ATOMIC: An ATlas Of Machine Commonsense for If-Then Reasoning

KV Yaswanth VQ63094

Introduction

- ATOMIC, a large-scale knowledge graph of commonsense reasoning
- inferential knowledge through typed if-then relations
- Addresses the gap in machine commonsense for AI systems
- Aids in understanding causes, effects, and mental states related to everyday events

High-Level Summary

- 877K instances of inferential knowledge from 300K events
- Nine if-then reasoning types, including intents, reactions, needs, and attributes
- Taxonomy of relationships (If-Event-Then-Mental-State, If-Event-Then-Event, If-Event-Then-Persona)
- Multitask learning approaches for inference generation

Consider an event

Reasoning Types

Nine Inferential Dimensions

Event	Type of relations	Inference examples	Inference dim.	
	If-Event-Then-Mental-State	PersonX wanted to be nice PersonX will feel good PersonY will feel flattered	xIntent xReact oReact	
"PersonX pays PersonY a compliment"	If-Event-Then-Event	PersonX will want to chat with PersonY PersonY will smile PersonY will compliment PersonX back	xWant oEffect oWant	
	If-Event-Then-Persona	PersonX is flattering PersonX is caring	xAttr xAttr	
	If-Event-Then-Mental-State	PersonX wanted to be helpful PersonY will be appreciative PersonY will be grateful	xIntent oReact oReact	
"PersonX makes PersonY's coffee"	If-Event-Then-Event	PersonX needs to put the coffee in the filter PersonX gets thanked PersonX adds cream and sugar	xNeed xEffect xWant	
	If-Event-Then-Persona	PersonX is helpful PersonX is deferential	xAttr xAttr	
	If-Event-Then-Mental-State	PersonX wants to report a crime Others feel worried	xIntent oReact	
"PersonX calls the police"	If-Event-Then-Event	PersonX needs to dial 911 PersonX wants to explain everything to the police PersonX starts to panic Others want to dispatch some officers	xNeed xWant xEffect oWant	
	If-Event-Then-Persona	PersonX is lawful PersonX is responsible	xAttr xAttr	

Free Form Crowdsourced Data

Event

PersonX pays PersonY a compliment

Before

1. Does PersonX typically need to do anything before this event?

After

2. What does PersonX likely want to do next after this event?

3. Does this event affect people other than PersonX?

(e.g., PersonY, people included but not mentioned in the event)

●Yes ●No

a). What do they likely want to do next after this event?

Single vs. Multitask Learning

- 9ENC9DEC
- EVENT2(IN)VOLUNTARY
- EVENT2PERSONX/Y
- EVENT2PRE/POST

BLEU Scores

Dataset	Model	xIntent	xNeed	xAttr	xEffect	xReact	xWant	oEffect	oReact	oWant
Dev	9ENC9DEC NearestNeighbor	8.35 6.14	17.68 11.36	5.18 3.57	10.64 5.81	5.38 4.37	13.24 7.73	6.49 8.02	5.17 6.38	12.08 8.94
	Event2(In)voluntary Event2PersonX/Y Event2Pre/Post	7.51 7.31 7.58	17.80 17.08 17.17	5.18 5.26	10.51 9.78 10.50	4.78 4.83 4.73	12.76 12.14 11.78	7.04 6.38 6.71	4.84 4.84 4.87	12.48 11.45 11.52
Test	9ENC9DEC NearestNeighbor	8.68 6.64	18.15 11.35	5.18 3.37	10.34 5.52	5.43 4.59	14.50 8.17	6.61 7.58	5.08 5.88	12.73 9.18
	Event2(In)voluntary Event2PersonX/Y Event2Pre/Post	7.94 7.67 7.96	18.22 17.33 17.42	5.02 5.09 -	9.78 9.45 9.79	4.78 4.82 4.75	13.67 13.19 12.85	7.16 6.59 6.90	4.71 4.68 4.76	13.23 11.70 11.97

Human Evaluation

Model	xNeed	xIntent	xAttr	xEffect	xReact	xWant	oEffect	oReact	oWant average
9enc9dec	48.74	51.70	52.20	47.52	63.57	51.56	22.92	32.92	35.50 45.32
Event2(In)voluntary Event2PersonX/Y Event2Pre/Post	49.82 54.04 47.94	61.32 53.93 57.77	52.58 52.98 52.20	46.76 48.86 46.78	71.22 66.42 72.22	52.44 54.04 47.94	26.46 24.72 26.26	36.04 33.80 34.48	34.7047.9335.0846.4135.7846.76
gold ATOMIC annotations	81.98	91.37	78.44	83.92	95.18	90.90	84.62	86.13	83.12 86.18

Strengths

- Focuses on inferential knowledge, unlike taxonomic datasets
- Largest dataset of its kind, with validated human annotations.
- Enables AI systems to predict plausible causes, effects, and motivations for unseen events.

Weaknesses

- Crowdsourced data might include biases or noise, despite validation.
- Focuses mainly on single-step inferences and lacks multi-turn reasoning for complex narratives.
- While innovative, there is minimal overlap with datasets like ConceptNet (~7%), raising integration questions.

Story Generation and Interactive Fiction

• Story Generation:

- Use ATOMIC to model characters' motivations, actions, and consequences dynamically.
- Enhance plot consistency through plausible event sequences.

• Interactive Fiction:

- Implement character-driven decision-making (e.g., emotional reactions or needs).
- Enable AI to adapt storylines based on player actions.

• Future Use Cases:

- Dynamic branching narratives where NPCs' actions/reactions feel realistic.
- Building richer character backstories by inferring unstated motivations.

Example Application

• Scenario:

- Player chooses to "save an NPC."
- Using ATOMIC:
 - Predict NPC's gratitude or next steps (e.g., offering a reward).
 - Generate subsequent events influenced by inferred motives (e.g., NPC accompanies the player).

• Interactive Fiction Enhancement:

• Enables more immersive storytelling by modeling plausible cause-effect relationships.

thank you