

Controllable Neural Story Plot Generation via Reward Shaping

Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison, Mark O. Riedl

About The Paper

Field	Details			
Title	Controllable Neural Story Plot Generation via Reward Shaping			
Authors	Pradyumna Tambwekar, Murtaza Dhuliawala, Lara J. Martin, Animesh Mehta, Brent Harrison, Mark O. Riedl			
Published in	Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI)			
Place & Date	Macau, China, July 2019			
Pages	5982–5988			

Motivation

- •Neural story generators often lose direction midway.
- •Hard to make them **end with a specific goal** (like "two people marry").
- •Need a way to guide models without losing fluency.

Proposed methodology

- The paper introduces a **reward-shaping technique** to guide the language model toward specific goals.
- This approach ensures controlled and coherent story progression.

Core Idea - Reward Shaping

Train a Seq2Seq model and fine-tune it using policy gradient reinforcement learning. Provide rewards for events that move the story closer to the goal.

Policy Gradient Update:

$$\nabla_{\theta} J(\theta) = R(v_{i+1}) \nabla_{\theta} \log P(e_{i+1}; | e_{i}\theta)$$

where $R(v_{i+1})$ is the reward for the next verb and $P(e_{i+1}; | e_i\theta)$ is the model's predicted probability.

Event Representation

Each sentence is converted into an **event tuple**:

$$e = \langle s, v, o, m \rangle$$

where:

$$s$$
= subject v = verb o = object m = modifier

Example:

"Barbara fought with Alexander." → (Barbara, fought, Alexander)

Reward Function

Dense rewards encourage gradual progress toward the goal.

Distance Reward:

$$r_1(v) = \log \sum_{s \in S_{v,g}} (l_s - d_s(v, g))$$

• Frequency Reward:

$$r_2(v) = \log \frac{k_{v,g}}{N_v}$$

• Final Reward:

$$R(v) = \alpha \times r_1(v) \times r_2(v)$$

Rewards verbs that appear close to and frequently before the goal verb.

Verb Clustering

- Verbs are grouped using Jenks Natural Breaks based on their reward values.
- The model's output verb is limited to the next cluster, ensuring smoother narrative progression.
- Prevents the model from jumping directly to the target event.

Model Setup

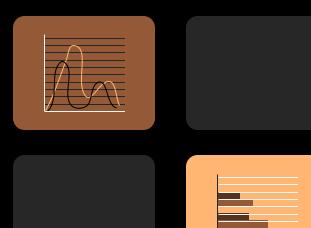
Model	Description	
Seq2Seq	Baseline event2event model	
DRL-Unrestricted	RL without verb clustering	
DRL-Clustered	RL with reward shaping and verb clustering	

Encoder–Decoder LSTM (1024 hidden units)

Batch size: 64 Pretraining: 200 epochs RL fine-tuning: 200 epochs

Dataset

- CMU Movie Summary Corpus (Bamman et al., 2013)
- Clustered into 100 genres using Latent Dirichlet Allocation (LDA).
- Selected one cluster containing soap-opera-like stories.
- Target verbs: admire and marry .
- 90% training data and 10% testing data.
- Focus: Romance-style plots and relationship-driven stories.



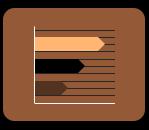
Findings:

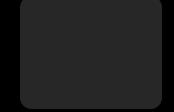
- DRL-clustered achieves >93% goal completion, lowest perplexity and concise story length. proving reward shaping & clustering work.
- ★ Perplexity drops drastically vs. baseline → model better matches corpus distribution.
- ★ Slightly shorter stories → faster goal achievement without skipping coherence.
- * Perplexity Formula:

Perplexity =
$$e^{-\frac{1}{N}\sum_{i}\log P(x_i)}$$

Goal	Model	Goal achievement rate	Average perplexity	Average story length
admire	Test Corpus	20.30%	n/a	7.59
	Seq2Seq	35.52%	48.06	7.11
	Unrestricted	15.82%	5.73	7.32
	Clustered	94.29%	7.61	4.90
marry	Test Corpus	24.64%	n/a	7.37
	Seq2Seq	39.92%	48.06	6.94
	Unrestricted	24.05%	9.78	7.38
	Clustered	93.35%	7.05	5.76

Human Evaluation & Conclusions

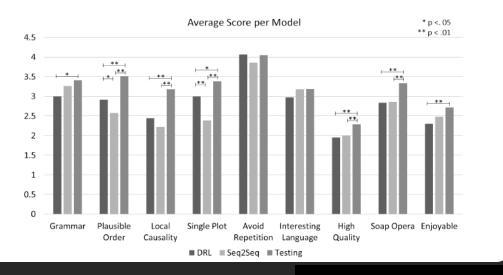




Human Evaluation

- 26 translators converted event sequences into readable sentences.
- 175 participants on Amazon Mechanical Turk rated 9 aspects (1–5 scale): grammar, order, coherence, enjoyment, etc.
- Compared results for Testing Corpus, Seq2Seq and DRL models.
- Analysis used **one-way ANOVA** with **Tukey HSD** post-test.

Table 2: An example eventified story from the DRL-clustered system paired with the translation written by a pair of participants.



Key Findings

DRL model scored highest for:

Plausible Order (p < 0.05)

Single Plot Coherence (p < 0.05)

Overall Quality (p < 0.01)

No degradation in grammar, repetition, or enjoyment.

Testing corpus rated highest for *Soap Opera* style (genre fidelity).

Strengths and Weaknesses

Strengths:

- Strong results
- Good Human Evaluation

Weaknesses:

- Limited Control
- Narrow Testing

Resources

- * Tambwekar, Pradyumna, et al. "Controllable neural story plot generation via reward shaping." arXiv preprint arXiv:1809.10736 (2018).
- * Martin, Lara, et al. "Event representations for automated story generation with deep neural nets." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 32. No. 1. 2018.

THANKS!

DO YOU HAVE ANY QUESTIONS?