, can’t straightforwardly
provide insight into their predictions,
and may produce “hallucinations”

generating plausible yet nonfactual content J
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What is RAG?

Models which combine pre-trained parametric and non-parametric memory for
language generation
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Overview
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Retriever

\

Generator

A dense vector index of Wikipedia, accessed with a pre-trained
neural retriever

Goal: Retrieve k documents most relevant to a user query X

* Each document Z and the query X are encoded separately
into vectors

« d(z) = BERT4(z) —a document encoder
+ q(x) = BERT4(x) —a query encoder

* Find the match score given by the dot product of d and q

A pre-trained seq2seq transformer ‘BART’

Goal: generates the answer, attending to the
encoded representation of both x and z

concatenate input x with the retrieved
content z when generating from BART

‘BART’ was pre-trained using a denoising
objective and a variety of different noising
functions
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Training
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Given a fine-tuning training corpus of input/output, the authors try to minimize the negative

marginal log-likelihood of each target, using stochastic gradient descent with Adam /////



Approaches: Sequence vs Token

Different ways to produce a distribution over generated text
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® Sequence vs Token

RAG-Sequence Model RAG-Token Model

The model uses The model uses

the same document(s) different document(s)

to predict each target token to predict each target token

* more coherence to one source, easier * more flexibility
attribution, often cheaper e but more compute and potentially source-

* not able to combine multiple docs within a switching within a sentence, which can
single answer. complicate citation/attribution

w/ retrieval w/ retrieval w/ r w/r wi/ir w/ r wir wir

AVATATATATAIA' SYATATATATAIA'

The capital city of Ontario is Toronto. The capital city of Ontario is Toronto.
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Experiments

Experiment with RAG in a wide range of knowledge-intensive tasks
Use a single Wikipedia dump for non-parametric knowledge source
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® Experiments

Wikipedia snapshot (Dec 2018), cut into ~21 million chunks of ~100 words each.

Every chunk is embedded (turned into a vector) and stored

For each input, the retriever pulls the top-k passages

Tasks and Metrics

1.

2
3.
4

Open-domain QA = Did the predicted answer exactly match the gold text string?
Abstractive QA= Answer doesn’t exist in Wiki, compare output with reference
Jeopardy Question Generation =the model is given the answer and must write the clue

Fact Verification = Give claim, the model must retrieve evidence to classify whether the
claim is true, false, or unverifiable
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Results

When comparing results for RAG along with state-of-the-art models

"The state of the art" is a phrase that refers to the most advanced, sophisticated, or modern stage
of developmentin a particular field, such as technology, science, or a specific skill at a given time
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® (1)

Open-domain QA = what % of predictions exactly match the gold answer

Table 1: Open-Domain QA Test Scores. For TQA,
left column uses the standard test set for Open
Domain QA, right column uses the TQA-Wiki
test set. See Appendix |D|for further details.

Model NQ TQA WQ

Closed T5-11B [52] 34.5 - /50.1 374
Book  T5-11B+SSM[52] 36.6 - /605 447

Open REALM [20] 404 - / - 40.7
Book DPR [26] 41.5 57. 41.1

RAG-Token  44.1 45.5
RAG-Seq. 44.5 56.8/68.0 45.2

* RAG sets a new state of the art
* RAG enjoys strong results without expensive, specialized training

* RAG can generate correct answers even when the correct answer is not in any retrieved document
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® (2)

SotA

Table 2: Generation and classification Test Scores
MS-MARCO SotA is [4], FEVER-3 is [[68] anc
FEVER-2 is [37] *Uses gold context/evidence
Best model without gold access underlined.

Model Jeopardy MSMARCO FVR3
Label Acc.

B-1 QB-1 R-L B-l

RAG-Tok. 17.3 22.2 40.1 41.5
RAG-5eq. 14.7 214 40.8 44.2

* RAG approaches state-of-the-art model performance

* Beating BART
* Report fewer hallucinations and more factual outputs than BART

49.8* 49.9%
BART .1 197 382 416 64.0

Abstractive QA = Answer doesn’t exist in Wiki, compare output with reference
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Q® i Jeopardy Question Generation =the modelis given the answer and must write
the clue

Table 4: Human assessments for the Jeopardy
Question Generation Task.

Factuality  Specificity

BART better 7.1% 16.8%
RAG better 42.7 % 37.4%
Both good 11.7% 11.8%
Both poor 17.7% 6.9%
No majority 20.8% 20.1%

* Humans prefer RAG for factuality

» Evaluators also find RAG generations to be more specific by a large margin
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. (4) Fact Verification = Give claim, the model must retrieve evidence to classify
whether the claim is true, false, or unverifiable

E}};lﬁﬁ‘é};‘;ﬂfi“ﬂ ;}i;‘é‘ggﬁ"m“[‘fi‘]mf* Table 3: Examples from generation tasks. RAG models generate more specific and factually accurate
15-IV1 4 . OtA 18 |4, =318 |6s)] and T e ) - ) ) T ) e ) ) T
FEVER-2 is [57] *Uses gold context/evidenccfill T€sponses. ‘?° indicates factually incorrect responses, * indicates partially correct responses.
Best model without gold access underlined.
Task Input Model Generation
Model  Jeopardy MSMARCC| FVR3 FVR2 " . . R :
o B.E ;)pgtg}.l R-L  B-11 Label Acc. BART “The middle ear is the part of the ear between the middle ear and the nose.

o e e T e define middle - oy L e c T

SotA - - 498* 4990 768 92.2* _ ear RAC!—'I: "I:hL. lTl!dL“L ear is the portion of the ear 1111_Lr1m| to the eardr um.
— X MS- RAG-S The middle ear includes the tympanic cavity and the three ossicles.
BART 15.1 382 416 640 811 o ’ ’
S MARCO —_ T i an — PR

RAG-Tok. 17.3 40.1 4158 Lo gos what currency BART  The currency needed in Scotland is Pound sterling.

RAG-Seq. 14.7 40.8 4420 7T == needed in RAG-T Pound is the currency needed in Scotland.

scotland RAG-S The currency needed in Scotland is the pound sterling.

BART 'This state has the largest number of counties in the U.S.
Jeopardy Washington  RAG-T It’s the only U.S. state named for a U.S. preside
Question RAG-S 1It’s the state where you’ll find Mount Rainier National Park
Gener
-ation The Divine
Comedy

BART “This epic poem by Dante is divided into 3 parts: the Inferno, the Purgatorio & the Purgatorio
RAG-T Dante’s "Inferno” is the first part of this epic poem
RAG-S This 14th century work is divided into 3 sections: "Inferno”, "Purgatorio” & "Paradiso”

* Humans prefer RAG for factuality

» Evaluators also find RAG generations to be more specific by a large margin
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Applications

What can you do with RAG?
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Examples Applications

* Business knowledge assistant

e Customer support & help
centers

* Legal/contract review
* Product Information retriever
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Strength / Weakness of Paper

Strengths and Weaknesses of the paper
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® Strength / Weakness of Paper

Strengths Weaknesses

* Novelty * Only use one set of pre-trained
models for the component
‘BERT’ and ‘BART’

* Only use one knowledge base

* Well-organized, content is easy
to follow

e Extensive demonstration of
Experiments and Results

* Provide instructions on how to
reproduce experiments
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