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Learning Objectives
Intuit what query, key, and value components are in the transformer algorithm

Distinguish encoder-decoder attention from self-attention

Investigate what information self-attention might capture

Compare sequence-to-sequence RNNs to transformers
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What is a language model?
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Review:
Sequence-to-Sequence / Encoder-Decoder Models
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https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS), 
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be 
LSTM

What are the inputs 
& outputs?

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html


Review: 
Turning ෞ𝒚𝒕 into a Probability Distribution 
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding 
matric to get a score for each vocabulary word. These scores are referred to as 
logits.

The softmax function then lets us turn the logits into probabilities.
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Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖 )

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖 )

ෝ𝒚𝒕 
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Review: Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ ,           hippopotame,          a,     mangé,          mes,         devoirs]
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Review: Attention Decoder
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html


Review: What are some of the 
limitations of RNNs?
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Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture
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Neural Language Model Timeline

Seq2Seq RNN 
(2014)

Transformers 
(2017)

GPT-2 (2019) GPT-3 (2020)
ChatGPT 

(InstructGPT)  
(2022)

GPT-4 (2023)

+attention
-recurrence

data++
parameters++

data++
parameters++

+RL

13

+???
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Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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Transformers
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Encoder
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Transformers
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Decoder
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Transformers
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Attention Mechanism
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Multi-Head
Attention
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Multi-Head Attention
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Self-attention between a sequence of 
hidden states and that same sequence 
of hidden states.

Multi-Head
Attention
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Multi-Head Attention
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Encoder-decoder attention, like what has been 
standard in recurrent seq2seq models.Multi-Head

Attention
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Attention Mechanism
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Multi-Head
Attention

Scaled Dot-Product Attention
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Scaled Dot-Product
Attention

The scaled dot-product attention mechanism is 
almost identical to the one we looked at, but let’s 
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Scaled Dot-Product 
Attention
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An analogy…

Query

Key

Value



3Blue1Brown Explanation of Q,K,V
(~6 minutes)
https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366

6:06 - 9:28 = 3:22

And then skip ahead to values

https://youtu.be/eMlx5fFNoYc?t=790&si=uNLE2TOpFtxkdDEj

13:10 – 15:43
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https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366
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Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take 
the linear sum of the vectors in V (value 
matrix)

• The amount to weigh each vector in V is 
dependent on how “similar” that vector is 
to the query vector

• “Similarity” is measured in terms of the 
dot product between the vectors
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Scaled Dot-Product 
Attention
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Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the 
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final 
output. Queries come from the previous 
decoder layer’s outputs.
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Scaled Dot-Product 
Attention
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Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕
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Multi-Head
Attention

MultiHeadAtt(Q,K,V) = 
      Concat head1, … headℎ WO

9/4/2025

Instead of operating on Q, K, and V mechanism 
projects each input into a smaller dimension. This is 
done h times.
 
The attention operation is performed on each of 
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly 
attend to information from different representation 
subspaces at different positions.



Knowledge Check
Run first three cells of the Visualizing Attention with BertViz notebook

For the cell visualizing the “cat sentence”, look at the different layers of 
attention. (You can change the layer using the drop-down menu next to 
“Layer”).

1. Are there any patterns that you see between the layers? (e.g., What words 
are connected to what other words for each layer?)

2. Come up with a guess for what type of information each layer could be 
capturing.

3. Change the sentence on the inputs = tokenizer.encode() line and 
run the cell again. Does this break what you thought for question #2? Explain.
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Multi-Head Attention
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Two different self-attention heads:Multi-Head
Attention
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Inputs to the Encoder
The input into the encoder looks like:
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= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:
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How does the transformer compare 
to the seq2seq RNN?
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Think-Pair-Share
Why do you think we don’t need recurrence anymore (i.e., why is “attention all 
you need”)? 
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If you want more details, check 
out the following slides
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The Encoder
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Multi-Head

Attention
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention
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The Encoder
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Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm
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The Encoder
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Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm
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The Decoder
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= token embeddings + position embeddings

+
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The Decoder
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Masked Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm
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The Decoder
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Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(                   +                    )Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(                    +                       )
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)
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