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Learning Objectives
Consider when to use various sampling algorithms

Distinguish between finetuning and prompting

Distinguish between few-shot and zero-shot prompting

Try common prompting techniques like chain-of-thought
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Review: Transformers
The Transformer is a non-recurrent non-convolutional 
(feed-forward) neural network designed for language 
understanding

• introduces self-attention in addition to encoder-
decoder attention
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Review: Transformers
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Encoder
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Review: Transformers
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Decoder
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Review: Multi-Head Attention
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Two different self-attention heads:Multi-Head
Attention
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Review: Strengths of the 
Transformer Architecture
Training is easily parallelizable
◦ Larger models can be trained efficiently.

Does not “forget” information from earlier in the sequence.
◦ Any position can attend to any position.

PROMPTING & DECODING 79/9/2025



Review: Weaknesses of the 
Transformer Architecture
We can use a lot of data to train → expensive (money, time)

Can’t actually remember things, just looks back
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Review: Generating Text
To generate text, we need an algorithm that selects tokens given the predicted 
probability distributions.
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Also sometimes called decoding
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Resampling
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https://www.bighummingbird.com/blogs/llm-hyperparameter
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“Temperature”
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Temperature in Action
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Think-Pair-Share
When might you want to use one sampling algorithm over the other?
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Greedy Beam 
Search

Random 
Sampling Top-K/P



Fine-tuning
Start with pre-trained model

Freeze the model (don’t 
touch it) except for the last 
layer
◦ Sometimes you can adjust the 

weights of the whole model 
instead of just the last layer

◦ Start with generalized 
“foundation” model

◦ Train on a new, small dataset 
for your specific task
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GPT-2



Finetuning
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.

.

.

Stories .
.
.

Pre-trained model (GPT) New model (GPT+Stories)Your dataset

Update weights to 
adapt model to your 

data

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…
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What types of things can go wrong with 
finetuning?
Underfitting – finetuning data is too different from what the foundational model 
was train on → model can’t learn it

Overfitting – overwrites what the model learned originally
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Pre-trained models
Most LLMs people use today are pre-trained models

Trained on “the Internet” → Impossible to know all of what it’s train on
◦ Very few models release all the data. One example is OLMo 2.

Can then be finetuned on specific data
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Why would you 
want to “tweak” an 

existing model?



Open-Sourced Models
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https://doi.org/10.48550/arXiv.2501.00656

Team OLMo, et al. (2025). 2 OLMo 2 Furious. In Conference on Language Modeling. https://doi.org/10.48550/arXiv.2501.00656

https://doi.org/10.48550/arXiv.2501.00656


Prompting

24

.

.

.

Stories

Pre-trained model (GPT)

Your dataset

Prompt

Dogs are a type of 
mammal who have lived 
with humans for years…

Once upon a time 
there was an 
adventurous dog…

Facts
Prompt
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Zero-shot Prompting
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Model
Instructions

Task
Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.



Few-shot Prompting

9/9/2025 PROMPTING & DECODING 26

Model

Instructions

Task
Example Output

Task
Example Output

Task

Output

You are a helpful assistant. 
You will be tagging the parts 
of speech in sentences.

Sentence: 
The dog ate the giant fish.

Instructions Task Example Output

“shot”

2-shot

The dog ate the giant fish.
 D      N     V    D    Adj    N

prompt



Prompting
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"A child playing on a sunny happy beach, their laughter as 

they build a simple sandcastle, emulate Nikon D6 high shutter 

speed action shot, soft yellow lighting." 

Generated with Midjourney. 
via https://zapier.com/blog/ai-art-prompts/

Need to be really specific
(also match the training data)
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Chain-of-Thought Prompting

Q: The cafeteria had 23 apples. If they used 20 to make lunch 
and bought 6 more, how many apples do they have?
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Part of Figure 1 from J. Wei et al., “Chain of Thought Prompting Elicits Reasoning in Large Language Models,”
in International Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA & Online, Jun. 2022. doi: 10.48550/arXiv.2201.11903.

https://doi.org/10.48550/arXiv.2201.11903


CoRRPUS comparison to GPT-3
CoRRPUS (Code Representations to Reason & Prompt over for Understanding in Stories)

Original Story

Amy’s laptop is in the library.
Amy is carrying her laptop.

Amy goes to the dorm.
Then, Amy goes to the cafeteria.

Query 
GPT-3

Where is Amy’s laptop? Dorm

CoRRPUS Prompting

Generated 
Python 
Representation

Amy.laptop.location = library
Amy.carry = [laptop]

Amy.go(location=“dorm”)
Amy.go(location=“cafeteria”)

Query 
GPT-3

Where is Amy’s laptop? Cafeteria
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CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding

Yijiang River Dong, Lara J. Martin, and Chris Callison-Burch. 2023. CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding. In 
Findings of the Association for Computational Linguistics: ACL 2023, pages 13152–13168, Toronto, Canada. Association for Computational Linguistics.

https://aclanthology.org/2023.findings-acl.832/


CoRRPUS Chain-of-Thought Prompting
Three versions that are initialized the same:

Comment
def story(self):

## Mary moved to the bathroom.
self.Mary.location = “bathroom”
## Mary got the football there.
self.Mary.inventory.append(“football”)
…

Specific Functions

self.Mary_moved_to_the_bathroom()
self.Mary_got_the_football_there()
self.John_went_to_the_kitchen()
self.Mary_went_back_to_the_garden()

def Mary_moved_to_the_bathroom()
self.Mary.location=“bathroom”

def Mary_got_the_football_there():
…

Abstract Functions

def go(self, character, location):
 character.location = location
 for item in character.inventory:
  item.location = location
def pick_up(): …

def story(self):
## Mary moved to the bathroom.
self.go(character=self.Mary, 
location = “bathroom”)
…
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CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding

Yijiang River Dong, Lara J. Martin, and Chris Callison-Burch. 2023. CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding. In 
Findings of the Association for Computational Linguistics: ACL 2023, pages 13152–13168, Toronto, Canada. Association for Computational Linguistics.

https://aclanthology.org/2023.findings-acl.832/


Tested On 2 Tasks
bAbI (Weston et al. 2015)
◦ Task 2: Stories tracking objects that characters carry

Re3 (Yang et al. 2022)
◦ Identifying inconsistencies in stories (e.g., descriptions of characters’ appearances, 

relationships)

◦ Stories were generated from a list of facts (the premise). They also generated premises with a 
contradiction.
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CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding

Yijiang River Dong, Lara J. Martin, and Chris Callison-Burch. 2023. CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding. In 
Findings of the Association for Computational Linguistics: ACL 2023, pages 13152–13168, Toronto, Canada. Association for Computational Linguistics.

https://arxiv.org/abs/1502.05698
https://arxiv.org/abs/1502.05698
https://aclanthology.org/2022.emnlp-main.296/
https://aclanthology.org/2022.emnlp-main.296/
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bAbI (Weston et al. 2015)

Method # Shot Accuracy ↑

Random - 25%

GPT-3 1 56.5%

Chain of Thought (Creswell et al. 2022) 1 46.4%

Selection-Inference (Creswell et al. 2022) 1 29.3%

Dual-System (Nye et al. 2021) 10 100%

CoRRPUS (comment) 1 67.0%

CoRRPUS (specific) 1 78.7%

CoRRPUS (abstract) 1 99.1%
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CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding

Yijiang River Dong, Lara J. Martin, and Chris Callison-Burch. 2023. CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding. In 
Findings of the Association for Computational Linguistics: ACL 2023, pages 13152–13168, Toronto, Canada. Association for Computational Linguistics.

https://aclanthology.org/2023.findings-acl.832/


Re3 

The task is to see what stories match what premises based on the 
facts extracted from both.

Joan Westfall premise Joan Westfall in story
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Re3 (Yang et al. 2022)

Method ROC-AUC ↑

Random 0.5

GPT-3 0.52

Entailment (Yang et al. 2022) 0.528

Entailment with Dense Passage Retrieval (Yang et al. 2022) 0.610

Attribute Dictionary → Sentence (Yang et al. 2022) 0.684

CoRRPUS (comment) 0.751

CoRRPUS (specific) 0.794

CoRRPUS (abstract) 0.704

Probably because functions like set_age(self, character, age)complicate more than they help. 

349/9/2025

Takeaway: structured representations help!
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CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding

Yijiang River Dong, Lara J. Martin, and Chris Callison-Burch. 2023. CoRRPUS: Code-based Structured Prompting for Neurosymbolic Story Understanding. In 
Findings of the Association for Computational Linguistics: ACL 2023, pages 13152–13168, Toronto, Canada. Association for Computational Linguistics.

https://aclanthology.org/2023.findings-acl.832/


Decomposition
Breaking down complicated problems into components that feed into each 
other

Each instance of a model does a different step or function
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Decomposed Prompting: A Modular Approach

for Solving Complex Tasks

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, Ashish Sabharwal. 2023. Decomposed Prompting: A Modular Approach 
for Solving Complex Tasks. In Proceedings of the International Conference on Learning Representations.

https://openreview.net/forum?id=_nGgzQjzaRy
https://openreview.net/forum?id=_nGgzQjzaRy


Self-Criticism
LLM “ruminates” on its output to try to come up with better output

Precursor to reasoning models that are finetuned to do this automatically
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Language Models (Mostly) Know What They Know

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, et al. 2022. Language Models (Mostly) Know What They Know. 
arXiv: 2207.05221 

https://arxiv.org/abs/2207.05221


Other Tricks of the Trade
Instruction-tuned models like GPT-3.5 and Mistral-7B-Instruct like to be given a 
“role” first (e.g., “You are a helpful writing assistant.”)

The more defined the task, the better
◦ More details

◦ One thing to do at a time

LLMs are overly confident (like people on the internet)
◦ To “objectively” have the model evaluate something, you should create a new instance and 

ask it

Chain-of-thought prompting helps models come up with better answers

They will “Yes and…” your prompt
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Back to this example: Leading questions
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Dealing with any language model

Likelihoods →    Not cause & effect

What is probable might not be possible.
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Lara’s Language Model Tradeoff

Coherence Originality

https://thenounproject.com/icon/tug-of-war-1016981/
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In-Class Activity
Think of something you’re an expert in. It 
can be anything!

Pick an LLM that’s hosted online such as 
ChatGPT (https://chatgpt.com/) or Claude 
(https://claude.ai).

Ask your LLM to give you information 
about that topic. Ask in different ways 
about different things and use different 
prompting techniques.

What does it do well with?

What does it not do well with?

Some Prompting Techniques:

Few-shot

Zero-shot

Chain of thought

Decomposition

Self-Criticism
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https://chatgpt.com/
https://claude.ai/
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