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• By researchers from Facebook AI 
Research, University College 
London, and  New York University
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industry (Microsoft, Google, 
Amazon, NVIDIA adopt RAG-style 
systems)
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They cannot easily expand or revise 
their memory, can’t straightforwardly 
provide insight into their predictions, 
and may produce “hallucinations” 

When discussing downsides of pre-trained 
neural language models

generating plausible yet nonfactual content



What is RAG?
Models which combine pre-trained parametric and non-parametric memory for 
language generation



Retrieval
 Augmented 
Generation

Fetching relevant information from 
a stored DB

Enriching by adding extra context to 
response

Producing text (or other content) 
from a model



A pre-trained 
seq2seq 
transformer ‘BART’

A dense vector index of Wikipedia, accessed with a 
pre-trained neural retriever ‘BERT’ using Maximum 
Inner Product Search (MIPS) to find top-K document

User Prompt Output

Overview



A pre-trained seq2seq transformer ‘BART’

Retriever
A dense vector index of Wikipedia, accessed with a pre-trained 

neural retriever

Generator

Goal: Retrieve k documents most relevant to a user query 𝑥

• Each document 𝑧 and the query 𝑥 are encoded separately 
into vectors

• d 𝒛 = BERT𝑑 𝑧 —a document encoder

• 𝐪 𝑥 = BERT𝑞 𝑥 —a query encoder

• Find the match score given by the dot product of d and q

Goal: generates the answer, attending to the 
encoded representation of both 𝒙 and 𝒛

• concatenate input x with the retrieved 
content z when generating from BART

• ‘BART’ was pre-trained using a denoising 
objective and a variety of different noising 
functions



generator (BART)query encoder BERT𝑞

Training

Given a fine-tuning training corpus of input/output, the authors try to minimize the negative 
marginal log-likelihood of each target, using stochastic gradient descent with Adam



Approaches: Sequence vs Token
Different ways to produce a distribution over generated text



Sequence vs Token
RAG-Sequence Model

The model uses 

the same document(s) 

to predict each target token
• more coherence to one source, easier 

attribution, often cheaper

• not able to combine multiple docs within a 
single answer.

RAG-Token Model 

The model uses 

different document(s)

to predict each target token
• more flexibility 

• but more compute and potentially source-
switching within a sentence, which can 
complicate citation/attribution



Experiments
Experiment with RAG in a wide range of knowledge-intensive tasks

Use a single Wikipedia dump for non-parametric knowledge source



Experiments

Wikipedia snapshot (Dec 2018), cut into ~21 million chunks of ~100 words each.

Every chunk is embedded (turned into a vector) and stored

For each input, the retriever pulls the top-k passages

Tasks and Metrics

1. Open-domain QA = Did the predicted answer exactly match the gold text string?

2. Abstractive QA = Answer doesn’t exist in Wiki, compare output with reference 

3. Jeopardy Question Generation = the model is  given the answer and must write the clue

4. Fact Verification = Give claim, the model must retrieve evidence to classify whether the 
claim is true, false, or unverifiable



Results
When comparing results for RAG along with state-of-the-art models

"The state of the art" is a phrase that refers to the most advanced, sophisticated, or modern stage 
of development in a particular field, such as technology, science, or a specific skill at a given time



(1) Open-domain QA = what % of predictions exactly match the gold answer

• RAG sets a new state of the art

• RAG enjoys strong results without expensive, specialized training

• RAG can generate correct answers even when the correct answer is not in any retrieved document



(2) Abstractive QA = Answer doesn’t exist in Wiki, compare output with reference                                  

• RAG approaches state-of-the-art model performance

• Beating BART

• Report fewer hallucinations and more factual outputs than BART



(3) Jeopardy Question Generation = the model is  given the answer and must write 
the clue

• Humans prefer RAG for factuality

• Evaluators also find RAG generations to be more specific by a large margin



(4) Fact Verification = Give claim, the model must retrieve evidence to classify 
whether the claim is true, false, or unverifiable

• Humans prefer RAG for factuality

• Evaluators also find RAG generations to be more specific by a large margin



Applications
What can you do with RAG?



Examples Applications

• Business knowledge assistant

• Customer support & help 
centers

• Legal/contract review

• Product Information retriever



Strength / Weakness of Paper
Strengths and Weaknesses of the paper



Strength / Weakness of Paper

Strengths

• Novelty

• Well-organized, content is easy 
to follow

• Extensive demonstration of 
Experiments and Results

• Provide instructions on how to 
reproduce experiments

Weaknesses

• Only use one set of pre-trained 
models for the component 
‘BERT’ and ‘BART’

• Only use one knowledge base
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