
Transformers
Lara J. Martin (she/they)

https://laramartin.net/interactive -fiction-class

9/4/2025 TRANSFORMERS 1

Slides modified from Dr. Daphne Ippolito

https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class
https://laramartin.net/interactive-fiction-class

Learning Objectives
Intuit what query, key, and value components are in the transformer algorithm

Distinguish encoder-decoder attention from self-attention

Investigate what information self-attention might capture

Compare sequence-to-sequence RNNs to transformers

9/4/2025 TRANSFORMERS 2

What is a language model?

39/4/2025 TRANSFORMERS

Review:
Sequence-to-Sequence / Encoder-Decoder Models

9/4/2025 TRANSFORMERS 5

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural Networks,” in Conference on Advances in Neural Information Processing Systems (NeurIPS),
Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Can be
LSTM

What are the inputs
& outputs?

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Review:
Turning ෞ𝒚𝒕 into a Probability Distribution
We can multiply the predicted embedding ෞ𝒚𝒕 by our vocabulary embedding
matric to get a score for each vocabulary word. These scores are referred to as
logits.

The softmax function then lets us turn the logits into probabilities.

TRANSFORMERS 8

Softmax function

𝑃 𝑌𝑡 = 𝑖 𝐱1:𝑇 , 𝐲1:𝑡−1 =
exp(𝐄 ෝ𝒚𝑡 𝑖)

σ𝑗 exp(𝐄 ෝ𝒚𝑡 𝑖)

ෝ𝒚𝒕

9/4/2025

Review: Attention
Better approach: an attention mechanism

[The, hippopotamus, …

[L’ , hippopotame, a, mangé, mes, devoirs]

TRANSFORMERS 9

T
ra

n
sl

a
te

 F
r

to
 E

n

9/4/2025

Review: Attention Decoder

9/4/2025 TRANSFORMERS 10

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Review: What are some of the
limitations of RNNs?

9/4/2025 TRANSFORMERS 11

Transformers
Since 2018, the field has rapidly standardized on the Transformer architecture

TRANSFORMERS 129/4/2025

Neural Language Model Timeline

Seq2Seq RNN
(2014)

Transformers
(2017)

GPT-2 (2019) GPT-3 (2020)
ChatGPT

(InstructGPT)
(2022)

GPT-4 (2023)

+attention
-recurrence

data++
parameters++

data++
parameters++

+RL

13

+???

9/4/2025 TRANSFORMERS

Transformers
The Transformer is a non-recurrent non-convolutional
(feed-forward) neural network designed for language
understanding

• introduces self-attention in addition to encoder-
decoder attention

TRANSFORMERS 149/4/2025

Transformers

TRANSFORMERS 15

Encoder

9/4/2025

Transformers

TRANSFORMERS 16

Decoder

9/4/2025

Transformers

TRANSFORMERS 179/4/2025

Attention Mechanism

TRANSFORMERS 18

Multi-Head
Attention

9/4/2025

Multi-Head Attention

TRANSFORMERS 19

Self-attention between a sequence of
hidden states and that same sequence
of hidden states.

Multi-Head
Attention

9/4/2025

Multi-Head Attention

TRANSFORMERS 20

Encoder-decoder attention, like what has been
standard in recurrent seq2seq models.Multi-Head

Attention

9/4/2025

Attention Mechanism

TRANSFORMERS 21

Multi-Head
Attention

Scaled Dot-Product Attention

9/4/2025

Scaled Dot-Product
Attention

The scaled dot-product attention mechanism is
almost identical to the one we looked at, but let’s
turn it into matrix multiplications.

The query: Q ∈ 𝑅𝑇𝑥𝑑𝑘

The key: K ∈ 𝑅𝑇′𝑥𝑑𝑘

The value: V ∈ 𝑅𝑇𝑥𝑑𝑘

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

TRANSFORMERS 22

Scaled Dot-Product
Attention

9/4/2025

9/4/2025 TRANSFORMERS 23

An analogy…

Query

Key

Value

3Blue1Brown Explanation of Q,K,V
(~6 minutes)
https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366

6:06 - 9:28 = 3:22

And then skip ahead to values

https://youtu.be/eMlx5fFNoYc?t=790&si=uNLE2TOpFtxkdDEj

13:10 – 15:43

9/4/2025 TRANSFORMERS 24

https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366
https://youtu.be/eMlx5fFNoYc?si=1sXvOHytbTUPqnE8&t=366
https://youtu.be/eMlx5fFNoYc?t=790&si=uNLE2TOpFtxkdDEj
https://youtu.be/eMlx5fFNoYc?t=790&si=uNLE2TOpFtxkdDEj

Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

The rough algorithm:

• For each vector in Q (query matrix), take
the linear sum of the vectors in V (value
matrix)

• The amount to weigh each vector in V is
dependent on how “similar” that vector is
to the query vector

• “Similarity” is measured in terms of the
dot product between the vectors

TRANSFORMERS 25

Scaled Dot-Product
Attention

9/4/2025

Scaled Dot-Product
Attention

Attention(Q,K,V) = softmax
𝐐𝐊𝑇

𝑑
𝑘

𝐕

For self-attention:

Keys, queries, and values all come from the
outputs of the previous layer

For encoder-decoder attention:

Keys and values come from encoder’s final
output. Queries come from the previous
decoder layer’s outputs.

TRANSFORMERS 26

Scaled Dot-Product
Attention

9/4/2025

Multi-Head Attention
Attention(Q,K,V) = softmax

𝐐𝐊𝑇

𝑑
𝑘

𝐕

TRANSFORMERS 27

Multi-Head
Attention

MultiHeadAtt(Q,K,V) =
 Concat head1, … headℎ WO

9/4/2025

Instead of operating on Q, K, and V mechanism
projects each input into a smaller dimension. This is
done h times.

The attention operation is performed on each of
these “heads,” and the results are concatenated.

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions.

Knowledge Check
Run first three cells of the Visualizing Attention with BertViz notebook

For the cell visualizing the “cat sentence”, look at the different layers of
attention. (You can change the layer using the drop-down menu next to
“Layer”).

1. Are there any patterns that you see between the layers? (e.g., What words
are connected to what other words for each layer?)

2. Come up with a guess for what type of information each layer could be
capturing.

3. Change the sentence on the inputs = tokenizer.encode() line and
run the cell again. Does this break what you thought for question #2? Explain.

9/4/2025 TRANSFORMERS 28

Multi-Head Attention

TRANSFORMERS 29

Two different self-attention heads:Multi-Head
Attention

9/4/2025

Inputs to the Encoder
The input into the encoder looks like:

TRANSFORMERS 30

= token embeddings + position embeddings

+

Position Embeddings: Token Embeddings:

9/4/2025

How does the transformer compare
to the seq2seq RNN?

9/4/2025 TRANSFORMERS 31

Think-Pair-Share
Why do you think we don’t need recurrence anymore (i.e., why is “attention all
you need”)?

9/4/2025 TRANSFORMERS 33

If you want more details, check
out the following slides

9/4/2025 TRANSFORMERS 34

The Encoder

TRANSFORMERS 35

Multi-Head

Attention

9/4/2025

The Encoder

TRANSFORMERS 36

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

9/4/2025

The Encoder

TRANSFORMERS 37

Feed

Forward <=>

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Feed

Forward
Add & Norm

9/4/2025

The Encoder

TRANSFORMERS 38

Multi-Head

Attention

Add & Norm
Multi-Head

Attention

Add & Norm (2)
Feed

Forward

= Add & Norm (2)

Feed

Forward
Add & Norm

9/4/2025

The Decoder

TRANSFORMERS 39

= token embeddings + position embeddings

+

9/4/2025

The Decoder

TRANSFORMERS 40

Masked Multi-

Head Attention

9/4/2025

The Decoder

TRANSFORMERS 41

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

9/4/2025

The Decoder

TRANSFORMERS 42

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Enc-Dec Multi-

Head Attention

9/4/2025

The Decoder

TRANSFORMERS 43

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

9/4/2025

The Decoder

TRANSFORMERS 44

Masked Multi-

Head Attention

Add & Norm Multi-Head

Attention

Add & Norm (2)

Enc-Dec Multi-

Head Attention

= LayerNorm(+)Multi-Head

Attention
Add & Norm

Add & Norm (3) = LayerNorm(+)
Feed

Forward

= Add & Norm (3)

Feed

Forward Add & Norm (2)

Add & Norm (2)

9/4/2025

	Slide 1: Transformers
	Slide 2: Learning Objectives
	Slide 3: What is a language model?
	Slide 5: Review: Sequence-to-Sequence / Encoder-Decoder Models
	Slide 8: Review: Turning open paren bold italic y bold italic t close paren hat into a Probability Distribution
	Slide 9: Review: Attention
	Slide 10: Review: Attention Decoder
	Slide 11: Review: What are some of the limitations of RNNs?
	Slide 12: Transformers
	Slide 13: Neural Language Model Timeline
	Slide 14: Transformers
	Slide 15: Transformers
	Slide 16: Transformers
	Slide 17: Transformers
	Slide 18: Attention Mechanism
	Slide 19: Multi-Head Attention
	Slide 20: Multi-Head Attention
	Slide 21: Attention Mechanism
	Slide 22: Scaled Dot-Product Attention
	Slide 23
	Slide 24: 3Blue1Brown Explanation of Q,K,V (~6 minutes)
	Slide 25: Scaled Dot-Product Attention
	Slide 26: Scaled Dot-Product Attention
	Slide 27: Multi-Head Attention
	Slide 28: Knowledge Check
	Slide 29: Multi-Head Attention
	Slide 30: Inputs to the Encoder
	Slide 31: How does the transformer compare to the seq2seq RNN?
	Slide 33: Think-Pair-Share
	Slide 34: If you want more details, check out the following slides
	Slide 35: The Encoder
	Slide 36: The Encoder
	Slide 37: The Encoder
	Slide 38: The Encoder
	Slide 39: The Decoder
	Slide 40: The Decoder
	Slide 41: The Decoder
	Slide 42: The Decoder
	Slide 43: The Decoder
	Slide 44: The Decoder

