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Learning Objectives

Discover the basic function of language models

Determine why sequence-to-sequence models emerged from the regular RNN
model

Explore the components of RNNs and seq2seq models

Understand the utility of attention mechanisms
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Old-School
Interactive Fiction

Limited
Action
Space

Full Action
Space

Tabletop Choose-Your-Own
Roleplaying Adventures
Games
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Review: Components of Interactive
-iction Games

TWIS The parser, which is the component
Jimmierel- 1 that analyzes natural language input in
Ea " LHTLE [ D an interactive fiction work.

The world model, which is setting of
an interactive fiction work.

NICK MONTFORT
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Review: Components of Interactive
-iction Games

The parser, which is the component
that analyzes natural language input in
an interactive fiction work.

NICK MONTFORT
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|
 These commands are very common:

You just started up a game ! : '
and now you're staring at ( ) ! EXAMIINE it PUSH .!t
text and a blinking cursor , TAKE it PULL it
and you don’t know what to do! } DROP ft TURN it

’ e 1. 1 OPEN it FEEL it

Don't panic kids— | PUT it IN something

Crazy Uncle Zarfis here to help you ! puT it ON something
get started... !

_________________

P ———— - P ————

You can try all sorts of commands ' You could also try:
on the ithings:you see. | EAT 3 CLIMB it
ST  DRINK it WAVE it
Try the commands that make sense! 1+ ;12 WEAR it
|
Doors are for opening; buttons are for pushing; 1+ gMELL it TAKE it OFF
pie is for eating. (Mmm, pic.) : LISTEN TO it TURN it ON
I
OO0 ! BREAK it DIGIN it
Ifyou meet a person, these should work:  BURN it ENTER it
TALK TO name | LOOK UNDER it SEARCH it
ASK name ABOUT something ! UNLOCK it WITH something
TELL name ABOUT something ' Or even:
GIVE something TO name R —
: LISTEN JUMP
SHOW something TO name ! SLEEP PRAY
1
Each game has slightly different commands, | WAKE UP CURSE
' UNDO SING

but they all look pretty much like these.

: Take back one move — handy!

Does the game intro suggest

ABOUT, INFO, HELP?
Try them first!
N (“Go north.”)

% w E
5
oy SE Also:
[~ Up, Down,
E S IN, and OUT

“What if I only want to

type one or two letters?”

0000

N/E/S/W/NE/SE/NW/SW: GO

in the indicated compass direction.
L: LOOK

around to see what is nearby.
X: EXAMINE

a thing in more detail.
I: take INVENTORY

of what you possess.
Z: WAIT

a turn without doing anything.
G: do the same thing AGAIN

0000

A service of the
People’s Republic of Interactive Fiction:

l|




Review: Why were parsers so bad?

LJd§ Limited computational resources. Computers had <128 KB of memory

@_ Language is difficult. There are many things that make human languages genuinely
challenging for a computer to process.

ss  Keyword-based commands. Only exact matches worked properly. No synonyms, no
“  paraphrases.

Everything was manual. Game developers had to anticipate all possible commands, and
manually code the responses.

He

g No machine learning. This was prior to the advent of machine learning based natural
- language processing
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Review: Components of Interactive
-iction Games

The world model, which is setting of
an interactive fiction work.

NICK MONTFORT

9/2/2025 NEURAL LANGUAGE MODELS & ATTENTION



Review: World Model

It represents the physical environment, and things like

e Settings or locations

e Physical objects in each setting

e The player’s character

e Non-player characters

It also represents and simulates the physical laws of the environment.

9/2/2025 NEURAL LANGUAGE MODELS & ATTENTION 10




Language Models
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What is a l[anguage model?

A model, given a history of words, that outputs likely next words.

Originally, they were statistical n-gram models.

The quick brown fox jumps over the lazy dog.

\_Y_/

unigram

\ )
!

\ bigram ]

|

trigram
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What is a l[anguage model?

A model, given a history of words, that outputs likely next words.

Originally, they were statistical n-gram models.

trigram
\
( \

The quick brown fox jumps over the lazy dog.

\ )
|

trigram

\ )
- Y _
trigram
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What is a l[anguage model?

A model, given a history of words, that outputs likely next words.

P(“apple” | “eat the”) = 0.02
P(“pineapple” | “eat the”) = 0.01

P(“suitcase” | “eat the”) = 0.0001
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What is a neural
language model?




What’s a neural network?

Dataset

input hidden output
layer layers layer




Using a neural language model

I am so excited to have the opportunity to work with you

sorry = 20.11%

excited = 1492%

proud = 8.33%

| am so excited
happy = 6.31%
glad = 517%
Probable next words Total: -1.90 logprob on 1tokens
30.00% (54.84% probability covered in top & logits)
20.00%
10.00% I I
0.00% i n=
Q QD s

Example created with text-davinci-003 on openai.com in Feb. 2023
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Neural Language Model Timeline
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Neural Language Model Timeline

Seq2Seq
RNN (2014)
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Sequence-to-Sequence RNNSs

Up until 2017 or so, neural language models were mostly built using recurrent
neural networks.

Sequence to Sequence Learning
with Neural Networks

Generating Sequences With

Ilya Sutskever Oriol Vinyals Quoc V. Le
Google Google Google
ilyasu@gcogle.com vinyals@google.com gvl@google.com Recurrent Neural Networks
Abstract Alex Graves
Deep Neural Networks (DNNs) are powerful models that have achieved excel- Depa:['tment Of ComPUter SCIBHCB
lent performance on difficult learning tasks. Although DNNs work well whenever University Of Toronto
large labeled training sets are available, they cannot be used to map sequences to
sequences. In this paper, we present a general end-to-end approach to sequence graves @cs.toronto.edu

learning that makes minimal assumptions on the sequence structure. Our method
uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of a fixed dimensionality, and then another deep LSTM to decode the
target sequence from the vector. Our main result is that on an English to French

translation task from the WMT’ 14 dataset, the translations produced by the LSTM Abstract

achieve a BLEU score of 34.8 on the entire test set, where the LSTM’s BLEU

score was penalized on out-of-vocabulary words. Additionally, the LSTM did not This paper shows how Long Short-term Memory recurrent neural net-
have difficulty on long sentences. For comparison, a phrase-based SMT system : _

achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM works can be used ta‘ge.nera,te camplex ?equenoes _WIth lCll'lg range struc‘)-
to rerank the 1000 hypotheses produced by the aforementioned SMT system, its ture, simply by predicting one data point at a time. The approach is
BLEU score increases to 36.5, which is close to the previous best result on this demonstrated for text (where the data are discrete) and online handwrit-
task. The LSTM also learned sensible phrase and sentence representations that . . "
are sensitive to word order and are relatively invariant to the active and the pas- ing (where the data are real-valued). It is then extended to handwriting
sive voice. Finally, we found that reversing the order of the words in all source synthesis by allowing the network to condition its predictions on a text
sentences (but not target sentences) improved the LSTM’s performance markedly, ANGUAGE MO

sequence. The resulting system is able to generate highly realistic cursive

f T R . SR S [P N T L R (.

v:1409.3215v3 [cs.CL] 14 Dec 2014

because doing so introduced many short term dependencies between the source

and tha tarmat samntatrins wmiriank svvada tha andtrmiratiam raveivl et o ad s



A Recurrent Neural Netvt\geork Cell
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell

was the

SR v

s r

;.1 = softmax(Sh;)



A Recurrent Neural Network Cell

was the

f ) s
R

|
==

matrices U, S, W are learned via
U training
was the
[ ] | J
was [ T

Why is an RNN . .
considered This ] ]
“recurrent”? ﬁ

This was
Feed forward
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Types of RNN cells: LSTMs/GRUs

LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

LSTMs were originally designed to keep
around information for longer in the hidden
state as it gets repeatedly updated.

GRU: Gated Recurrent Unit (Cho et al., 2014) kG owtes A
o ans I
yit] imesarprel (=) @ P inempoted
\ T ForgetGate | |
h(t-1] » ~ X ar > h[t] 0
. “1" 0 I?lltlJllta;hIIJOI .
~ Hidden state input | :) X e: s :re
" l Z[t] I . h[t] timesta(gl(‘;)m= t-1) L/ )-’ timeSt;F’J";L‘”
> o | o | ) tan
e J J J Input Data;
[ A Timestamp = t
[ J
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A Multi-Layer Recurrent Neural Network Cell
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Sequence-to-Sequence / Encoder-Decoder Models

Think-pair-share: T

Sequence-to-sequence models

divided up the encoder and T

decoder components of RNNs " ®

and |

added another input to the

decoder. T
T

1

Y
M~
Y

Y
Y
Y
Y
Y

Why do you think this was useful?

|
J
{
|
!

— — — Y —> —

fof 1
A s
. !

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurlPS),
Montréal, Canada, 2014, pp. 3104-3112. https://proceedings.neurips.cc/paper files/paper/2014/hash/aldac55a4f27472c5d894eclc3c743d2-Abstract.html
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e e

Yis oo s Vi—1

Sequence-to-Sequence / Encoder-Decoder Models

good morning <eos>

I I
T
I S I I
IR S [

Lo L]

<S0S> guten morgen <eos> <S0S> good morning

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurlPS),
Montréal, Canada, 2014, pp. 3104-3112. https://proceedings.neurips.cc/paper files/paper/2014/hash/aldac55a4f27472c5d894eclc3c743d2-Abstract.html
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x1,...,xT@P(¥1 =)

Vis oo s Vi1l

lnputs to the Encoder

The encoder takes as input the embeddings corresponding to each token in the
seguence.

Vocabulary * Embedding matrix
the [ ]

a D = / Encoder \
ny

| ]
embedding dimension

0

1 432 2019 2 1234

kitten] ] T T T T T

The hippo ate my homework

vocab size
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Xlseuos XT UI PY, =)
Outputs from the Encoder

The encoder outputs a sequence of vectors. These are called the hidden state of
the encoder.

enc enc
hl hT

L]

L]

() (o) Ceomd) (o) (onood)

432 2019 1234

S

The hippo ate my homework




xl,...,xT@}‘w@—»m—o
lnputs to the

The decoder takes as input the hidden states from the encoder as well as the
embeddings for the tokens seen so far in the target sequence.

henc hé’HC jl\t

HEEE |

syey ||]||

m (Croed) (moed) (emted) [Emed) 75 e
432 2019 2 1234 T T
T T T T T Le hippotame

The hippo ate my homework



x1,...,xT——>P(Yz = f) ‘

Outputs from the

The decoder outputs an embedding yt . The goal is for this embedding to be as
close as possible to the embedding of the true next token.

Ve

Decoder /

2421

T t

Le hippotame
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Turning Yt into a Probability Distribution

We can multiply the predicted embedding yt by our vocabulary embedding

matric to get a score for each vocabulary word. These scores are referred to as
logits.

The softmax function then lets us turn the logits into probabilities.

vocab size

embedding
Decoder / matrix E
Il] I I y\t Softmax function
. Veli]
m P(Yt = llxl:Tt Y1:t—1) = P
2421 ]

Le hippotame
NEURAL LANGUAGE MODELS & AT



Generating Text .

Also sometimes called decoding = —~

To generate text, we need an algorithm that selects tokens given the predicted
probability distributions.

chosen word for
position t+1

sampling
agorithm

Vis oo Vi1

More on this
in the next
lecture!
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Loss Function

T
L= _t2110gP(Yt =@|X1:T: Viit—1)

The index'of the true
tth word in the target
sequence.
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Loss Function

T
L=-)>lo
t=1

The probability the language model
assigns to the true tth word in the
target sequence.
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Loss Function

T index 1™

L = —tzllogP(Yt = 1"|X1.7, V1:6-1) {\
— i || _ lIogits ]
T ex i i
T g SR

=t Xjexp(Ey[j])

exp(Ey,(;))

P(Y, = i|X1.7,¥1:t-1) =

2. exp(Eyypip)




Loss Function

T

L = —tgllogP(Yt = 1" |X1.7,Y1:t-1)

T exp(Ey[i"])

R —




RNN Encoder-Decoder
Architectures

How might we combine the two parts to make an encoder-decoder model?

enc enc
hl hT

L] |

sy Il]II

432 2019 1234 2421
T ,T T T T T !
The hippo ate my homework Le hippotame
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RNN Encoder-Decoder
Architectures

Simplest approach: Use the final hidden state from the encoder to initialize the
first hidden state of the decoder.

P(y>le;) P(y3|ez)

Decoder € &
h?nc hSﬂC
A A
Encoder
RNN RNN
hy i h, ' h;
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RNN Encoder-Decoder
Architectures

[The, hippopotamus, ...

When predicting the next English
word, how much weight should the
model put on each French word in
the source sequence?

=
L
(@]
-+
—
L
()
o+
Y
(%)
(=
©
| .
|_

L, hippopotame, a, mangé, mes, devoirs]

54

9/2/2025 NEURAL LANGUAGE MODELS & ATTENTION




Attention

Better approach: an attention mechanism

[The, hippopotamus Compute a linear combination of the encoder hidden states.

I= a1|+a2 +azll + ... + ar
C;

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.

=
L
(@]
-+
—
L
()
o+
Y
(%)
(=
©
| .
|_

— [
= fg( )
hdec C;
L, hippopotame, a, mangé, mes, devoirs] t
€;

55
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RNN Encoder-Decoder o e ot s
Architectures |||]||

. _ enc : icti ition i
The t™ context vector is computed as ¢t = H*"“at voctor andhe hidden stats outputtod by the RN at that poiton.
at[i] = softmax(att_score(hge¢, hi®c)) I = fo(——)
S

There are a few different options for the attention score: H™ = Il]

( dot product
h<tiec ] h:_enc P
att_score(hge¢, h&"¢) = hde¢ Wa héne bilinear function
kWaT1 tanh( Wa2[h$¢¢, h§"°]) mLp

9/2/2025 NEURAL LANGUAGE MODELS & ATTENTION 56




Attention Decoder

Decoder
Input .
Hidden
L ] ¥

Attention

Encoder ouputs ~ UEHER B

r T ¥ r T

https://pytorch.org/tutorials/intermediate/seg2seq translation tutorial.html
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Limitations of Recurrent
architecture

Slow to train.
o Can’t be easily parallelized because of the recurrence

> The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
o |f two tokens are K positions apart, there are K opportunities for knowledge of the first token
to be erased from the hidden state before a prediction is made at the position of the second

token.

58
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Seq2Seq Output (2017)

R2-D2 carrying some drinks on a tray strapped to his back passes
Yoda who uses his force powers to hog the drinks

Expected:

Obi Wan and Anakin are drinking happily when Chewbacca takes a
Polaroid picture of Anakin and Obi Wan

Predicted:

Can this block gives him the advantage to personally run around
with a large stick of cheese

Summary for Lego Star Wars: Revenge of the Brick. From the original presentation for

Martin, Lara J., Prithviraj Ammanabrolu, William Hancock, Shruti Singh, Brent Harrison, and Mark O. Riedl|.
“Event Representations for Automated Story Generation with Deep Neural Nets.” KDD 2017 Workshop on Machine Learning for Creativity, 2017.




Neural Language Model Timeline

Attention Is All You Need

Neural

Language Seq2Seq Transformers
Model RNN (2014)

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™ Aidan N. Gomez* T Lukasz Kaiser®
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Hlia Polosukhin®
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models o
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
9/2/2025 NEURAL LANGUAGE training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.




Output
Probabilities

t

Transformers i

|  Linear |

( )
. . Add & N
The Transformer is a non-recurrent non-convolutional S
(feed-forward) neural network designed for language Foers
understanding - — | | ez~
ol Mult-Head
* introduces self-attention in addition to encoder- reed uenten N
decoder attention 1 —
Nix | Add &.Norm J
~—| Add &. Norm | Mosked
Multi-Head Multi-Head
Attention Attention
- -
— J \ —)
Positional A Positional
Encoding 4 ¢ Encoding
Input Output
Embedding Embedding
Inputs Outputs
shifted right
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