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Learning Objectives
Discover the basic function of language models

Determine why sequence-to-sequence models emerged from the regular RNN 
model

Explore the components of RNNs and seq2seq models

Understand the utility of attention mechanisms
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Review: Components of Interactive 
Fiction Games

The parser, which is the component 
that analyzes natural language input in 
an interactive fiction work. 

The world model, which is setting of 
an interactive fiction work.
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Review: Why were parsers so bad?

Limited computational resources. Computers had ≤128 KB of memory

Language is difficult. There are many things that make human languages genuinely 

challenging for a computer to process.

Keyword-based commands. Only exact matches worked properly.  No synonyms, no 

paraphrases.

Everything was manual. Game developers had to anticipate all possible commands, and 

manually code the responses.

No machine learning. This was prior to the advent of machine learning based natural 

language processing
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Review: World Model

It represents the physical environment, and things like
• Settings or locations
• Physical objects in each setting
• The player’s character 
• Non-player characters
It also represents and simulates the physical laws of the environment.
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Language Models
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What is a language model?
A model, given a history of words, that outputs likely next words.

Originally, they were statistical n-gram models.

12

The quick brown fox jumps over the lazy dog. 

unigram

bigram

trigram
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What is a language model?
A model, given a history of words, that outputs likely next words.

Originally, they were statistical n-gram models.
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The quick brown fox jumps over the lazy dog. 

trigram
n-gram: any consecutive n # of 
words, treated as a single unit 

trigram

trigram
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What is a language model?
A model, given a history of words, that outputs likely next words.
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P(“apple” | “eat the”) = 0.02 

P(“pineapple” | “eat the”) = 0.01 

P(“suitcase” | “eat the”) = 0.0001 

9/2/2025 NEURAL LANGUAGE MODELS & ATTENTION



What is a neural 
language model?
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What’s a neural network? 
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Using a neural language model

I am so

0.00%

10.00%

20.00%

30.00%

Probable next words

excited

Example created with text-davinci-003 on openai.com in Feb. 2023
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Neural Language Model Timeline

Seq2Seq 
RNN (2014)

Transformers 
(2017)

GPT-2 (2019) GPT-3 (2020)
ChatGPT 
(2022)
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Neural Language Model Timeline

Seq2Seq 
RNN (2014)

Transformers 
(2017)

GPT-2 (2019) GPT-3 (2020)
ChatGPT 
(2022)

Neural 
Language 

Model
(2000)
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Sequence-to-Sequence RNNs
Up until 2017 or so, neural language models were mostly built using recurrent 
neural networks.
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
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A Recurrent Neural Network Cell
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LSTM: Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

 

GRU: Gated Recurrent Unit (Cho et al., 2014)

Types of RNN cells: LSTMs/GRUs
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https://en.wikipedia.org/wiki/Gated_recurrent_unit#/media/File:Gated_Recurrent_Unit,_base_type.svg

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2

LSTMs were originally designed to keep 
around information for longer in the hidden 
state as it gets repeatedly updated.
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A Multi-Layer Recurrent Neural Network Cell

W W

U U

S S

h(2)
i-1 h (2) 

i

W W

… …

h(L)
i-1 h (L) 

i

W W



Sequence-to-Sequence / Encoder-Decoder Models
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I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Think-pair-share:
Sequence-to-sequence models 
divided up the encoder and 
decoder components of RNNs
and
added another input to the 
decoder.
Why do you think this was useful?

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Sequence-to-Sequence / Encoder-Decoder Models
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I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

https://colab.research.google.com/github/bentrevett/pytorch-seq2seq/blob/main/1%20-
%20Sequence%20to%20Sequence%20Learning%20with%20Neural%20Networks.ipynb#scrollTo=k6sRrL4wKsmi

https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Inputs to the Encoder
The encoder takes as input the embeddings corresponding to each token in the 
sequence.
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Outputs from the Encoder
The encoder outputs a sequence of vectors. These are called the hidden state of 
the encoder.
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Inputs to the Decoder
The decoder takes as input the hidden states from the encoder as well as the 
embeddings for the tokens seen so far in the target sequence.

NEURAL LANGUAGE MODELS & ATTENTION 40

ෝ𝒚𝒕
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Outputs from the Decoder
The decoder outputs an embedding ෞ𝒚𝒕 . The goal is for this embedding to be as 
close as possible to the embedding of the true next token.
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ෝ𝒚𝒕



Turning ෞ𝒚𝒕 into a Probability Distribution 
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding 
matric to get a score for each vocabulary word. These scores are referred to as 
logits.

The softmax function then lets us turn the logits into probabilities.
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Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.
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Also sometimes called decoding

More on this 
in the next 

lecture!



Loss Function
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Loss Function

NEURAL LANGUAGE MODELS & ATTENTION 459/2/2025



Loss Function
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𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Loss Function
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RNN Encoder-Decoder 
Architectures

How might we combine the two parts to make an encoder-decoder model?
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RNN Encoder-Decoder 
Architectures
Simplest approach: Use the final hidden state from the encoder to initialize the 
first hidden state of the decoder.
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RNN Encoder-Decoder 
Architectures
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When predicting the next English 
word, how much weight should the 
model put on each French word in 
the source sequence?
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[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]



Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]
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RNN Encoder-Decoder 
Architectures
The tth context vector is computed as 𝐜𝑡 = 𝐇enc𝑎𝑡

𝑎𝑡[i] = softmax(att_score(𝐡𝑡
dec, 𝐡𝑖enc))

There are a few different options for the attention score: 

att_score(𝐡𝑡
dec, 𝐡𝑖

enc) = 

𝐡𝑡
dec ∙ 𝐡𝒊

enc

𝐡𝑡
dec 𝐖𝑎 𝐡𝒊

enc

𝑤𝑎1
⟙ tanh( 𝐖𝑎𝟐[𝐡𝑡

dec,  𝐡𝒊
enc ])
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dot product

bilinear function

MLP
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Attention Decoder
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Limitations of Recurrent 
architecture
Slow to train.
◦ Can’t be easily parallelized because of the recurrence

◦ The computation at position t is dependent on first doing the computation at position t-1.

Difficult to access information from many steps back.
◦ If two tokens are K positions apart, there are K opportunities for knowledge of the first token 

to be erased from the hidden state before a prediction is made at the position of the second 
token.
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Seq2Seq Output (2017)
R2-D2 carrying some drinks on a tray strapped to his back passes 
Yoda who uses his force powers to hog the drinks

Expected:

Obi Wan and Anakin are drinking happily when Chewbacca takes a 
Polaroid picture of Anakin and Obi Wan

Predicted:

Can this block gives him the advantage to personally run around 
with a large stick of cheese
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Summary for Lego Star Wars: Revenge of the Brick. From the original presentation for 
Martin, Lara J., Prithviraj Ammanabrolu, William Hancock, Shruti Singh, Brent Harrison, and Mark O. Riedl. 
“Event Representations for Automated Story Generation with Deep Neural Nets.” KDD 2017 Workshop on Machine Learning for Creativity, 2017.



Neural Language Model Timeline
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Transformers 
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Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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